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The representation of a quantum system by an evenly spaced Fourier grid. is examined. This
grid faithfully represents wave functions whose projection is contained in a rectangular phase space.
This is mathematically equivalent to a band limited function with finite support. In general, wave
packets decay exponentially in classically forbidden regions of phase space. This idea is then used
first to optimize the rectangular shape of the Fourier grid, leading to exponential convergence.
Nevertheless, in most cases the representation is suboptimal. The representation eKciency can then
be extremely enhanced by mapping the coordinates. The mapping procedure reshapes the wave
function to fit into the rectangular Fourier shape such that the wasted phase space area is minimal.
It is shown that canonical transformations, which rescale the coordinates, improve the representation
dramatically. A specific scaling transformation enables the representation of the notoriously difFicult
Coulomb potentials. The scaling transformation enables one to extract almost as many converged
eigenstate energies as there are grid points. The method is extendible to more than one dimension,
which is demonstrated by the study of the H2+ problem. This scaling transformation can bridge
the gap between quantum chemistry and quantum molecular dynamics by enabling the treatment of
electronic problems in the vicinity of Coulomb potentials by grid methods developed for molecular
dynamics.

PACS number(s): 02.70.Jn, 31.15.—p

I. INTRODUCTION

In a numerical approach to quantum mechanics the
representation of the wave function is a key issue. Opti-
mization of the representation is the focus of this study.
A common approach is to use a spectral expansion in
terms of a complete set of orthogonal basis functions.
A truncated Gnite expansion is variationally the "best"
with respect to this Rnite set of functions. Typically ex-
ponential convergence of the expansion can be obtained
with respect to the number of expansion functions. This
global approach to wave-function representation is best
suited to the nonlocal character of quantum mechanics.
An alternative representation is to express the wave func-
tion pointwise on a grid. This has to be supplemented
by an interpolation scheme to express the value of the
wave function between the grid points. The quality of
the representation depends on the interpolation scheme.
Low-order piecewise interpolation schemes converge quite
slowly. With the use of global orthogonal interpolation
functions a high-quahty representation is obtainable with
exponential convergence characteristics. This method is
referred to as pseudospectral [1]. An important member
of this family is the Fourier method, which uses the or-
thogonal collocation method as an interpolation scheme.

The design criteria for an optimal representation
scheme are as follows. The scheme should be general so
that it can easily be implemented to a series of related cal-
culations. The number of representation functions or the
number of grid points should be reduced drastically. This
is because the numerical effort in quantum calculations
scales as the cube of the number of points or functions
for methods depending on diagonalization. For iterative

methods depending on propagation the scaling is linear
to squared in this number. These two design criteria can
be in con8ict. A general method is not optimized for a
particular problem.

The Fourier grid method [2] based on a discrete Fourier
expansion is an example of a very general method. A
multidimensional representation is composed from a di-
rect product of one-dimensional representations. The
Fourier method has exponential convergence for almost
any type of quantum wave packet. For a particular calcu-
lation one can obtain a more effective representation by
choosing a specific set of expansion functions defined on
a unique set of coordinate points. This fact makes each
expansion function be local in coordinate space. In grid
methods, this approach is known as the discrete variable
representation (DVR) [3]. In multiple dimensions this
can be supplemented by a sequential adiabatic reduction,
thus leading to a highly specific and highly correlated ex-
pansion [4].

The purpose of this study is to S.nd a method by which
the representation eKciency of the Fourier method can
be enhanced, thus creating a general and eKcient rep-
resentation scheme. The intuitive idea is simple. The
Fourier method is based on a uniform sampling density
of the wave function. Since for many quantum calcula-
tions the wave function is not uniformly distributed, a
mapping procedure can enhance the sampling where it is
needed. Mapping procedures have been suggested previ-
ously [2,5—10] and shown to be of' practical use. But the
analysis in these studies was heuristic, making it difBcult
to generalize. It is the purpose of this study to illuminate
the physical reasoning leading to the enhanced sampling.

The most important realization in this study is that
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II. THEGRV

A. Representation theory

A wave function g(q) is represented on a grid by its
values on the grid points g(qz) = @~. A continuous de-
scription of the wave function is obtained by interpolat-
ing between the grid points using an analytic set of basis
functions gk(q):

(2.1)

The expansion coeKcients aA, are determined by match-
ing the approximate solution to the true solution on the
grid points,

Ng —l

(2.2)

which leads to a set of Ng linear equations for ak if the
number of grid points equals the number of expansion
functions. The relation between grid points and expan-
sion coeKcients is called the collocation relation [2].

