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Statistical fractals with cutoffs, Shlesinger-Hughes renormalization, anti the onset of an epidemic
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A method for constructing cutoff' values of the probability densities attached to statistical fractals is
introduced for which only the beginning of the tail of a probability density is slowly decaying and given

by an inverse power law; the end of the tail, however, is short, decaying exponentially or faster. This
method is illustrated by an example from the theory of epidemics. The probability density f(t)dt of the
time interval t within which an infected individual is able to spread an epidemic is evaluated based on
the following assumptions. (1) The spreading of the epidemic depends on the size of the germ load car-
ried by an infected individual; the total germ load is measured in large units containing at least 10 —10
germs. It is assumed that for each unit there is a constant probability p of infecting other individuals.
(2) The total number of germ units carried by an individual is a random variable; the corresponding dis-
tribution is evaluated by assuming that there is a constant probability a that an infected individual car-
ries a unit load of germs. (3) The encounters of an infected individual with healthy individuals suscepti-
ble to receiving the illness is a random event occurring with an average time-independent contact fre-
quency v. The probability density g(t)dt determined by these three assumptions has a long tail charac-
teristic of an ideal statistical fractal behavior: g(t)dt —(vt) ' +":-(ln(vt))d(vt) as t)&l/v, where
H =1n(a)/ln(1 —p) is a positive fractal exponent and:-(ln(vt)) is a periodic function of ln(vt) with a
period —ln(1 —p). In this case all positive moments ( t ~) of the infection time with q & H are infinite. A
statistical fractal with a cuto6' emerges if a fourth hypothesis is added: (4) Due to the healing process the
bacterial load of an individual decreases exponentially in time with a rate coe%cient b. If the healing
process is slower than the encounter process of healthy individuals, v )b, then only the beginning of the
tail of g(t)dt obeys an inverse power law scaling P(t)dt-(vt) ' +":-(ln(vt))d(vt) for 1/b) t) 1/v;
the end of the tail, however, is exponential and determined by the healing process
P(t)-const Xexp( bt) as t &)I—/b Due to. the cutoff the moments (tq) of the infection time, although
finite, have an intermittent behavior characterized by the scaling law (t~) -const Xb '~ ' as b~0. A
generalization of the epidemic model is given by assuming that the size of the germ load carried by an in-

fected individual is an arbitrary random function of time with known stochastic properties and that the
encounters with healthy individuals can be described by a correlated random point process. An analyti-
cal expression is derived for the probability density P(t)dt of the infection time in terms of the charac-
teristic functionals of the germ load and of the encounter process. A comparison is performed between
the onset of an epidemic and the passage over a Auctuating energy barrier with dynamical disorder.
Some implications of the cutoff'of a statistical fractal for the physics of fractal time are also analyzed.

PACS number(s): 05.40.+j, 02.50.—r, 64.60.—i, 87.10.+e

I. INTRODUCTION

Both geometrical [1] and statistical [2] fractals are
commonly used for describing a large class of natural
phenomena from physics, chemistry, and biology [1—4].
A geometrical fractal is characterized by the determinis-
tic or random self-similarity of the shapes of structures
characteristics of different length scales [1]. For a statist-
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ical fractal the self-similar behavior is not related to
geometry but to statistics: the tails of the probability
densities of the random variables that describe the system
are self-similar and obey scaling laws of the inverse power
law type. Although for an ideal geometrical or statistical
fractal the self-similarity acts up to infinity, the fractals
found in nature are always imperfect; for them the self-
similarity is always limited by an upper and a lower
cutoff value of the characteristic variable. For a geo-
metrical fractal the introduction of cutoff' lengths does
not generate special problems; the geometrical fractal
description is simply limited to a finite length range. For
a statistical fractal, however, a cutoff' value of the random
variable cannot be introduced in the probabilistic descrip-
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tion of the system because it would lead to a violation of
the normalization conditions of the probability densities.
This is probably the reason why the imperfect statistical
fractals have not yet been analyzed in the literature.

The purpose of this paper is to investigate the way in
which a cutofF of a statistical fractal may be generated.
Although the problem may be investigated in an abstract
way, we prefer to investigate a concrete biological prob-
lem, the initial stage of the onset of an epidemic generat-
ed by the encounters of an ill individual with healthy in-
dividuals that are susceptible to being infected. Although
apparently there is barely a connection between this
problem and the physical or chemical problems described
in terms of fractal time statistics, the structure of the
basic evolution equations is similar, though not identical.
Anyway the analysis of the similarity in (he mathematical
structure between a problem in biological sciences and
other problems in the physical sciences would be
beneficial. A similar comparison has been recently
presented in the physical literature [5]. In our case the
corresponding physical problem would be the passage
over a fluctuating energy barrier with dynamical disorder
[6,7].

The mathematical study of epidemics started at the be-
ginning of the century with the seminal papers by Ross
and Hudson [8] and by Kermack and McKendrick [9].
Now it is an independent branch of mathematical biology
with its own monographs [10]. Most papers dealing with
the study of epidemics aim at giving an overall descrip-
tion of the process in terms of deterministic or stochastic
models for the whole population within which an epidem-
ic process takes place. The main concern is the study of
the time behavior of the numbers of the difFerent types of
individuals (susceptible, infectious, immune, recovered,
etc.) that make up an epidemic system. A straightfor-
ward generalization is the study of the spatial distribution
of an epidemic described in terms of partial di6'erential
equations [11],stochastic field equations [12], or cellular
automata [13]. In this paper our purpose is different: in-
stead of studying the whole population, we are interested
in the random behavior of an infected individual spread-
ing an illness in a population of healthy individuals, more
precisely, in the stochastic properties of the time interval
within which the individual is able to spread the epidem-
ic. Our approach stems from the method suggested by
one of the present authors [14,15] for the study of the
spatial distribution of an epidemic in terms of cellular au-
tomata. The analysis of this problem is of interest from
the points of view of both the biological and physical
communities. From the biological point of view, it paves
the way for the development of a microscopic theory of
epidemics by starting out from a model for the random
behavior of an individual. Also, it proves the efticiency,
in the study of biological problems, of some mathematical
techniques commonly used by physicists (the renormal-
ization group, the stochastic I.iouville equations, and the
theory of random point processes) but almost unknown
to biologists. From the physical point of view, it is of in-
terest because it shows how a cuto6'of a statistical fractal
may emerge in a complex system, leading to the possibili-
ty of identifying and studying other nonideal statistical

fractals.
The structure of the paper is as follows. In Sec. II we

suggest an ideal statistical fractal description of an epi-
demic by using the Shlesinger-Hughes stochastic renor-
malization technique [16]. Sections III—V deal with an
imperfect statistical fractal description of an epidemic by
taking into account the healing process of an infected in-
dividual. In Sec. VI a comparison is made between the
onset of an epidemic and the passage over a fluctuating
energy barrier with dynamical disorder. Finally some
general implications of the imperfect fractal statistics for
the physics of fractal time are investigated.

II. EPIDEMICS AND IDEAL STATISTICAL FRACTALS

k = —ln(1 —p) . (2)

Equation (1) is the main relation of our approach. A
similar equation has been used in Refs. [14,15] for
describing the spread of an epidemic by means of cellular
automata; there, however, the parameter m has a
diQ'erent physical significance.

(ii) The total number m of germ units carried by an in-
dividual is a random variable selected from a probability
law. We denote by y(m) the probability that the number
of germ units carried by an individual is m. We have

We evaluate the probability y(m) by assuming that for
each germ unit there is a constant probability cz of oc-
currence; it follows that g(m) is given by a Pascal distri-
bution,

g(m) =(1—a)a

(iii) The encounters of an infected individual with
healthy individuals are independent random events obey-
ing Poissonian statistics. The time between two succes-
sive encounters is an exponentially distributed random
variable with a probability density

We consider an infected individual who carries a ran-
dom number of germs that are the cause of the illness.
We make three di6'erent assumptions.

