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Growth of breakdown susceptibility in random composites and the stick-slip model of earthquakes:
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The responses to short duration pulses (of electric field, of additional “particles,” of a mechanical
“push due to blasting” on any “tectonic block,” etc.) have been studied numerically for metal-insulator
composites before dielectric breakdown, the Bak-Tang-Weisenfeld (BTW) (sandpile) model before the
critical avalanches, and the Burridge-Knopoff stick-slip model of earthquakes. We show that, from the
response to weak pulses of appropriate external field, one can estimate the growth of local failure corre-
lations in such systems, giving the breakdown susceptibility. The study of this breakdown susceptibility,
contributed to by the correlations of microscopic local failures, indicates universal behavior near the ca-
tastrophic (global) breakdown or the self-organized critical points. Its study can thus help in accurately
locating the global breakdown or disaster point (much before its occurrence) by extrapolating the inverse
breakdown susceptibility to its vanishing point. We have performed numerical studies of Laplace’s
equation of a dielectric with random bond conductors below its percolation threshold, of the dynamics
of the BTW model, and of the dynamical equations of the array of blocks in the stick-slip model of earth-
quakes. The breakdown susceptibility has a power law growth (with the critical interval from the global
breakdown threshold) in both the electric breakdown and in the BTW model. Accurate exponent values
for the growth have been obtained in the BTW case. The growth of the susceptibility, coming from
stress correlations, in the Burridge-Knopoff model of earthquakes is observed to be exponential in time,
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as it is for pulse susceptibility in this model.

PACS number(s): 05.45.+b, 05.40.+j, 91.30.Px

I. INTRODUCTION

Considerable progress has recently been made in the
statistical study of the breakdown strength of disordered
solids [1]. These solids may be porous media, random
composites, granular packings, or layers in the earth’s
mantle; the relevant phenomena are fractures, dielectric
breakdowns, avalanches, or earthquakes. Several simple
models (at a semimicroscopic level) have been introduced
for mechanical [2] and electrical [3] failure of such ran-
domly disordered media, where the media are represent-
ed by disordered lattices and the failure is modeled by in-
dividual bonds breaking irreversibly. These theoretical
results about the fracture or breakdown strength distribu-
tion have also been checked in several experiments [4].
Recently, there have been important extensions of these
electrical failure models [3] of randomly disordered
media to the electromigration failures in microscopic thin
film circuits [5]. Also the stick-slip model of Burridge
and Knopoff [6] for earthquakes has been studied exten-
sively in recent times [7] to investigate the failure proper-
ties in earthquakes.

Because failure processes play intrinsic roles in many
systems of industrial importance and in many natural
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disaster phenomena, the above mentioned statistical stud-
ies establishing the nature of fracture-strength or earth-
quake magnitude distributions and their fluctuations [1]
are of extreme importance. Although a significant
amount of literature has been developed for these studies
of failure strength distribution, not much has been done
on the dynamics of microscopic failures. Since the mi-
croscopic failures are irreversible and therefore require
intermediate redistributions of the forces, the equations
for the dynamics of failure are intrinsically nonlinear and
dissipative. The formulation and study of such equations
are necessary for the search of any precursor effect of the
macroscopic failure. In some recent experiments [8] on
the dynamics of the cracks in thin glass plates with
thermal stresses, the dynamics seems to undergo a se-
quence of numerous but reproducible instabilities that is
not sensitive to every detail of the fluctuations in the ini-
tial conditions. The dynamics of fractures is thus ob-
served to be mostly critical, on the verge of chaos but not
quite chaotic [9]; the situation depends somewhat on the
velocity of the crack tip. Similar is the case for the
dynamical models of earthquake [7], where also one gets
the Gutenberg-Richter-type power law for the magnitude
variation of the density of quakes, the failure distribution
being critical.

All these studies establish the very nonlinear, yet non-
chaotic (but on the edge of chaos), nature of the dynamics
of breakdowns. This absence of full-grown chaos sug-
gests the possible existence of correlations until the (glo-
bal) breakdown point. Very recently, the computer simu-
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lation study of the local dynamics of failures in these
models [2,3,6] has indicated [10] a novel correlation of lo-
cal failures. These correlations grow (often critically) as
the macroscopic or global breakdown point (for example,
the earthquake point) is approached. It has been seen
[10] that suitable short-duration pulsed perturbations can
sense these growing correlations. From the study of
response behavior (to such pulses), knowledge about the
growth of the breakdown susceptibility can therefore be
obtained. This growing (breakdown) susceptibility may
be studied and viewed as a precursor effect, and its
knowledge can help early predictions of the catastrophes.