It is beneficial, both numerically and theoretically, to
use a combination of grid points and orthogonal represen-
tation functions such that the functions are orthogonal
when summed over the grid points:

Ng —l).qk(q, )gi(q, ) =4i.
j=0

(2.3)

This approach is known as the pseudospectral represen-
tation [1].

Specifically, in the Fourier method the grid points are
equally spaced. The expansion functions gk(q) are the

the analysis of the mapping procedure has to be carried
out in phase space. A nonuniform wave function is highly
oscillatory in a restricted region of coordinate space. In
a quantum mechanical language, there is a correlation
between the position of the particle and its momentum.
For example, a particle in a Morse potential has low mo-
mentum at the region of the outer turning point and
high momentum at the region of the minimum potential
value (region of high oscillations in the wave function).
Moreover, the particle will have an exponential decreas-
ing amplitude in regions of phase space that are classical
forbidden. A phase space analysis based on the Wigner
function [11] will reveal this observation. This means
that a representation with exponential convergence has
to cover uniformly the classical allowed region and have
suKcient sampling ability in the classical forbidden re-
gions.

The Fourier method represents a rectangular shape in
phase space [2,12]. The optimized mapping procedure
deforms t,his shape so that it matches the shape of the
classical energy shell in phase space while maintaining
the rectangular shape in the mapped phase space.

complex exponentials, which are both global and orthog-
onal:

gk(q) = e' "~/, k = —Kg/2, ... , 0, ..., N /2 —1.

The K~ equally spaced sampling points are q~ = (j—
1)Aq, (j = 1, . . . , Nz) where I is the length of the inter-
val. The orthogonality of the basis functions gk(q) allows
us to invert the collocation relation:

Ng

) q( )
—i2~kq~ /L

g

1Vg

) q ( )
i 2m'—/Ng

Ng
(2.5)

The benefit of the Fourier method is that the the expan-
sion coeKcients aA, have a physical meaning, being inter-
preted as the discrete representation of the wave function
in momentum space. The momentum space grid points
are then p~ = —p~~~+ "N "--j. The Fourier method nat-
urally reflects the symmetry between position and mo-
mentum spaces.

The basic criterion for constructing a converged rep-
resentation in the Fourier method is understood from
the the Whittaker-Kotel'nikov-Shannon sampling theo-
rem [13—15]. The theorein states that band limited func-
tions with finite support, sampled at equally spaced in-
tervals can be interpolated with no loss of accuracy pro-
vided that Lq ( ~ . The function values in between

~ max
the intervals are interpolated by a sum of sine functions:

0(q)
Ng /2

n= —(Ng /2 —1)
@(nAq) sine [k (q —nAq)],

(2.6)

where the sine(x) function is defined as sin(z)/2:.
It is the dual relation of coordinate and momentum

spaces seen in (2.5) that enables the analysis of the ef-
ficiency of the representation in terms of the classical
or Wigner-Weyl phase space [11,16]. Since the sampling
theorem refers to functions with finite range in both mo-
mentum and coordinate spaces, wave functions will be
fully represented only if their phase space representation
is fully confined within the (q, p) grid.

Wave functions in quantum mechanics belong to the
class of functions L . Thus, examining the representa-
t;ion problem in quantum mechanics, wave functions in
general are not strictly band limited functions and will
not have in general finite support in coordinate space.
Nevertheless, there is a class of wave functions that are
exponentially close to band limited functions. This class
of functions will be termed wave packets. For example, a
Gaussian wave function is a wave packet since its ampli-
tude outside a finite size interval can be made exponen-
tially small in both coordinate and momentum pictures.

This leads to the physical origin of the wave packet:
wave packets are a consequence of the fact that quan-
tum mechanical wave functions decay exponentially in
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V = 2hL k.. (2.7)

This means that the grid can represent a maximum of
N~ quantum states. The efficiency of the representation
is defined as the ratio of the number N of converged
eigenstates representable on the grid to the number of
grid points:

Ng
(2.8)

For representing a physical problem of energy E, the grid
must enclose at least the classically accessible phase space
volume O. Thus, a good estimate of the representation
efficiency of a Fourier grid, which encloses the accessible
phase space volume is the ratio

0
gC

g
(2.9)

As an example, the harmonic oscillator has an ellipse-
shaped accessible volume in phase space. A simple
canonical transformation transforms this ellipse to a cir-
cle in the new phase space. The optimal grid is then the
smallest square, which encloses the circle, yielding the
efficiency given by the area ratio —vr/4. This result is an
asymptotic result independent of the accuracy require-
ments [2]. It is a manifestation of the exponential decay
of amplitude in the classical forbidden region and the
exponential convergence of the Fourier representation.