(i) The spreading of the epidemic depends on the num-
ber of germs carried by an individual. We measure the
total germ load of an individual by large units made up of
at least 10 —10 germs. We consider that for each unit
there is a constant probability p for the occurrence of an
infection event. During an encounter between an infect-
ed individual carrying m germ units with a healthy indi-
vidual susceptible to infection, the probability p of infec-
tion depends on the germ load m, p=p(m). The proba-
bility of infection P(m) can be evaluated as follows. The
probability that none of the m germ units leads to an in-
fection is (1—p) . An infection event occurs if at least
one of the m germ units leads to infection, and thus

P(m)=1 —(1—p) =1—exp( —km),

where
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v exp( v—t )dt,
characterized by constant average frequency of en-
counters v.

Our aim is to evaluate the probability density P(t)dt
with

We start out by investigating the stochastic properties
of the duration of the active infectious period of an indi-
vidual with a germ load m. The moments (tq(m) & and
the curnulants (( t «( m ) » of the probability density
g(tom)dt are given by

I P(t)dt =1 (6)

of the time interval t within which an infected individual
is able to spread the infection. g(t)dt can be expressed as

(tq(m) & =q!v q(1 —p)

=q!v «exp(kqm}, q =1,2, . . . ,

&(t'(m) » =(q —1)!v '(1—p)

(15)

g(tom)= g P(Nim)[vexp( —vt)]'
N=O

where P(Nim) with

(9)

P(Nim) =1
N=O

(10)

is the probability that an individual with a germ load m
spreads the infection during N encounters, denotes the
temporal convolution product, and

[vexp( vt)S ]' —+"=v(vt) (N!) 'exp( vt)—
is the (N+ 1}-fold convolution product of the probability
density vexp( vt) of th—e time between two successive
encounters; that is, Eq. (11) gives the probability density
of the time necessary for the occurrence of a succession
of N + 1 encounters.

The conditional probability P(Nim) of the number of
infections generated by an individual with a germ load m
can be expressed by a Pascal law similar to Eq. (4),

P(Nim)=[1 —P(m)][P(m)] =(1—p) [1—(1—p) ]+,
(12)

which can be derived by considering a succession of
N +1 encounters of which the first N lead to N infection
events but the (N + 1}thdoes not lead to an infection. By
combining Eqs. (9), (11),and (12) we get the following ex-
pression for the conditional probability density f(t!m)dt
of the active infectious period of an individual carrying m
germ units:

P(t)dt = g y(m)g(tom)dt,
m=0

where P(ti!m)dt with

J g(tom)dt =1 (8)
0

being the corresponding conditional probability density
of the infection time corresponding to an individual with
a germ load m. g( t i m ) is given by

=(q —1)!v «exp(kqm), q =1,2, . . . . (16)

do not decrease with the increase of the germ load m but
are constant:

(m) [( 1)|]1/q

=independent of m and p .

This situation corresponds to an intermittent behavior of
the fluctuations of the duration of the active infectious
period for large values of the germ load m.

The moments of the duration of the unconditional
value of the active infectious period are given by

(1—p)'
(1—a)q!v

(1—p)q —a
00 for q ~H,

for q (H,
(19)

where

H = ln(a)/ln(1 —p) (20)

is a positive fractal exponent. In particular, for 1 & H & 0
all positive moments are infinite, a situation that suggests
the possible existence of an ideal statistical fractal
behavior for the probability density f(t)dt.

For investigating the possible self-similar behavior of
g(t) we use the stochastic renormalization technique of
Shlesinger and Hughes [16]. We rewrite Eq. (14) in the
form

g(t) =(1—a)v exp( vt)—
+a(1—p)v(1 —a)

X g [a(1—p)] exp[ vt'(1 —p—) ], (21)

We note that both the central moments and the cumu-
lants increase exponentially with the increase of the germ
load; in particular, for m —+ oo the infection process car-
ries on up to infinity. Note that the relative fluctuations
of di6'erent orders q =2, 3, . . . ,

p' '=((tq(m)»' q/&t(m)&, q =2, 3, . . .

f(tom)dt = (1v—p) exp[ vt (1 p) —]dt . — (13)
m=0

By combining Eqs. (4), (7), and (13) we get a similar ex-
pression for the corresponding unconditional probability
density g(t)dt:

g(t)dt=v(1 —a) g [a(1—p)] exp[ vt(1 p) ]dt . ——
m=0

(14)

where

t*=(1 p)t . — (22)

By eliminating the series from Eqs. (14) and (22) we get a
functional equation for g(t) of the renormalization group
type (RG):

P(t) =(1—a)v exp( vt)+a(1 —p—)g[(1 p)t] . (23)—
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e= 1+H, (25)

The solution of the RG equation (23) is made up of two
different additive contributions: a slowly decaying non-
analytic term of the power law type and an exponentially
decaying analytic term. Searching for nonanalytic contri-
butions of the type

g(t)-v(vt) ':-(t) for t » 1/v

and inserting Eq. (24) into Eq. (23) in the limit t »1/v,
we come to

where H is the fractal exponent given by Eq. (20) and:- is
a periodic function of ln(vt) with a period
k = —ln(1 —p):

:-( ln(vt)+k)=:-( ln(vt)) . (26)

The explicit form of the periodic function =(ln(vt))
may be evaluated by using the Poisson summation tech-
nique [17]. The infinite series (14) can be expressed in the
equivalent form

g(t) =
—,'(1 —a)v exp( vt)+ v—(vt)

1 —aX y(H+ 1,vt)+2 g (7+(1+H,2~ilk, vt) cos[2ml[ ln(vt)]/k]
1=1

where

+9 (1+H,2ml/k, vt)sin[2ml[ ln(vt)]/k] ) (27)

y(c, x)= f t' 'exp( t)dt, c—&0, x &0
0

is the incomplete y function and

Re xP*(a,b, x)= '& y(c =a'+ib, x)= f t' ' ' . '(b lnt)exp( t)dt—
0

are the real and imaginary parts of the incomplete y function of complex argument, respectively; the parameters k and
H are given by Eqs. (2) and (20), respectively. Equation (27) is exact; it includes both the analytic and the nonanalytic
contributions to P(t). By applying Eq. (27) in the limit t ))1/v and by keeping only the dominant terms in t, we recov-
er the nonanalytic scaling law (24) with a= 1+H and where =(ln(vt) ) is given by

:-( ln(vt))= I (1+H)+2 g (F+(1+H,2nl/k)cosI2n. i[in(vt)]/k]+F (1 +H, 2m. l /k)sin 2Im.i[ in(vt)]/k])
1=1

(30)

Cm =C'm'=M, (31)

where M is the total number of germs. Since the dynam-
ics of the process should be independent of the units used
we have

where 1 (1+H)=y(1+H, oo ) is the complete gamma
function and F*(a,b) =V*(a,b, ~ ) are the real and imag-
inary parts of the complete gamma function of complex
argument, respectively.

The logarithmic oscillations are typical for a renormal-
ization group approach. Although in other physical [18]
and biological [19] contexts they actually exist, in the
case of the present epidemic model they may be spurious.
Indeed, it is easy to show that their period of oscillation
depends on the size of a unit of germs that is arbitrary.
Considering two difFerent values, C and C' of the germ
unit and denoting by p, m and p', m' the corresponding
infection probabilities and the numbers of germ units, re-
spectively, we get

From Eqs. (31) and (32) we get

(1-p') =(1—p) (33)

and thus the corresponding periods of oscillation
k = —ln(1 —p), k'= —ln(1 —p') are related to each other
through the relationship

k'=kC'/C . (34)

It follows that the period of oscillation is not constant; by
changing the value of a unit germ load it changes accord-
ing to Eq. (34). This result leads to a contradiction that
can be solved only by assuming that the logarithmic os-
cillations do not actually exist but are spurious.