Here, we have studied in detail these growing correla-
tions of local failures and the consequent growth of
breakdown (or failure) susceptibility as the global break-
down point is approached in the above mentioned (well-
studied and established) models for failures (breakdown)
in random composites or in earthquakes. We also study
how the response of such systems to appropriate pulsed
perturbations can give the information regarding this
growing breakdown susceptibility, and thereby help in
predicting the imminent catastrophes (in these models).
We have also checked such prediction possibilities for the
self-organized critical (SOC) point in the Bak-Tang-
Weisenfeld (BTW) model [11]. In particular, we study
here the response to electric pulses and the growth of the
local or breakdown susceptibility in a metal-insulator
composite (a dielectric with randomly placed conducting
sites). This is done numerically (following essentially
Manna and Chakrabarti [12]) by solving Laplace’s equa-
tion for a random nonpercolating lattice network of con-
ductors. We find that the rate of local failures (the num-
ber of dielectric bonds that break because the terminal
voltage goes beyond their threshold value), per unit in-
crease of voltage across the sample, increases sharply and
finally diverges at the critical breakdown voltage of the
sample. This gives the breakdown susceptibility. A simi-
lar study has been made to investigate the avalanche sus-
ceptibility (contributed to by the local avalanches in the
SOC dynamics) in the BTW model. We have determined
here the avalanche or breakdown susceptibility exponent
(or the dynamic exponent) value accurately for the BTW
model (in dimension D =2). We then study the growth of
breakdown susceptibility in the Burridge-Knopoff stick-
slip model of earthquakes where local pulsed momentum
is given periodically at any particular block. We look for
its (the same block’s) strain displacement periodically, by
solving numerically (using the fourth-order Runge-Kutta
method) the dynamical equations of motion of the sys-
tem. The pulse susceptibility again tends to diverge at
the earthquake point. The same behavior is also observed
for the susceptibility coming from the stress-stress corre-
lations of the blocks of the unperturbed system.
Knowledge about the growth of these (breakdown) sus-
ceptibilities (obtained from the response to appropriate
pulses) can therefore help one to predict the (global) ca-
tastrophic points (time) by studying the decay of inverse
susceptibilities before the global breakdown and extrapo-
lating to its vanishing point.

We organize this paper as follows: In Sec. II, we have
described the results of our numerical simulation to esti-

mate the breakdown voltage in a random metal-insulator
composite by searching the macroscopic connection via
conducting sites. The same has also been obtained from
the location of the peak of the breakdown susceptibility
and compared. Section III contains the computer simu-
lation results for the avalanche susceptibility and the esti-
mate of the dynamic exponent of SOC in the BTW mod-
el. The results about the breakdown susceptibility (and
prediction of the earthquake point) in the Burridge-
Knopoff model for earthquakes by solving the dynamical
equation of motion, are discussed in Sec. IV. The paper
ends with concluding remarks and a summary in Sec. V.

II. GROWTH OF BREAKDOWN SUSCEPTIBILITY
AND PREDICTION OF BREAKDOWN VOLTAGE

To study the dielectric breakdown property [12] of a
random mixture of conductors and insulators (dielec-
trics), we consider now an L XL square lattice, with
L =25. A fraction p, of its sites are randomly occupied
using a Monte Carlo program; they represent conducting
sites before breakdown starts. The (1—p,) fraction of
unoccupied sites represents the dielectric sites. For each
configuration with average conductor concentration p,
(<p,, p. representing the percolation threshold [13], with
Pp.=0.593), we first check whether or not there exists any
percolating path through the preexisting conducting
sites. Percolation connections are taken here through the
nearest-neighbor conductor sites in the sample. If no
such path exists, giving the macroscopic connection
across the lattice, we apply a voltage VL across the sam-
ple in the horizontal direction, with all sites at the left-
most column at zero voltage and those at the rightmost
column at voltage VL. We then update the site potential
by using the following steps:

(i) All the sites (except the conducting boundary sites)
are first given a random value of potential.

(ii) We update the chosen site potential according to
the solution of the discretized Laplace’s equation for the
field potential. The new value of the field at a particular
site (7,j) will be

_VE+Lp+vE—-1L,)+VGj+D)+V3Gj—1)
4

Vi, j)

in a square lattice.