These considerations can be used to construct an op-
timal grid for a Fourier representation. This is done
by carrying out the following steps: (1) The energy
range of the dynamical encounter is defined (E „).(2)
The maximum energy value is used to find the confining
classical boundary in phase space. For the coordinates
V(q „)& E „,V(q;„)& E „.And in momentum
space: P „&+2mE „.(3) Once drawn, one looks
for the smallest rectangle in phase space that contains
the con6ning boundary. This rectangle then defines the
Fourier grid, i.e. , coordinates origin q;„,length L, and
spacing Aq, for each dimension. The sampling efficiency
can be estimated by the ratio of the confined piiase space
"volume" to the volume of the rectangle since as stated
above the wave-packet decays exponentially outside this
boundary.

For a general problem, the classically allowed phase
space shape can be quite irregular, resulting in a dimin-
ished sampling efficiency of the rectangular grid. Such a
situation is depicted in Fig. 1.

the classically forbidden regions of phase space. There-
fore a natural way of examining the representation prop-
erties of a wave packet is through its projection on phase
space, and in particular by locating the classically al-
lowed volume of phase space.

In the Fourier method the sampling points are equally
spaced both in coordinate and momentum space. This
means that the phase space representation of the grid
has a rectangular shape. For a grid of 0 to L with N~
grid points Aq = I /%~. The momentum range becomes
~p „~ = ha/Aq, which leads to the relation between
the phase space sampled volume V and the number of
sampling points Ks [2]: FIG. jI.. Schematic representation of the con6ning bound-

ary in phase space and the boundary of a Fourier grid. The
optimal boundary of the Fourier grid is determined by the
worst case scenario, leading to low sampling efficiency (ratio
of the dark area to the rectangle area).

B. Mapping procedure

The canonical transformation studied here is a map-
ping of the original set of N Cartesian coordinates (q;)
to a new set of curvilinear coordinates (Q;), the scaled
coordinates:

Q = Q(q ~), (2.10)

where o. is a set of parameters. The mapping transforms
the quantum problem to a new Hilbert space,

~(Q) = @(q(Q))

with a new scalar product,

(ol~) = f &'(o)+(Q)~~Q

and a new kinetic energy operator:

(2.11)

@*(q) P(q) dq (2.12)

62

2m

J = det(g, , ),
(2.13)

where the convention of summation on repeated indices
is used, J is the Jacobian of the transformation, g,~ is
the Riemannian metric tensor,

gqk g A:

c)Q' BQ&
' (2.14)

and g~" is the matrix element of the inverse of (g;~) ma-
trix. As seen from Eq. (2.13), the mapping mixes the

The phase space analysis initiated the exploration of
the possibility of a canonical transformation, which de-
forms the rectangle grid shape in phase space, so that it
will match the classical allowed volume boundaries. In
the transformed coordinates, a rectangular grid will have
an increased sampling efficiency.
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coordinates (Q's) into the kinetic energy operator, thus
inducing a correlation between the kinetic and potential
energies of the problem. This observation can serve as
an intuitive guide for choosing a transformation to suit a
particular problem.

Once performed, the numerical implementation using
the Fourier method is analogous to the Cartesian grid
implementation. A equidistant grid is selected in the Q
space. This is the new working grid. The wave func-
tion is represented by its values on grid points: 4'~

4(Qz). Space-diagonal operators are implemented by
simple pointwise multiplication and derivatives are im-
plemented by transforming to the momentum P space,
using the simple fast Fourier transform (FFT) procedure.
In one dimension, for instance, the kinetic energy opera-
tor can be written as

t', d )'
I
J '(Q)d2m q d )

(2.15)

where J = &&~. Thus the kinetic energy operation
can be implemented by a double evaluation of the first
derivative multiplied by J . The overall evaluation re-
quires four Fourier transforms per operation compared
to two Fourier transforms for the rectilinear implementa-
tion. If the mapping function is expressed in an analyti-
cally tractable form, the analytical form for the Jacobian
derivatives can be used reducing the number of FFT's to
three, instead of four.

The uniform sampling of the transformed coordinate

(Q) results in a nonuniform sampling of the original co-
ordinate q (see, for example, Fig. 2). Thus, an additional
guide for constructing a good mapping is the location of
the regions in q coordinate space, which need a dense
grid-point representation.

III. A MAPPING FUNCTION FOR THE
COULOMB PROBLEM

A. Coulomb eigenfunction representation

The hydrogenlike Coulomb problem can be solved an-
alytically. Yet, this potential is notoriously difficult to
deal with using the regular Fourier method. It is there-
fore of great interest to extend the Fourier method to
treating Coulomb potentials. This extension will enable
the application of the Fourier method to solve density
functional problems [17].