For circumventing the above mentioned contradiction
we consider the limit

p &0 and a&1 with H = ln(a)/ln(1 —p) =const,

(35)

P= 1 —(1—p) =1—(1—p') (32)
for which the logarithmic oscillations disappear even
though the nonanalytic scaling law of the inverse power
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law type is still present. In the limit (35) the RG equation
(23) becomes a diff'erential equation,

tdg(t)/dt+(H +1)it (t) =Hv exp( —vt) .

The normalized solution of Eq. (36) is

P(t)=Hv(vt) ' +"y(1+H,vt) .

(36)

(37)

As expected, in the limit t »1/v Eq. (37) leads to a long
tail, but the logarithmic oscillations are missing,

f(t)-HI (1+H}v(vt) '"+", t »1/v .

k, p —+0 . (40)

and

g( m ) =p exp( —pm ) = ( m o )
' exp( —m /m o ), (42)

For small values of k and p, close to but different from
zero, the probability y(m) of the germ load can be ap-
proximated by a probability density

g(m)dm with f y(m)dm =1, (41)

In the limit (35) both the period of oscillation
k = —ln(1 —p) and the parameter

mo =1/p (43)

p= 1n(1/a),

tend to zero,

is the average germ load size. By using this continuous
approximation, the sum in Eq. (14) is replaced by an in-
tegral, resulting in

g(t)= f "y(m)dm g(tlm)= f "@exp( pm) —evxp( —km) exp[ vt exp(——km)]dm .
0 0

(44)

By taking into account that from Eqs. (2), (20), and (39)
we have

I

(47) is known,

m (t) =y(t;mo),
(45)

and that the Jacobian derivative

(48)

and expressing the integral in Eq. (44) in terms of the in-
complete y function, we recover Eq. (37}.

III. LIOUVILLE EQUATION APPROACH TO HEALING

The model presented in the preceding section is not
very realistic from the biological point of view because it
ignores the possible time variation of the germ load m.
We have assumed that the germ load m is a randomly
selected variable from a discrete probability y(m) [Eq.
(4)] or from a continuous probability density y(m)dm
[Eq. (42)]. Once chosen according to a given probability
law, the germ load m has been assumed to be frozen: it
remains constant forever. In the real world, however, the

germ load of an infected individual varies in time: it ei-
ther decreases because of the healing process or increases
because of the progress of the illness, eventually leading
to the death of the individual.

In this section we improve the continuous version of
the mode1 presented in Sec. II by assuming that the germ
load m is initially selected from a known probability den-
sity g(mo)dmo with m(t =0)=mo, which does not
necessarily have the exponential shape given by Eq. (42),
and then it evolves according to a deterministic evolution
equation

y(t; mo)=By(t;mo)/Bmo

is finite and different from zero; thus according to the ex-
istence theorem of the implicit functions, we can express,
at least in principle, the initial germ load mp in terms of
the germ load m at time t,

mo=g' "(t;m), (50)

v(1 —p) '"=vexp[ —km(t)] . (53)

where the inverse function y' "(t;m) fulfills the condi-
tions

~(t;q' "(t;m})=m; q' "(t;q(t;mo))=mo . (51)

Now we introduce the instantaneous value l(t) of the
survival function of the infection process at time t. l ( t) is

the probability that the period of active spreading of in-
fection by a given individual ends up at a time t bigger
than the current time t (t'&t). The probability that an
infection event does not take place at time t can be ex-
pressed in terms of the bacterial load m (t) as

(1 —p) '"= exp[ —km (t)] .

Since the average frequency of encounters is v, the rate of
loss of the survival function l (t) is

dm (t) /dt =F(m, t),
with the initial condition

m(t =0)=mo,

(46)

dl (t)/dt = —l (t)v exp[ —km (t}], (54)

It follows that the instantaneous value 1 (t) of the survival
function obeys the evolution equation

where F(m, t) is the rate of variation of the germ load. In
this section we do not consider any particular form for
the function F(m, t); we assume only that the solution of
the difFerential equation (46) with the initial condition

with the initial condition

l(t =0)=1 .

We introduce the joint probability density

(55)
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8(l, m;t)dldm with f f 8(1,m;t)d1dm =l
0 0

(56)

of the survival function and of the germ load at time t.
By taking into account the evolution equations (46) and
(54) for 1(t) and m (t) and considering a Eulerian descrip-
tion of a statistical ensemble of trajectories in the (1,m}
space starting from (lo= 1,mo), where mo is randomly
selected from the initial probability density y(mo)dmo,
we can derive an evolution equation for the joint proba-
bility density 8 (1,m; t) of the Liouville type,

The Liouville equation (57) can be solved explicitly by
means of a transformation of the random variable 1 fol-
lowed by the application of the method of characteristics
combined with the Laplace transform technique. The
calculations are lengthy and tedious; the main steps are
presented in Appendix A. Here we give only the result-

ing expression for the positive moments of the survival
function 1(t):

(1 (t) }=f f 1 8(l, m;t)dl dm
0 0

B,8 (l, m;t) =r},[lv exp( —km)8 (1,m;t)]
—8 [F(m, t)8(l, m;t)],

with the initial condition

(57)

=f dy y(y) exp q—v f exp[ kq&—(t';y)]dt'
0 0

q)0, (59)

8(l, m;t =0)=5(l —l)y(m) . (58)

In the model introduced in this section and described by
the Liouville equation (57) with the initial condition (58),
there are two sources of stochasticity: the first one is due
to the Poissonian nature of the encounters and is implicit-
ly taken into account in Eq. (54), and the second one is
due to the initial random distribution of the germ load
and is described by Eqs. (46) and (47), where mo is a ran-
dom number selected from the probability density
y(m)dm.

where q is a positive number, not necessarily an integer.
A connection between the average survival function

(1(t)) and the probability density P(t)dt of the active in-

fection period can be made by computing the probability
that the active infection period ends up at a time t' bigger
than the current time t. %'e obtain

&1(t) &
=f g(t')«' . (60)

t

By differentiating Eq. (60) with respect to the current
time t and making use of Eq. (59) applied for q =1, we

come to

f(t)= —d (1(t)) Idt =f dy y(y)v exp[ kp(t;y—)] exp ~ v f—exp[ kq&(t', y))d—t'
0 0

(6 l)

It is easy to check that the theory presented in this sec-
tion is consistent with the ideal statistical fractal ap-
proach suggested in Sec. II. For a constant germ load we
have

y(t;y)=y independent of t . (62)

By inserting Eqs. (42) and (62) into Eq. (61) and evaluat-
ing the integral over y in terms of the incomplete y func-
tion, we recover again Eq. (37).