(iii) All the nearest-neighbor conducting sites (of that
chosen site, if it is conducting) are then updated to the
same potential (field), which is the arithmetic mean of the
earlier values of the potential of those sites.

(iv) We keep on updating each lattice site at each itera-
tion over the lattice until the sum of the differences of po-
tentials of all sites in the successive updates goes below a
small value (10™* here).

(v) We than check if any two neighboring sites have a
potential difference beyond a preassigned threshold v,
value (1.0 here), when we consider the corresponding
(dielectric) bond as broken, and two terminal sites are
then permanently replaced by (newly added burned) con-
ductors.

Following these updating rules, we have calculated the
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minimum voltage required (for a particular initial con-
ductor concentration) to get a macroscopic connection
via the (original and burned) conducting sites. This value
of the potential is called the breakdown voltage for that
particular initial conductor concentration. We take the
average V{(p,) over various initial configurations (typi-
cally 1000 configurations here) as the percolating break-
down field at the (initial) conductor concentration p,. It
is clear that the average breakdown voltage for a fixed
sample of dimension L decreases with increasing initial
conductor concentration p,, until it vanishes at the per-
colation threshold p. [13]. For any particular initial con-
centration p, of random conductors, the sample dielec-
tric has an average (percolation) breakdown field (voltage
per unit sample length L) V§(p,), above which the sample
starts conducting (percolating) via the conductors (origi-
nal and broken). This variation of V{(py) is shown in
Fig. 1. It may be noted here that Vf(p,) represents the
final breakdown field, at which the broken system just
percolates via the conducting bonds (original and broken
dielectrics). As such, it differs from the breakdown initia-
tion field (at which one dielectric bond breaks) studied in
Ref. [12].

We intend to predict this V{(p,) value by looking at
the response of the sample to electrical fields (pulses)
much before its global or percolation (through original
and burned conductors) breakdown occurs. For this, we
make an increase dV, over V [for V << V{(p,)], in the ap-
plied voltage across the sample and look for the number
(n) of dielectric bonds breaking locally (or conducting
sites newly created as the voltage across the dielectric
bonds goes beyond the threshold value v, =1.0). This
helps us to define the breakdown susceptibility
Xq=dn/dV. It is shown in Fig. 2 for three different ini-
tial conductor concentrations, p,=0.5, 0.4, and 0.3 (aver-
aged over 5000 initial configurations). The maximum of
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FIG. 1. Variation of the average percolation breakdown elec-
tric field Vf(p,) with the initial conductor concentration p, for
sample size L =25.
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FIG. 2. Variation of breakdown susceptibility x, with ap-
plied field (¥) across the sample for various initial conductor
concentrations (p,). Inset shows the variation of breakdown
fields (voltage per unit of sample length) V¥(p,), obtained from
the peak position of x4, and V{(p,), obtained from the percola-
tion due to breakdown (Fig. 1), with initial conductor concen-

tration p,. Here system size L =25.

Xa gives the possible location of breakdown voltage. The
peak in )y, occurs at the field strength (voltage per unit of
sample length) V{¥(p,)=0.44, 0.34, and 0.26 for p,=0.3,
0.4, and 0.5, respectively, for fixed sample size L =25.
These values may be compared to those obtained from
the direct percolation breakdown voltage in this model:
VE(py)=0.558, 0.385, and 0.097 for p,=0.3, 0.4, and 0.5,
respectively, for the same sample size L =25 (when the
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FIG. 3. Variation of y, with respect to the applied field (V)
across the sample for various system sizes (L) and a fixed initial
conductor concentration p, =0.5. The inset shows the varia-
tion of AV=V{¥(po)— VE(po) with the system size.
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applied electric field is above the breakdown voltage and
conductors percolate through broken dielectric bonds).
It may be noted that the peak in ), increases in height
with the system size L, as can be seen from Fig. 3. Here
the inset shows that the difference AV =V{—V{, in the
breakdown field estimates from the percolation and sus-
ceptibility y,, decreases with L ~!. Thus an extrapolated
point where Y, ! vanishes gives the predicted location of
the breakdown voltage. In fact, since the extra conduc-
tors, coming from burned dielectrics, will change the
dielectric constant of the sample, ¥, can be estimated
from the measurement of the dielectric constant of the
composite material.

