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Numerical estimate of a scaling exponent characterizing fluctuating diffusion fronts

Jean-Mare Debierre
I.aboratoire MA TOI', Case 151, Faculte des Sciences et Techniques de Saint-Jerome, 13397Marseille Cedex 20, France

R. Mark Bradley
Department ofPhysics, Colorado State Uniuersity, Fort Collins, Colorado 80523

(Received 26 September 1995)

We perform large scale Monte Carlo simulations of the fragmentation of bond percolation cluster per-
imeters on the square lattice at the percolation threshold. Using our data, we obtain a very accurate esti-
mate for a scaling exponent that characterizes the fluctuations of a difFusion front. Our estimate pro-
vides strong support for a prediction made by J. F. Gouyet and Y. Boughaleb [Phys. Rev. 8 40, 4760
(1989)].

PACS number(s): 64.60.Ak, 05.40.+j

Gouyet and Boughaleb (GB) recently obtained a num-
ber of analytical results concerning the temporal Auctua-
tions of diffusion fronts in two dimensions [1]. Of partic-
ular interest here is their prediction that the front frag-
mentation exponent

pH = —"= l.5714. . . .

GB argue that this result is exact. However, they per-
formed small scale numerical simulations of diffusion
fronts and found an estimate $H=1.40+0.02 that does
not agree with their own prediction. Moreover, in their
arguments in favor of their result, GB make a number of
approximations and assumptions. Thus their prediction
(1) could be called into question.

In this Brief Report, we will present the results of large
scale simulations intended to test GB's prediction (1).
Rather than performing simulations of diffusion fronts
directly, we instead study the fragmentation of percola-
tion cluster perimeters. We then exploit a relation be-
tween this problem and diffusion fronts to obtain an esti-
mate of PH. In this way, we are able to obtain a much
more precise test of GB's prediction than we could have
obtained by simulating diffusion fronts directly. Our es-
timate QH=1. 570+0.003 is in excellent agreement with
Eq. (1).

We consider bond percolation on the square lattice at
the percolation threshold p=@,=—,'. In order to con-
struct percolation cluster perimeters (or "hulls" ) without
constructing the clusters themselves, we use a perimeter-
generating walk due to Gunn and Ortuno [2]. The algo-
rithm used to generate the Gunn and Ortuno walk
(GOW) will now be briefly described (for details, see Ref.
[2]). GOW's are constructed on the covering lattice of
the original square lattice. (The covering lattice is a
square lattice obtained by joining the centers of adjacent
bonds on the original lattice. ) The state of a bond on the
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original lattice can be unspecified, occupied, or vacant.
Initially, all of the bonds are in the unspecified state. The
walk starts at the origin of the covering lattice. One of
the four possible directions is randomly chosen, and a
unit step performed in this direction (Fig. 1). The walk
reaches a bond on the original lattice which we will call
the target bond. The walk is then constructed step by
step. If the target bond's state has not yet been specified,
it becomes occupied or vacant with equal probability. On
the other hand, if the state of the target bond has previ-
ously been designated, its state is left unchanged. A step

FIG. 1. A clockwise 16-step GOW (thin line} that traces out
an external perimeter. The perimeter is made up of three occu-
pied bonds (bold line), plus nine vacant bonds (dotted line) ~

There are four constriction points and three fragmenting bonds
on this perimeter.
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is made to the right if the target bond is vacant, and to
the left it if is occupied. The walk stops when it attempts
to retraverse the initial step, forming a closed loop. In
practice, we stopped constructing the GOW if the num-
ber of steps performed (s) exceeded a cutoff value s,„.

It is straightforward to see that the GOW generates the
perimeter of a percolation cluster. With our conventions,
GOW's that close in a clockwise (counterclockwise)
fashion trace out external (internal) perimeters.