The Liouville equation description of the healing pro-
cess can be extended to the more general case when not
only the initial value of the germ load is random but also
its time evolution. %'e replace the deterministic equation
(46) for the time evolution of the germ load by a stochas-
tic Markovian equation for the probability density,

P(m;t)dm with f P(m;t)dm =1, (63)

of the germ load at time t. Denoting by

W(m'~m;t)dt dm (64)

the rate of transition from a germ load m' to a germ load
between m and m +dm in a time interval between t and
t +dt, we see that the Markovian master evolution equa-
tion for P(m; t) is

B,P(m;t)= f [8'(m' —+m;t}P(m', t)
0

—W(m m', t)P(m;t)]dm', (65)

with the initial condition

P(m;t =0}=y(m) . (66)

with the initial condition (58). A method for solving the
evolution equation (67) is presented in Appendix B. The
corresponding expressions for the moments (l~(t) } and
for the probability density f(t)dt of the duration of the
active infection period are

(1~(t)}=f dm f dy y(y)g (m;t~y;0),

P(t) =f dm f dy y(y)v exp( —km }g;(m, t~y;0),
0 0

(69)

where g*(m;t~y;0) is a generalized Careen's function
obeying a nonconservative master equation

lf the time evolution of the germ load m (t) is Markovi-
an and described by the master equation (65), then the
joint probability density 8 (1,m; t)dl dm obeys a com-
pound stochastic Liouville-master equation of the Van
Kampen type [20]:

B,8 (1,m;t)=d([lv exp( km)8 (1,m;t)—]

+ 8' m'~m;t 8 l, m', t
0

—W(m ~m', t)8 (1,m;t)]dm',

(67)
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B,g*(m;tly;0)= f [W(m'~m;t)g~ (m', tly;0) —W(m ~m';t)g (m;tly;0)]dm' —qvexp( —km)g (m;tly;0),
0

with g*(m, t =Oly;0)=5(m —y) . (70)

In Appendix B we show that Eqs. (37) and (61) can be
recovered as particular cases of Eq. (69).

IV. HEALING AND RANDOM POINT PROCESSES

m(t)=p(t;mo) . (71)

Unlike the case of the Liouville equation approach for
the present treatment, it is not necessary that the func-
tion y(t;mo) fulfill the conditions (49)—(51). If the en-
counters occur at different times t, , t2, . . . , the corre-
sponding probabilities of infection can be computed from
Eqs. (1) and (71),

Although mathematically consistent, the Liouville
equation approach presented in Sec. III does not have a
clear physical signi6cance. In this section we present a
physical approach to the onset of the epidemic for a
time-dependent germ load based on the analysis of the
mechanism of the process. This approach is a direct gen-
eralization of the initial treatment presented in Sec. II.
This mechanistic approach has the advantage that it can
be extended for an arbitrary stochastic behavior of the
germ load and of the statistics of the encounters. In con-
trast, the stochastic Liouville equation method is limited
to the case of Poissonian statistics of the encounters and
to a Markovian behavior of the germ load.

We start out by considering that the germ load m (t) is
a deterministic function of time with a random initial
condition m(t =0)=mo,

P(Nlti, . . . , t~+„m'o),

X exp[ kq)(t~+, mo)]

We introduce the time intervals ~1,~2, . . . , ~&+1 be-
tween two successive encounters

+1 1 +2 2 1 ' ' ' +N+1 tN+1 (75)

For a Poissonian statistics of encounters, ~1, . . . , ~N+1
are independent random variables selected from an ex-
ponential probability density

f (r)d ~= v exp( vr)d r .— (76)

The total duration of the infection period t = tN+, can be
expressed as

with g P (Nl t &, . . . , tz+ „'m 0 ) = 1 (73)
N=0

that there are X infection events generated by an indivi-
dual with an initial germ load mo during %+1 en-
counters occurring at different times t„.. . , tN+, . This
probability is given by a relationship sitnilar to Eq. (12):

tv+&'mo)=A ' ' '&N(1 ~N+1)
N= Q jl —exp[ —ky(ti, mo)J]

Pi =P(ti , mo) =1—'exp[ —km (ti )]

=1—exp[ —ky(t„mo)] . (72)
+W2+ ' ' +W (77)

Because of the time dependence of the germ load, the
probabilities of infection are different for different en-
counters. The conditional probability P(Nlm) of the
number of infections generated by an individual with a
germ load m should be replaced by the conditional proba-
bility

and thus the probability density g(t)dt is an average of
the Dirac's 5 function

5(t —r —r —. —r )1 2 N+1

over the time intervals v „.. . , ~N+1, over the number N
of infection events and over the initial germ load no =y:

N+1
P(t)= f dye(y) g f f 5(' —

'r&
— . —r~+1) g [f(ri)«i]P(Nlti, . . . , t~+i,y) .

0 N=0 0 0 1=1

By getting rid of the integral over rz+& by using the filtration property of the 5 function, using the expressions (74) and

(76) for P (Nl t „.. . , tN+&, mo) and expressing the remaining integrals in terms of the absolute times t„.. . , tz we ob-
tain

g(t)= f dy y(y) exp[ kgb(t;y)] g v—N 'exp( —vt) f f
N=O

N I

For evaluating the integrals in Eq. (80) we use the identity

dt', dt& Q [1—exp[ —kgb(tl';y)]] . (80)

~

~

]. 2f I(t i, . . . , t~)dt i
' ' ' dt~ —

(

' ' ' I(tI, . . . , t~)dtI ' ' ' dt~
~ ~ . )q )0N

0 (81)
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where I(t', , . . . , tN ) is an arbitrary symmetric function of t', , . . . , tN .By using Eq. (81}we can express the sum over N
in Eq. (80) as the expansion of an exponential. We have

g(t)= f dye(y) exp[ —k(p(t;y)]vexp( v—t) g v f [1—exp[ —kq&(t';y)]]dt' .
0 N 0

dy y(y)v exp[ k—p(t;y)] exp v—f exp[ kp—(t',y)]dt'
0 0

(82)

Equation (82) is the same as Eq. (61), derived in Sec. III by applying the method of the Liouville equation.
Now we can proceed to generalize Eq. (81) to the case of an arbitrary random behavior for the statistics of the en-

counters and for the time variation of the germ load. We describe the statistics of the encounters in terms of a correlat-
ed random point process [21] characterized by a set of grand canonical Janossy probability densities:

QO, Q„(tl, . . . , tN)dtl dtN, N=1, 2, . . . . (83)

QN(t„. . . , tN)dt, dtN is the probability that there are N encounters occurring at times between t, and
tl+dt„. . . , and tN and tN+dtN. We follow the usual convention [21], according to which there are no restrictions
concerning the values of tl, . . . , tN, and thus the normalization condition for the Janossy densities should include an
1/N! Gibbs factor:

Qo+ g, f . f QN(t, , . . . , tN)dt, dtN=1 .
%=1 0

In terms of the Janossy probability densities Q„(t1, . . . , tN )dt 1 dtN we introduce the product densities [21]

(84)

'gN(tl, . . . , tN) = $ ' ' ' QN+S(tl, . . . ) tN, tN+1, . . . ) tN+S )dtN+1 ' ' ' dtN+S
0 0

and the corresponding generating functional
00 t=[W(t'};t&t'&0]=1+ g f f l)}N(t'„. . . , tN)W(tl } W(tN)dtl dtN

0

(85)

(86)

where W (t '
} is a suitable test function of time.

On the other hand we assume that the germ load m (t)=y(t; mo) corresponding to a given initial value m (0)=mo is
an arbitrary random function with known stochastic properties. The random behavior of (p(t;mo) is described in terms
of the characteristic functional

[ G(t"((); (( ~0;~me(=(exP —f L(( )y(t ;me)dt""'
0

(87)

where K ( t" ) is another suitable test function.
By generalizing the derivation of Eq. (82) we can express the probability density g(t)dt of the duration of the infec-

tion period in terms of the functionals = and G. The main steps of the derivation are presented in Appendix C. The
final result is

P(t)= —8, f dm, y(m, ):-[W(t')= G[K(t")=k5—(t" t');t &t"&0;m—, ];t &t'&0] .
0

V. EPIDEMICS AND NONIDEAL STATISTICAL FRACTALS

In this section we apply the general approaches developed before to a particular case, which can be described in
terms of a statistical fractal with a cutoK We assume that an infected individual is healing with a rate proportional to
the germ load

F(m, t) = bm, — (89)

where b & 0 is a positive rate coefficient; thus during the healing process the germ load m (t) decreases exponentially in
time

m (t) =y(t;mo) =mo exp( bt) . — (90)

We also assume that the initial germ load mo is randomly selected from the exponential probability density (42). By in-
serting Eqs. (42) and (90) into Eqs. (59) and (61) we get the following expressions for the moments (!q(t)) of the survival
function and for the probability density f(t)dt of the duration of the active infection period:
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(l~(t)) =f Hx 'exp ~
—qv f exp[( lnx) exp( b—t')]dt' dx,

0 0

g(t)= f Hx 'vexp[( lnx) exp( bt—)]exp ~ v f exp[( Inx) exp( bt—')]dt' dx,
0 0

(92)

where the integration variable x is given by

x = exp( —ky) . (93)

site situation, when the healing is slower than the en-
counter process

Unfortunately in Eqs. (91)—(92) the integrals over x and
t' cannot be evaluated in a closed form in the general
case; however, the asymptotic behavior of Eqs. (91) and
(92) can be studied analytically in certain particular cases.