III. AVALANCHE SUSCEPTIBILITY
IN THE BTW MODEL

We consider now the self-organized criticality of the
critical “height” BTW model [11], considered to be a
generic cellular automata model of self-tuned (or self-
organized) avalanche dynamics in sandpiles and earth-
quakes. We consider a lattice size of 100X 100. At each
lattice point the ‘“heights,” or ‘“particles,” are randomly
added in discrete integer addition and avalanches take
place if the height Z; at any point i exceeds the value 3
(the cutoff value Z,=4). In such cases, the Z; 5 of the
nearest neighbors 8 of the site i gets one unit of height
each and Z; becomes zero at i. The dynamics continues,
until all the sites have Z <4. The simulation studies give
the value of the average critical height Z, to be around
2.124 [14] for such a model, beyond which the global
avalanches take place.

We have studied the effect of the addition of a fixed
(small) number k, of particles (or heights) at any central
point for a time unit 8¢, when the system has reached the
average height Z( <Z,) and the dynamics (before the ad-
dition of these particles) has stopped. Immediately after
the particles are added, the local dynamics starts again,
and it continues for a time period Az( = 6¢). We measure
the ratio R = At /8t of the response time to the perturba-
tion (pulse) time. We find that R ~(ZC—Z )~Y, where
y =1 (see Fig. 4). It may be noted that y is the dynamic
exponent in this case. One can thus precisely estimate
the value of Z at the self-organized critical point (or criti-
cal height) Z, by plotting R ~!/7 with Z and by locating
its vanishing point, which gives Z,=2.16. This is indeed
very close to the previous straightforward numerical esti-
mate Z_==2.124 [14] in the model.

Like the growth of response time (At for fixed pertur-
bation time 8¢#), with approach to criticality (Z—Z,) in
the BTW model (as studied above), the size (length) of the
perturbed region (for an additional pulse of height at a
fixed site) also increases as Z—Z,. To have a quantita-
tive measurement, we have studied the number NS(Z ) of
sites affected (toppled at least once) because of a fixed ad-
dition of particles (height) at a particular (central) point
in the BTW model. This N,(Z) is also seen to diverge as
the average height Z approaches the critical point Z,. In
fact, we have found N, *~(Z —Z,), with A=1. Figure
5 shows the variation of N,”* with Z, which is indeed a
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FIG. 4. Variation of R "7 with Z; h,=10, 8:=10 time
iterations, and L =100. We have fitted y = J.

straight line. The extrapolation of this straight line gives
the estimate of Z,. The accuracy of the estimate of Z,
increases as both the duration 8¢ and the size 4,, or in
other words the magnitude of perturbation (=h,381), de-
creases (see the inset in Fig. 5).

IV. NATURE OF RESPONSE TO PULSES
AND POSSIBLE PREDICTION OF CATASTROPHES
IN MODEL EARTHQUAKE SYSTEM

We now study the stick-slip model [7] of earthquakes
numerically [8]. In this model, a linear array of N blocks,
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FIG. 5. Variation of N, » with Z for different system sizes
and for fixed h, =10 and 67 =10 time iterations. We have fitted
with A=1 here. The inset shows the variation of N,"* with Z,
for (0) h,=10, 8t =10 time iterations, L =50, and (OJ) h,=4,
8¢ =35 time iterations, L = 50.
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each coupled to its nearest neighbors by elastic springs
and each connected to a rigid support (at the top) by elas-
tic springs, is put on a uniformly moving rough platform.
The equations of motion (after linear scale transforma-
tion) for any of the blocks, in the uniform spring constant
Burridge-Knopoff model (Carlson-Langer [8]), can be
written as

d?U; /dt*=1%U;,,—2U;+U;_)
—U;—¢[2av +2a(dU,/dt)], (1)

where U; denotes the displacement of the jth block from
its equilibrium position, /2 is the ratio of the spring con-
stants, « is a constant (linear transformation factor), and
v is the uniform pulling velocity of the rough (frictional)
platform. The nonlinear friction force is given by the
function ¢(y)=sgn(y /1+[y|).