The occupied bonds on the original lattice that are
touched by the GOW are the perimeter bonds. One of
these perimeter bonds is now chosen at random, and is
replaced by a vacant bond. This replacement may or
may not result in the fragmentation of the percolation
cluster. A fragmenting bond will be defined to be an oc-
cupied bond on the original lattice that the GOW visits
twice (see Fig. 1). The replacement of the chosen occu-
pied bond by a vacant bond only results in the fragmenta-
tion of the percolation cluster if the chosen bond is a
fragmenting bond. If the chosen bond is indeed a frag-
menting bond, the GOW is modified to reAect the fact
that the chosen bond is now vacant. This results in the
fragmentation of the parent GOW into two loops that
trace out the perimeters of the cluster fragments.

Suppose that the original GOW of s steps is fragment-
ed into two loops of s' and s —s' steps, respectively, and
let s' ~s —s', so that the loop of s' steps is the smaller of
the two fragments. We define P.. . to be the probability
that a daughter GOW of s' steps is obtained from a
parent loop of length s when the replacement is made.
Note that the probability that this event actually frag-
ments a GOW of s steps, Pf(s) =g; 4P, .„—is in general
different from unity.

Let us define a constriction point to be any point
touched twice by the GOW (see Fig. 1). A constriction
point can lie at the center of either an occupied or a va-
cant bond. We will denote the number of constriction
points and fragmenting bonds touched by a GOW of s
steps by N, (s) and Nf(s), respectively. There is a simple
relation between their average values (N, (s) ) and
(Nf(s)), as we now show. When the direction of a
GOW that traces out an external perimeter is reversed, it
becomes a GOW that follows an internal perimeter, and
vice versa. To see this, we transform the simple graph in
Fig. 1 in the following way. First, any bond (whether it
be occupied or vacant) is replaced by its dual bond. The
dual bond is obtained by a m/2 rotation of the original
bond about its center. Next, occupied bonds on the dual
lattice are replaced by vacant bonds, and vice versa. Fi-
nally, the direction of the GOW is reversed. It is
straightforward to see that this two-step operation trans-
forms Fig. 1 to Fig. 2, and vice versa. The square lattice
is self-dual. As a consequence, the tota/ number of con-
striction points in Figs. 1 and 2 is exactly equal to twice
the tota/ number of fragmenting bonds. Moreover, occu-
pied and vacant bonds are equally likely for p =p, =

—,',
and so both graphs occur with the same probability.
These considerations apply equally well to arbitrary
closed GOW's. Therefore, (N, (s) ) =2( Nf (s) ) .

A closed Gunn and Ortuno walk can be mapped onto a
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FIG. 2. The counterclockwise version of the GO%' shown in
Fig. 1. This GOW traces out an internal perimeter. The perim-
eter is made up of nine occupied bonds (bold line), plus three va-
cant bonds (dotted line). There are four constriction points and
one fragmenting bond on this perimeter.

self-attracting self-avoiding loop on the Manhattan lattice
at its 8 point (8-MSASAL) [3]. A number of exact re-
sults are known for the latter model (for a recent review,
see Ref. [4]). In particular, the average energy of a 8-
MSASAL of s steps scales as —', es+2eAs as s tends to
infinity [3,4]. Here e is the energy assigned to each un-
bonded nearest-neighbor pair, and A is a nonzero con-
stant. Under the mapping, a 0-MSASAL with s steps and
energy 2' is transformed into a GOW with s steps and
X constriction points. Thus the average number of con-
striction points in a GOW of s steps scales as —,'s+ As
and, consequently,

(N (s)) ——s+ s i1
f 6 2

'"
when s is large.

We now turn to the relationship between our model for
the fragmentation of percolation hulls and the problem
studied by GB [1]. GB's work concerns the diffusion of a
set of noninteracting particles in the presence of a con-
centration gradient in the strip [(x,y)~O~x ~L' and
0 ~y ~ L ] . The length of the strip L ' is assumed to be
large compared to the width L, . The concentration of
diffusers p is fixed at one for x =0 and at zero for x =I.'.
This problem is also known as gradient percolation since
at any time the problem is equivalent to site percolation
in which the fraction of occupied sites p varies linearly
froin one end of the strip to the other [5]. The large clus-
ter of particles that has one edge on the end of the strip
with concentration p =1 is called the parent cluster. The
frontier of the parent cluster within the strip is the
diffusion front. Since the particles are all diffusing, the
diffusion front is constantly fluctuating, and small clus-
ters are continually joining and separating from the
parent cluster at the diffusion front. It is these Auctua-
tions that GB chose to study.