First we note that for b =0 we obtain

(I~(t) & =Hy(H, vt)(vt) H, -
and g(t) is given by Eq. (37). In this case the initial Auc-
tuations of the germ load are completely frozen and the
approach reduces to the particular situation analyzed in
Sec. II.

For investigating other particular cases we define two
characteristics time scales. The first is the mean time in-
terval between two successive encounters

i e , .b.)v, (97)

then the integrals in Eqs. (91) and (92) can be approxi-
mately evaluated, provided that the average healing time
is large enough, i.e., if

(t)„»0, b-O . (98)

Xy H, —[ exp(bt/H) 1], as—b —+0,vHq

In Appendix D we show that in the limit (98), Eqs. (91)
and (92) can be approximated by

H

(1~(t) ) =— [ exp(bt/H) —1] ~

b

(r&, =f "rvexp( —vr)dr=i/v, (95)
0

and the second one is the mean time necessary for healing

(t)q =f t f [[dm (t)/dt]/moJ /dt
0

Hvg(t) =Hv exp(bt—/H) [ exp(bt/H) —1] .
b

—{0+I)

(99)

tb exp —bt dt =1 b . (96)

If the mean healing time ( t ) i, has the same order of mag-
nitude as the average time interval between two succes-
sive encounters or is even smaller, then there is an over-
lapping between the healing and the encounter processes
and Eqs. (91) and (92) cannot be simplified. In the oppo-

I

Xy H+1, — [exp(bt/H) —1], as b~O .Hv

(100)

By using Eqs. (99) and (100) the asymptotic behavior
for large time of (l~(t)) and of P(t) can be easily evalu-
ated in the limit b ~Q. %'e obtain

I (H+1)(vqt) ~, (t )„&t & (r)„ t »0, b ~0,
I (H+1)[b/(vHq)]Hexp( bt), t & (t )—„, t »0, b~0,

Hl (H+1)v(vt) ' +", (t)„&t&(r)„ t»0, b 0,
(t)- HI (H+1)v[b/(vH) j +'exp( —bt), t ) (t )h, t)&0, b —+0 .H+1

(101a)

(10lb)

(102a)

(102b)

From Eqs. (101) and (102) we notice that only the begin-
ning of the tails ( ( t ) &

& t & ( w ), ) of the functions
(l~(t)) and g(t) have a self-similar behavior of the in-
verse power law type; for larger times (t ) ( t ) i, ) the ends
of the tails fall ofF'exponentially. The biological interpre-
tation of these results is straightforward. In the time
window ( t ) I, ) t & ( r ), the germ load is practically con-
stant, the initial fluctuations of the germ load are frozen,
and the model is equivalent to the fractal description
presented in Sec. II. In this case the inverse power law
behavior is generated by the equilibration between the

contribution of very large germ loads, which are ex-
ponentially rare [see Eq. (42)], and the characteristic time
of loss of the survival function [see Eq. (53)]

t(„,= 1/[v(1 —p) ]=v ' exp(km), (103)

which increases exponentially with the increase of the
germ load. For larger times t ) (t )t, the germ load de-
creases exponentially to zero [see Eq. (90)] and the initial
fluctuations of the germ load decrease as time increases,
in this time scale the spread of infection among healthy
individuals is dominated by the healing process of the in-
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fected individual considered, resulting in the exponential
decay laws (10lb) and (102b).

For the fractal epidemic studied in Sec. II all positive
moments (t~) of the infection time with q &H are
infinite. For a fractal epidemic with a cutoff, however,
the moments of the infection time, although possibly
large, are instead finite because of the exponential decay
of the tail of the function it}(t). In Appendix E we show
that in the limit b ~0, the moments ( t~) and the cumu-
lants (( t~)) of the duration of the active infection period
of an individual are given by

(tq&, « t&&&-Hr(1+H)v (H-/by J,-(H),

q &H, b~o, 1&H &0, (104)

where

Jq(H) =f y~ exp( Hy)[1 ——exp( —y)] '~+ "dy

=r(q+1)y, (H+i) "+"-. (1O5)I (H +1)l!
It is easy to check that for q & H both the integral and the
series in Eq. (105) are convergent.

Equations (104) show that in the limit b ~0 the cumu-
lants of the infection time are approximately equal to the
corresponding moments. Although surprising at first
sight, this result has a simple explanation: the expres-
sions (104) for the moments and cumulants give only the
dominant contribution in b as b —+0, which both for mo-
ments and cumulants scales as b '~ }-((r),)i ~. Al-
though the moments and the cumulants are generally
different from each other in their expressions, the other
contributions depend on lower powers of (r), =1/b,
which in the limit b ~0 are negligible.

An important consequence of the asymptotic expres-
sions (104) for the cumulants of the duration of the infec-
tion period is that for b —+0 the fluctuations of the infec-
tion time are intermittent. For proving the existence of
intermittency we compute the relative fluctuation of or-
der q (q &2):

(«'»'"

(H) i/q
' ' H(l —1/g}

—[Hr(1+H) ]-"-'"'
J, (H) b

(r), =1/b»0, q &2 . (106)

The relative fluctuation of order q increases with the in-
crease of the mean healing time (r ),= 1/b as
((r), )

" ' ~'. As expected in the ideal fractal limit
( r ),~~, the relative Auctuations p~(b), b & 2 diverge to
infinity.

Our analysis shows that the healing process slows
down the spread of the epidemic by the germ carrier
among healthy individuals susceptible to infection. Be-
cause of healing for a fractal epidemic with a cutoff, the
contribution of very large germ loads is smaller than in
the ideal fractal case (r),~~ for which the germ load
is constant. This decrease of ei5ciency can be analyzed
by evaluating the large time behavior of the effective ha-
zard rate:

W, (t)=y(t)/(&(t)) (107)

By using Eq. (60) the definition (107) of the effective ha-
zard rate can be rewritten in the form

W,tt(t)= —[d(1(t))/«]/(1(t)) . (108)

whereas in the case of the imperfect fractal epidemic with
an exponential decrease of the germ load with a small
rate b —+0 we obtain

Equation (log) shows that the effective hazard rate
W,ft(t) is a measure of the relative differential decrease of
the average survival function (1 ( t) ) . For the case of the
ideal fractal epidemic we have

W,tt(t)=Ht '[1+[(vt) exp( vt)]/y(H+1, vt)—j

b exp(bt/H) + [[exp(bt/H) —1]vH/b j exp[ —[exp(bt/H) 1]vH/b j-
exp(bt /H) —1 y (H + 1, [ exp( bt /H') —1 ]vH/b)' (110)

By investigating the large time behavior of Eqs. (109) and
(110) we notice that for an ideal fractal epidemic the
effective hazard rate decreases hyperbolically to zero,

W,~-H/t, t »0, &r),~~,
whereas in the imperfect fractal case 8'

& tends toward
the healing rate b:

W,tt-b, t » (7 )„(r),»0, (r), =(finite) . (112)