In such dynamical models, the elastic stresses (energy)
developed completely with the (velocity dependent) fric-
tional force as long as the blocks stick to the moving plat-
form. As it fails, there occur local failures (slippage for a
finite number of blocks) or global failures (simultaneous
slippage of almost all the blocks). Initially the (elastic)
energy increases and then suddenly falls (causing an
avalanche or quake), releasing the excess elastic energy.
As the released energy is often more than the “excess,”
the system again becomes “‘subcritical.” The energy starts
to build up again and after some time it falls, and the pro-
cess continues. The strain energy released in any such
failure is identified as the magnitude (strength) of the
earthquake in this model system. We have solved the
above set of equations by using the fourth-order Runge-
Kutta method, taking 100 blocks (N =100; dt ~2~7). We
have checked the distributions of earthquakes (the
Guttenberge-Richter law) for the model and reproduced
the previous results [7] for various initial randomness of
the block velocities and positions. We then apply very
weak pulses to an arbitrarily chosen (central, kth) block
(giving fixed arbitrary 6U,=0.01 for a duration
8t=10Xdt; k=50) at a regular time interval of
T=1000Xdt. We then calculate again the total elastic
energy Er(=3,{1*/2[(U; 1, —U;*+(U;_,—U;?]
+U}/2}) at each time step and plot them against time
[Fig. 6(a)]. In all the figures we show the typical results
for N =100, I =10, a=2.5, and v =0.01, although the
general features we discuss are observed for many com-
binations of these parameter values within the range of
parameter values for the numerical solution of (1), which
gives power law behavior [7]. We also show in Fig. 6(b)
the time variation of the elastic stress, AU,
[=1%Uy +,—2U,+ U, _,)— U], developed on the kth
block, on which the pulses are being applied. We also
compare there [Fig. 6(c)], the time variation of the pulse
susceptibility = for  earthquake x,, defined as
X. =AU /Ug, with AU[" denoting the maximum of AU,
within the pulse period and Uf= [28U,dt. We find
)(e~exp[A(tcn)/(tcn—t)] for t <t, , where A(tcn) is a
constant and t., denotes the onset time of the nth earth-

quake or catastrophe. See Fig. 7 for an enlargement of

the correspondence of the x, peak and the earthquake in
the model. It may appear [from Fig. 6(c)] that (Iny,)”!
finally saturates to a fixed value (around 0.25) before the
earthquakes. However, this is seen to be a finite size
effect (see the following discussion on y), and this satura-
tion value vanishes as the system size N increases and
goes to infinity.

The growth of stress correlation in the same model
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FIG. 6. Time variation of (a) total elastic energy E7, (b)
stress AU, developed on kth block at which pulse has been ap-
plied, and (c) (In x,)~!. Here, N=100, a=2.5,1=10, v =0.01,
Uf=0.01, and pulses (of duration 8=10Xdt) after every
T = 1000 X dt duration on the kth (=50) block.
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FIG. 7. A close view of the time variation of (a) total elastic
energy E; and (b) (In y.)”!. Here, N=100, a=2.5, /=10,
v =0.01, Uf=0.01, and pulses (of duration 6¢=10Xdt) after
every T = 1000 X dt duration on the kth (=50) block.

25000

(unperturbed case) can be summed up to give a
direct susceptibility x(z) (with x=3,g(r), where
g(r=(AU,AU,), with AU,[=I"U;;,—2U;+U;,,)
—U; ] denoting the stress on the jth block in the model
[7]). The behavior of this susceptibility exactly matches
with our previously obtained results for ), [10] in that it
also grows exponentially with time and diverges at the
“earthquake” points or times (see Fig. 8). In fact, the
finite height of the peak in ) (or Y,) is observed to be a
finite size effect. In Fig. 9 we show the )y variation in
time for the same dynamical parameter values for two
different system sizes, i.e., N =100 and N =200. The
figure there shows that the peak height in )} indeed grows
with N and diverges to infinity at N — co. This also indi-
cates that the study of the response to the local pulses
indeed helps to estimate the growing stress (and conse-
quent slip) correlations in the system.

In Fig. 10, we show the distribution p(E) of earth-
quakes releasing energy E. The distribution indeed fol-
lows the Guttenberge-Richter type of power law decay
[p(E)~E "B, B~1.2] [7], both in the unperturbed system
(without pulse) and the system perturbed by weak pulses
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FIG. 8. Time variation of (a) total elastic energy E; and (b)
susceptibility ¥ for the unperturbed (by pulses) system. Here
N =100, a=2.5,1=10, and v =0.01.

(on the kth block) at regular intervals. In may be noted,
however, although the nature of the distribution remains
unchanged, because of the sensitivity of the initial condi-
tions the exact magnitude and timings of the quakes are
somewhat different in the two cases (pulsed and unper-
turbed). To sense the growing correlations in the system,
one needs to study the response of the system to (very
weak) pulsed perturbations, which, however, affect the
time sequence of the events (of course, keeping the distri-
bution and the exponent unchanged). One therefore has
to apply the pulse periodically and measure the suscepti-
bility of the system at regular intervals to look for its crit-
ical growth just before the (global) earthquake.