Let N&„s(o ) be the number of clusters with an external
perimeter of length o. that disconnect from the parent
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cluster in a unit time. GB argued that Nr„(cr) follows
the scaling form Nr„s(o ) =Lo (L') F(o/L. '),&II

where F is a scaling function [1]. Note that F(0) is a
finite, nonzero constant and that F(x)~0 as x ~ ac. Let
Pr„s(cr)by be the probability that an external perimeter
of length o. is disconnected from the parent cluster per
unit time within the strip [(x,y)~0~x ~L' and
yo y yo+Ay]. Here yo is a constant lying between
zero and I. and a « Ay «L. Clearly,
Pr„(o)=c.r (L') ~ F(cr/L'). lf o. (&L', then Pr„s(o).&8

scales as cr as a function of cr. Qn length scales small&8

compared to the width of the difFusion front w -(L')"~,
the di6'usion front has the same geometry as the infinite
percolation cluster at threshold in percolation without a

&8concentration gradient [5]. Therefore, P, -o for
cr «s. Now a fragment cannot have a perimeter longer
than its parent, which means that this scaling behavior
must be cut o6'when o. approaches s. We conclude thatI', obeys the scaling law
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FIG. 3. Extrapolation of the finite-size estimator y, to the
limit 1/s —+0. The solid line is a linear least-squares fit to the
data points.

P, =o G(o. /s),&H
(3) 0 =S

g M, (tT)N
cr=s

(7)

The first moment of F, , was then calculated for the
smaller fragments:

s/2
M, (s)= g s'F. . .

s'=4
(5)

The lower limit for this summation, s'=4, corresponds to
the smallest fragment that can be produced by removing
a fragmenting bond in a GQW. According to Eqs.
(2)—(4), Mi(s) has the asymptotic behavior.

M, (s)=- 3's +8's .

The second term on the right hand side of Eq. (6) is a
correction that arises because the lower limit in Eq. (5) is
nonzero. To avoid large Auctuations, we binned our data
for M, (s). The binned quantity is defined as

where the scaling function G(x) is finite and nonzero for
x =0, and is zero for x ~ 1.

We constructed a total of 10 GQW's of maximum
length s,„=2 . The 819 338 GQW's that closed before
reaching a length s „were fragmented exhaustively.
This task was made possible through the use of a very
efficient fragmentation algorithm [6]. For the perimeters
of length s, we computed the average number F, , of
fragmenting bonds whose replacement by a vacant bond
gives a daughter perimeter of length s'. Note that

(4)

where &x=2', and X is the number of o.-step perime-
ters constructed. The inAuence of the correction to scal-
ing on the asymptotic behavior of M& was found to per-
sist over the'whole range of s values. To determine the
asymptotic behavior of p„we computed a finite-size esti-
mator y, =log, o(p4, /hatt, )/log, o4 and plotted it as a func-
tion of I/s (Fig. 3). A linear least-squares fit to the data
points for s & 10 gave y =1.430+0.003. Then, from
Eq. (5) we deduced the estimate

pH = 1.570+0.003,

which is in excellent agreement with GB's prediction
pH= —", =1.571. . . .

Qur numerical results span over six decades in s, and as
a result we were able to obtain a very precise estimate for

In contrast, GB's estimate for PH was extracted
from data ranging over two decades in s only. As we
have seen, corrections to scaling persist up to very large
values of s. Therefore, GB's estimate of PH was very like-
ly biased by finite-size efFects.

In summary, the goal of the present work was to carry
out a very precise numerical test of Gouyet and
Boughaleb's prediction that PH is exactly —", . Our numer-
ical estimate of PH, which has an accuracy of 0.2%, is in
excellent agreement with this prediction.
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