VI. COMPARISON WITH THE PASSAGE
OVER A FLUCTUATING ENERGY BARRIER

rt(E) =(ks To) ' exp( E/k~ To), — (113)

which corresponds to a canonical distribution "frozen" at
temperature To, we see that the probability density g(t)dt
of the passage time over the barrier is a weighted distri-
bution of Poisson processes

barrier with dynamical disorder [6,7]. We start out by
considering the classical random activation energy model
with static disorder (RAEM), which has been applied to
many problems from condensed matter physics [22—24]
and molecular biology [25,26]. Considering an exponen-
tial distribution of activation energies

In this section we make a comparison between the epi-
demic model and the passage over a fluctuating energy

P(t) =J rt(E) W exp( —Wt)dE, (114)
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where the hopping frequency 8'is given by the usual Ar-
rhenius expression

W =v exp( E /—kz T), (115)

v is the maximum jump frequency corresponding to zero
activation energy, and T ~ T0 is the system temperature.
From Eqs. (113)—(115) it follows that the probability den-
sity g(t)dt of the passage time is given by a relationship
that is isomorphic with Eq. (37) for the probability densi-
ty of the duration of the active infection period derived
by applying the continuous version of the ideal fractal
epidemic model developed in Sec. II:

P(t) =Hv(vt) " 'y(1+H, vt),
where the fractal exponent H is equal to

(116)

H =T/T 0+1 . (117)

%'e notice that here the random activation energy E
plays the role of the germ load m that is randomly select-
ed from the exponential probability density g(m)dm
given by Eq. (42), which is the analog of the canonical
distribution (113)of activation energies.

The main assumption of the RAEM approach is that a
fluctuation of the height of the energy barrier lasts forev-
er, which justifies the validity of the static ensemble aver-
age in Eq. (114). Although reasonable for some problems
of condensed rnatter physics, the validity of this assump-
tion is questionable in molecular biology. In the case of
protein-ligand interactions [25] and of ion channel kinet-
ics [26], the distribution of energy barriers is due to con-
forrnational fluctuations, which have a dynamical nature,
and thus the fluctuations of the activation energy are con-
tinuously generated and destroyed by thermal agitation.
The static RAEM approach has been recently general-
ized by two of the present authors by incorporating into

I

with the boundary condition g =(E =0, t) = 1/kz To,
where rt(E, t)dE is a time-dependent probability density
of the activation energy

+km T04 . ] (119)

is a linear evolution operator, and co is the regression rate
of the fluctuations of the barrier height. One assumes
that the fluctuations of the activation energy are station-
ary and Markovian, and thus the one-time prob-
ability density of the activation energy is given
by Eq. (113), which is the stationary solution of Eq.-
(118). Because of the Markovian character of Auctua-
tions, the multitime joint probability densities

(E[,t[,'. .. ',E,t )dE[ dE are completely deter-
mined by the stationary one-time probability density
(113) and by the Careen's function g[(E»t, IE2, t2)

( [E„t, tzIE2, 0)—of the evolution equation (118),
which depends only on the time di6'erence t

&

—t2 and not
on the individual times t

&
and tz. In particular, for m =2

we have

it the possibility of existence of dynamical fluctuations of
the height of the energy barrier. A detailed analysis of
this generalized RAEM approach is presented elsewhere
[27]. Here we outline only the main assumptions and re-
sults of the model and make a comparison with the
theory of epidemics.

Unlike the static random activation energy model, the
dynamical RAEM approach developed in Ref. [27] is not
isomorphic with the imperfect fractal epidemic model
developed in the present paper. However, despite the
diferent form of the evolution equations, the two models
still share some common features.

The dynamic fluctuations of the energy barrier are de-
scribed by a dynamic Bloch-like equation

(118)

q2(E[, t[')E~) t2) h(t, —t2)g, (—Eq)g[(E[et[ t2IE2, 0)+—h (t2 t, )q[(E—[)g[(Eq, t2 t[IE[,0), — (120)

This equation is the analog of the relationship (90) for the
time decrease of the germ load due to healing. There is,
however, a difference. Even though the regression of
fluctuations of the energy barrier is similar to the de-
crease of the germ load due to healing, Eq. (90) is a deter-
ministic equation for the time dependence of the germ
load, whereas the expression (122) for the correlation
function is stochastic.

For dynamic fluctuations of the activation energy, the
probability density of the passage time is given by a dy-
namic average

where q[(E&.z) is given by Eq. (113},the Green's function

g, (E, tIE', 0) is equal to

rt, (E, tIE', 0)=(k~ T[) )
' exp( E/k~ To)h (cotk~ —To E)—

+5(E E' cotk~ To) e—xp—( cot), (121)—
and h (x) is the usual Heaviside function. The correla-
tion function of the activation energy corresponding to
Eqs. (120) and (121) is given by

&&E(t)&E(t')&=f J (E —&E&)(E,—&E&)
0 0

Xgq(E(tt )E2, t')dE[dEq
=(k& To) exp( —~It —t'I ) (122)

t(t(t)=(vexp[ E(t)lkeT]exp —vJ exp[ —E(t )I T)dt k)e,
'— ' (123)

which is the analog of the static equation (114}. The average in Eq. (123) is given by a path integral, which takes into
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account all possible random functions E(t'), t & t'~0. The evaluation of the path average in Eq. (123) can be reduced
to the solution of a Liouville equation, similar to but not identical with the Liouville equation (57) derived in Sec. III for
the description of the healing process:

3,8 (/, E;t ) = 8& I l v exp [ E—/ks T]B(/, E; t ) [ +LB ( 1,E;t),
with the initial condition

8 (/, E;t =0)=(k~ To) ' exp( E/—kit To)5(l —1),

(124)

(125)

where 8 (l,E;t)dl dE is the joint probability density of the instantaneous survival function I attached to the passage
process and of the activation energy E at time t. The mathematical structure of Eq. (124) is simpler than that of the
similar equation (57) derived in the context of epidemic theory. Because of the simplicity of Eq. (124) for the passage
problem, it is not necessary to solve it explicitly for the probability density 8 (/, E;t). The tedious method of integration
of Eq. (57) presented in Appendix A can be replaced by an indirect approach, which leads directly to closed expressions
for the moments of survival function (/t(t) ) and of the probability density g(t) of the passage time [27]:

(/~(t) ) =H [ [exp(tot /H) —1]vHq /co j y(H, [ exp(tot /H) 1]vH—q/co),

P(t) =Hv exp(cot/H) [ [ exp(cot/H) 1]Hv/—co] ' +"y(H + 1, [ exp(cot /H) 1]H—v/co) .

(126)

(127)

Incidentally Eqs. (126) and (127) have the same structure
as Eqs. (99) and (100), where the healing rate coefficient b
is replaced by the regression rate co. Although the other
symbols are the same in both sets of equations, they have
a different biological and physical significance in each
case. The main difference between these two sets of equa-
tions is that Eqs. (127) and (128) are exact and valid for
any values of the regression frequency co, low or high: in
contrast, in the case of epidemics Eqs. (99) and (100) are
only approximations for b ~0 of the exact equations (91)
and (92).

Because of the similarity of structure between Eqs. (99)
and (100) and (126) and (127), the results concerning the
imperfect statistical fractal behavior derived in Sec. U in
the context of epidemics are also valid for the passage
over a fluctuating energy barrier. In particular, Eqs.
(101)—(112) remain valid, with the difference that the pa-
rameter b should be replaced by the frequency ~ and the
physical significance of the other symbols should be
changed accordingly. It follows that the moments of the
survival function and the probabi1ity density of the pas-
sage time have tails with long beginnings of the inverse
power law type followed by a fast exponential decay.
Similarly, the Guctuations of the passage time, although
characterized by finite moments and cumulants, have an
intermittent behavior as the regression rate of Quctua-
tions co tends to zero, co~0.