V. CONCLUDING REMARKS

Extensive research for the last decade or so has helped
in the development of several simple models [2,3,6,11] for
the study of breakdowns (fractures, dielectric break-
downs, avalanches, or earthquakes) in randomly disor-
dered media or systems. Established properties of the
breakdown strength distribution in such systems (and the
absence of full-grown chaos in the breakdown dynamics)
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FIG. 9. Time variation of } (unperturbed) for different sys-
tem sizes. (a) N =100; (b) N =200, with fixed a=2.5, [ =10,
and v =0.01.

indicated the possible growth of local failure correlations
[10] in such systems as the global breakdown point is ap-
proached. This, in turn, suggested the study of appropri-
ate (breakdown) susceptibility, whose growth could be
taken as the precursor of the macroscopic or global catas-
trophes. It may be noted that there have also been indi-
cations [15] that some other linear properties (e.g., the ra-
tio of shear modulus and bulk modulus, obtainable from
sound velocity measurements) show abnormal (but
universal) properties near the breakdown (macroscopic
fracture) points of disordered solids. The detailed study
of such a (linear) response (before breakdown) has been
shown to provide an advance indication of the imminent
(macroscopic) failure in the case of fractures in random
elastic media. Such methods (for extracting advance in-
formation) are also quite ‘“‘nondestructive.” However,
such indications are found to be very selective, and it has
not been possible yet to use them for the study of prior
indications in all the important cases of catastrophic
failures like earthquakes. It appears that although some-
what “destructive” in nature and perhaps also hard to
measure experimentally, the growing response (from local
failure correlations) to short pulses or some additional
applied field is, at least in various theoretical models of
breakdown, quite generic and ubiquitous.
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FIG. 10. Distribution p(E) of total elastic energy E released
during earthquakes in the model, both unperturbed and per-
turbed (with pulse) cases. N =100, a=2.5,! =10, and v =0.01.

Here we have reported in detail the results of the study
of the response to appropriate short-duration and local
pulsed perturbations on such systems. It has been shown
that appropriate (breakdown) susceptibility (linear ratio
of the response to the perturbation amplitudes or widths)
senses very accurately the growing (local failure) correla-
tions in the system as the system approaches its global
breakdown point. Specifically, we have studied the
responses to short-duration pulses (of electric field, of ad-
ditional particles, of mechanical “push” on any “tectonic
block,” etc.) for metal-insulator composites before dielec-
tric breakdown, the BTW (sandpile) model before the
critical avalanches, and the Burridge-Knopoff stick-slip
model of earthquakes. The study of the breakdown sus-
ceptibility indicates universal behavior near the catas-
trophic breakdown or the self-organized critical points.
Specifically, we have made a numerical study of Laplace’s
equation of a dielectric with random bond conductors
below its percolation threshold, the dynamics of the
BTW model, and the dynamical equation of the array of
blocks in the stick-slip model of earthquakes, all in the
presence of appropriate pulsed perturbations. We show
that one can estimate the growth of local failure correla-
tions from the response to such pulsed perturbations, giv-
ing the breakdown susceptibility. Studies of these break-
down susceptibilities are shown to help in accurately lo-
cating the global breakdown or disaster point (much be-
fore its occurrence) by extrapolating, to its vanishing
point, the inverse breakdown susceptibility. The break-
down susceptibility has a power law growth (with the
critical interval from the global breakdown threshold) in
both electric breakdown and in the BTW model. Accu-
rate exponent values for the growth have been obtained
in the BTW case. The growth of the susceptibility, com-
ing from stress correlations, in the Burridge-Knopoff
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model of earthquakes is observed to be exponential in
time, as it is for pulse susceptibility in the same model.

In summary, we find that one can define appropriate
susceptibilities for systems having macroscopic break-
down properties. As the (global) breakdown point ap-
proaches (for example, by increasing the external voltage
across random dielectrics or with the increase of time, as
in the BTW sandpile model or in the Burridge-Knopoff
model of earthquakes), the appropriate correlations grow
and the corresponding susceptibility tends to diverge at
the disaster point. By investigating, therefore, the nature

of such susceptibility and by locating the extrapolated
point where its inverse vanishes, one can make predic-
tions about the imminent breakdown point.
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