%'e emphasize that all these analogies are rather
superficial and limited to the region of small rates b and
co(b, to~0) Despite th. e formal analogy of the evolution
equations as b, co~0, the underlying mechanisms of the
two phenomena are difFerent. In the case of the epidemic
models developed in this paper, the starting point was a
discrete model inspired by a cellular automata descrip-
tion, which has been approximated by a continuous mod-
el in order to get rid of the logarithmic oscillations of the
infection time that are spurious; no such discrete model
can be imagined for the passage over a fluctuating energy
barrier. In the theory of epidemics we have developed
two different mathematical formalisms. The first formal-
ism is biologically motivated and gives a direct descrip-

I

tion of the epidemic spreading because of the encounters
of a germ carrier with healthy individuals. The second
formalism is more abstract and based on the method of
Liouville equations. In contrast, for the passage over a
random activation barrier with dynamical disorder, there
is no underlying physical mechanism similar to the en-
counter process, and therefore the unique mathematical
formalism available is the one based on a Liouville equa-
tion description.

VII. CONCLUSIONS

In this paper we have suggested a model for the onset
of an epidemic due to the encounters of an infective indi-
vidual with other healthy individuals susceptible to infec-
tion. For the description of the process two types of
mathematical techniques have been developed, based on a
multiple convolution product representing the contribu-
tions of different encounters and on a conservation equa-
tion in the phase space of the Liouville type for the state
probability density, respectively. Although the two for-
malisms are consistent with each other, their range of va-
lidity is different and lead to different generalizations.

The investigation of a particular epidemic model for
which the process of healing of an infective obeys an ex-
ponential recovery law has led to a statistical fractal with
a cutofF for which only the beginning of the tail of the
probability density g(t)dt of the duration of the active in-
fection period obeys a self-similar scaling law of the in-
verse power law type. The cutoff of this statistical fractal
distribution is generated by the healing process, which
leads to an exponential shape of the end of the tail. This
epidemic imperfect statistical fractal shares some features
with another type of imperfect fractal generated by the
passage of a particle or quasiparticle over a random ac-
tivation energy barrier with dynamical disorder.
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APPENDIX A

We replace the survival function l(t) by the new ran-
dom variable

B,P(g, m; t)= —gv exp( —km)P(g, m; t)

—8 [F(m, t)P(g, m;t)],
P(g, m;t =0)=y(m) . (A9)

where g is the Laplace variable conjugate to e. Through
Laplace transformation, Eqs. (A5) and (A6) become

e(t)= —lnl(t) . (Al)
The characteristic system attached to the partial
differential equation (A8) is

By analogy with the nomenclature used in nuclear phys-
ics, we call the parameter e(t) "the lethargy. " We intro-
duce the joint probability density of the lethargy and the
germ load at time t, respectively:

P(e, m;t)dedm with f fP(e, m;t)dedm =1 . (A2)
0

dm /dt =F(m, t),
d in//dt = d F—(m, t) gv e—xp( —km) .

(A10)

(Al 1)

From Eqs. (46}, (48), and (A10) it follows that the charac-
teristic curves of Eq. (A8) in the (t, m) plane are given by

We have m =y(t', C), (A12)

B (l, m;t)d ilidm =P(e, m; t)djeidm,
from which we obtain

P(e, m;t)= exp( e)B(—exp( e), m—;t);
B(l,m;t)=P( —lnl, m;t)/1 . (A4)

By expressing Eqs. (57) and (58) in terms of the probabili-
ty density P(e, m; t), we come to

B,P(e, m;t) = —B,[vexp( —km)P(e, m;t)]
—8 [F(m, t)P(e, m;t)],

with the initial condition

(A5)

P(e, m;t =0)=5(e)g(m) . (A6)

Now we introduce the marginal characteristic function
of the probability density P(s, m;t) with respect to the
lethargy variable e as the Laplace transform

P(g, m; t) =f exp( eg)P(e, m; t—)d e, (A7)
0

—gv f exp[ ky(t;C)—]dt' ', (A13)
0

where Q(C) is an arbitrary function of the integration
constant which can be determined from the initial condi-
tion (A9). By applying Eq. (A13) for t =0 and comparing
the result with Eq. (A9) we get

Q(C) =y(C) . (A14)

By using Eq. (A14} and expressing the integration con-
stant C =mD in terms of the germ load I at time t by
means of Eq. (50), Eq. (A13) becomes

where C is a non-negative arbitrary constant. The gen-
eral solution of Eq. (A8) can be obtained by integrating
Eq. (Al 1) along the characteristics

r

Q=Q(C) exp ' —f 8/(p(t;C), t')dt'
0

(I}(g,m;t)=y(qr '(t;m))exp —f 'a/(q(t', qr '(t;m)), t')dt' exp —gvf 'exp[ ky(t', qr
—'(t;m))]dt' ~ .

0 D
(A15)

For evaluating the F-dependent factor in Eq. (A15) we write the differential equation (46) as

dp(t;mo)/dt =F(p(t;mo), t)

and differentiate both terms of Eq. (A16) with respect to mo, resulting in

dy(r;mo)/dt =[d/(q, t)]y(t;mo) .

As y(t =O, mo) =mo we have

y(t =0;mo}=1 .

By integrating Eq. (A17) with the initial condition (A18) we obtain
T

y(t;mo)= exp ~ f 8/(y(t', mo), t')dt' . .
0

(A16)

(A17)

(A18)

(A19)

By combining Eqs. (A15) and (A18) we come to

P(g, m;t)=y(q& '(t;m))y '(t;y' "(t;m)) exp —gv f exp[ ky(t';y '(t—;m))]dt'
D

(A20)
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For computing the moments of the survival function
( lq(t) ) with q )0 we note that

(l~(t})=f ' f "l~B(l,m;t}dl dm
0 0

=f f exp( eq)—P(e, m; t)d E dm
0 0

=q;m;t m . (A21)
0

By inserting Eq. (A20) into Eq. (A21) we get Eq. (59).

APPENDIX 8

By following the same steps as in Appendix A and
starting out from Eqs. (67}and (58), we can derive the fol-
lowing evolution equation for the marginal characteristic
function P(g, m;t}:

d, P(g, m;t) = —vgexp( —km)tl}(g, m;t)+M/(g, m;t),
(81)

I

with the initial condition (A9), where the Markovian evo-
lution operator I is given by

Mf(m)= f [W(m'~m;t)f(m')
0

—W(m ~m';t)f (m)]dm' . (82)

P(g, m;t) =f dy y(y)g& (m; t~y;0) .
0

(83)

By inserting Eq. (83) into Eq. (A21) we come to Eqs. (68).
By difFerentiating the first of Eqs. (68) corresponding to
q = 1 and inserting in the resulting equation the expres-
sion of the time derivative B,g&(m;t~y;0) given by the
master equation (70), we obtain

The marginal characteristic function P(g, m; t) can be ex-
pressed in terms of the initial condition
P(g, m;t =0)=y(m) by noticing that the solution

g& (m;t~y;0) of Eqs. (70) is the Green's function of Eq.
(81). We come to

g(t) = —i), (l (t) )
= —f dm f "dm' f "dy y(y) W(m'~m;t)g*, (m', tly;0)

0 0 0

+f dm f dm' f dye(y)W(m ~m';t)g i (m;t~y;0)+ f dm f dy g(y)vexp( —km)gi (m;t~y;0) .
0 0 0 0 0

In Eq. (84) the first two integral terms from the right-
hand side cancel each other; this can be checked by re-
placing the integration variables m, m' by m ', m. The re-
sult of this operation is Eq. (69).

For checking that the Markovian approach includes
the Liouville equation description as a particular case, we
express the operator M by its Kramers-Moyal expansion

where

a)
D (m;t)= —f W(m~m', tl(m' —m)~dm', (86)1 J) 0

and keep only the first term. In this case Eq. (81}reduces
to the I.iouville equation (A8), where the healing rate
E(m, t) is given by

F(m, t)= f W(m~m', t)(m —m')dm' . (87)
0

APPENDIX C

For a correlated random point process it is more ad-
vantageous to compute the average survival function
(l(t) ) and then to evaluate the probability density g(t}dt
by differentiating Eq. (60) with respect to t The survival.
function (l(t) ) can be expressed as an average of the

l

product

P(t', ;mo) P(t~;mo) (C 1)

y t";m0 D Pt",m0 =1,

where If stands for the operation of path integration
and D[qi(t";mo)] =D[q~(t";mo); t ) t")0;mo] is a suit-
able integration measure over the space of functions
g(t";ma). Now a difficulty arises because the integration
measure D [qi(t";ma)] can be properly defined only if the
random functions y(t";ma) are Gaussian. This is not a
major difficulty because the average of the product (Cl)
can be expressed in terms of the functional integral of the
type

over the number X and over the times t', , . . . , t& of the
encounters with healthy individuals, as well as over the
initial germ load m0 and over all possible germ loads at
different times represented by the random functions
y(ti', mo), . . . , qi(ti'v';mo). For evaluating these averages
we introduce the probability density functional of the
function qi( t";m 0 ):

A[y(t";ma);t ~ t" 0;mo]D[p(t";ma);t t" 0;mo],

(C2)

with the normalization condition

f fX[p(t";mo)]D[q&(t";mo)] exp —k f 'g(t";mo)5(t" t')dt' .=6[K(t")=k5(t" —t')], —(C4)
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which depends on the characteristic functional 6 [K(t")]given by Eq. (87). If the moments (&p(t", ;m 0) y(t";mo) )
or the cumulants {{p(t", ;mo) . y(tq";ma) )), q =1,2, . . . , of the random function y(t";mo) exist and are finite, then
the characteristic functional 6{K ( t" ) ) can be computed by means of the moment and cumulant expansions

q6[K(t")]=I+g, f f {y(t", ;mo) . (p(t";mo))K(t", ) K(t")dt", .
dt'sg! 0 0

q= exp g, f ' ' ' f {(y(t'i'', mo) ' ' q(tg;mo)))K(ti') K(t")dt", dt'sq! o 0

which are independent of the integration measure D{y(t";mo)).
The average of Eq. (Cl) can be expressed as

&1(t) &= f dmoy(mo) 1+ y, f fX[lp(t", ;m o)]D[q7(t i', m 0)] .
0 %=1

X f f&[@(tg;mo)]D[qr(tg';mo)] f ' f' dt', d»~Q„(t', , . . . , t ~)P(t'„mo) . p(t~, m p)
0 0

We express the Janossy probability densities Qz(t'„. . . , tz) in terms of the product densities ~ (t',
the equations [21]

( —1)s I I I
Q»q(tl» ' ' ' » »N) g 9»»'+S(tl » ' ' ' » »N»»N+1» ' ' ' » t»»»+S)d»N+i d»N+S

s=o o

(C6)

By inserting Eqs. (C7) into Eq. (C6), using the new summation variables X'=X, M =X+5, changing the order of sum-
mation and evaluating the sum over X', we obtain

{1(t))=f dmoy(mo) . 1+ g, f f%[y(t", ;m )]0D[q)(t", ;ma)] .
0 M 1

X f f%[y(t"; m)]oD[q&(t";m )]f f dt', d»Mrl»v(t'„. . . , t»'»»)
0 0

X[@(t',;mo) —1] - [P(»M, mo) —1] ' . (C8)

Since
»'

P(t', mo) —1=—exp —f k 5(t" t')»p(t", mo)—dt"
0

Eq. (C8) can be expressed in terms of the generating functional:-[ W(t') ] of the product densities
T

(1(t))=f dmoy(mo) 1+ g f f qM(t', , . . . , »~)W*(t', ) W'(tM)dt', . dt~
o ~ )M! o o

=:-[W(t') = W*(t'):t ~ t' ~ 0],
where

W*(t') = 6[K(t') =k5(t"—t'), t ~ t" ~ 0;m,—]

and therefore

(C9)

(C10)

(Cl 1)

{l(t))= f d ym( oo)m:-[W(t')= 6[K(t")=k5—(t" t');mo];» ~ t'~—0] .

By difFerentiating Eq. (60) with respect to t and inserting in the resulting equation the expression (C12) for (1(t) ), we

get Eq. (88).

APPENDIX 0
By introducing the intrinsic time scales

6)(t) = [ exp(bt/H) —1]H/b, 8'(t') = [ exp(bt'/H) —1]H/b,

Eqs. (99) become
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(l (ee)}=f Hx 'dx exp —qej exp[(1ex}(1+88 /H'} ]((+88'/H} 'd8'
0 0

By keeping the dominant terms in b as b «0, we get the following approximation for Eqs. (D2):

(l»(t)) =- f Hx 'dx exp[ qx—v8(t)]=Hy(H, qv8(t))[qv8(t)] (D3)
0

By substituting the definition (Dl) of the intrinsic time scale 8(t) into Eqs. (D3) we obtain Eqs. (99). For computing the
probability density P(t) we difFerentiate Eqs. (D3) for q = 1 with respect to t, resulting in

y(t) = d(I—(t) ) /dt = [d (i(—8(t) ) ) /d8(t)][d8(t) ldt] = (D4)

From Eqs. (Dl) and (D4) we come to Eq. (100). We note that the approximate probability density f(t) obtained by ap-
plying this method is properly normalized to unity.

APPENDIX K

The positive moments ( t » ) of the duration of the active infectious period can be computed in the limit b «0 by using
the approximate expression (100) for g(t):

(t') =f t»g(t)dt
0

exp( Ky)y(H —+ 1, [ exp(y) —1)Hv/b )=HH b» v a+1 yqdy as I 0
0 [1—exp( —y)]

(E1)

In the integral in Eq. (El) the only b-dependent factor is the one depending on the incomplete y function. In the limit
b —+0, the incomplete y function can be approximated by the complete I function I (H + 1), leading to

(t») -HI (1+H)(H/b)» v J»(K), q &H, b +0, 1 &H—&0, (E2)

which is the first of the two sets of Eqs. (104).
For computing the cumulants ((t»)) we evaluate the generating function of the probability density f(t) in the limit

b «0. Equation (100) leads to

~ exp( st) exp( bt /H) y(—H + 1, [ exp(bt /H) —1 ]Hv/b ) ds = exp st t dt=vH—
[ [exp(bt /H) —1]Hv!b ]

In Eq. (E3) the incomplete y function cannot be replaced by the complete gamma function I (H + 1) because this opera-
tion generates a divergence of the integral for t =0. We use an integral representation of the incomplete y function and
introduce the integration variable

z =v8(t),
resulting in

g(s)=1 —f Kx dx f [1—(1+zb/Hv) '
] exp( —zx)dz .

0 0

(E4)

(E5)

We expand the integrand in Eq. (E5) in a double series, keep the dominant terms in b as b «0, and try to regroup the
remaining terms in the expansion of an exponential by using the method of cumulant expansion [21]. By summing the
resulting series and using the integration variable

y = ln(1+zb/Kv),

me get

(E6)

b@(s)-exp —HI (1+K)
Hv

exp( —Hy) [ 1 —exp( sHy /b )]—
GP ', 6~0 .

0 [1—exp( —y) ]
(E7)

Now the cumulants can be easily evaluated from Eq. (E7) and from their definition

((t»)) =( —1)»B»ln[(]T(s =0)]/Bs»-HI (1+H)(H/b)» v J (K), q )H, b«0, 1)H )0,
and thus in the limit b «0 the cumulants (( t» )) obey the same scaling law as the moments ( t»)

(E8)
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