For a hydrogenlike system, the radial Schrodinger
equation for the Coulombic potential is given by

1 8 1 /(I + 1)
2m gf'2 p 2mp~

where @ = rR„i (R„i are the so-called hydrogen ra-
dial functions). This equation is complemented by the
Q(0) = 0 boundary condition. The first problem one en-
counters in trying to solve this equation in the Fourier
method is the boundary condition at r = 0. This is
because the Fourier method insists on having a grid in
which the wave functions and their derivatives go to zero
in an exponential manner as grid length is enlarged. The
common solution to this problem is to double the grid
over to the negative r side, and to consider only anti-
symmetrical wave packets since the symmetrical ones do
not satisfy the Q(0) = 0 boundary condition. This pro-
cedure does not increase the numerical efI'ort since the
number of operations can be reduced due to symmetry.
The second problem is the singularity of the potential at
the origin. The clearest way to observe the influence of
the singularity is to examine the analytical behavior of
the eigenfunctions. Consider the 1s radial eigenfunction,
for example,

gi, (r) = re (3.2)

10.0,

S.O

0.0

—S.O

—10.0—21.0 —11.0
J !

-1.0 9.0
Q (a.u. )

19.0

FIG. 2. The relation between grids of the Cartesian coor-
dinate q—:r and the mapped coordinate Q given by mapping
function in Eq. (3.3) with the parameters P = 0.1 A = 9.9.
Notice the congestion of sampling points near the origin (in
the [

—10, 10j interval) of the q coordinate, as appropriate for
Coulomb problems.

Is this function a wave packet in the (—oo, oo) r = q
space? Upon difI'erentiating twice, one finds that the
second derivative of this function at the origin is discon-
tinuous, thereby leading to a non-wave-packet behavior:
the function thus contains very high fl'equencies and one
needs a very fine grid in order to represent it well. It
should be noted that all the hydrogenic eigenfunctions
have noncontinuous derivatives at r = 0.

The reason for the nonanalytical behavior of the 18
wave function is the singularity of the Coulomb potential
both in q space and in p space. The q-space singularity
is due to the infinity of potential at the origin. The p-
space singularity is due to the long range of the potential
and discontinuity of the derivatives of the wave function
at the origin. Therefore, in order to correctly represent
the hydrogenic radial wave functions using the Fourier
method, one has to use both very dense and very long-
ranged grids, leading to thousands of grid points even for
the ground-state wave function.

In constructing a mapping to suit the Coulomb prob-
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lem, one should notice that because these two demands
result Rom two different singularities, they can be sep-
arated. The first demands dense grid points near the
origin (singularity at the origin of q space). The second
demands long-ranged grids (singularity at the origin of
p space). This leads to the choice of a mapping func-
tion which maps uniformly sampled points in Q space to
dense points near the origin in q space while leaving some
sparse points in the long range of the potential.

0.1

B. A mapping function for the Coulomb problem —0.1

Considering the dual requirements the following map-
ping function has been found to be appropriate:

-800 -400 0

q (a.u.)
400 800

r = Q —A arctan(PQ), (3.3)

p' 1 E.
2

(3.4)

where r is the distance of the electron from the hydrogen
nucleus and Q is the scaled coordinate. Since arctan(PQ)
is a bounded function, for Q )) A, r = Q. On the other
hand, in an interval of 2P around the Q origin, the
arctan term causes a congestion of grid points in the r
space around its origin. This can be seen in Fig. 2.

The phase space analysis allows us to examine the ac-
complishment of the mapping function in terms of rep-
resentation efficiency as defined in Eqs. (2.8) and (2.9).
First, the classical phase space shape is examined. Using
a 32-point grid, spanning [0, L], the maximum momen-
tum becomes p „=¹r/L This c.reates a rectangle
phase space of volume V = 2p L = 2'¹ The energy
of the hydrogen nth wave function is E = —1/2n . This
energy determines the classically available phase space
by the condition:

FIG. 3. The part of the energy shells n = 1, 3, ..., 20 which
is represented by the grid rectangle in the unscaled phase
space. It is seen that the grid cannot represent the high mo-
mentum part of the phase space. The shape of the phase
space corresponds to a grid of 32 x 2 points with I = 800.

~inside =
pmsx

pmax
v(p) dp, (3.6)

where q(p) is the energy shell of n = 20. In this case
this integral comes out to be about 95, which means that
24%%uo of the phase space of the problem is not represented
within the defined Fourier grid. The scaling transforma-
tion squeezes into the grid the entire energy shell except
for a very narrow corridor close to the origin at Q = 0,
as seen in Fig. 4.

Here, the whole phase space of the problem is squeezed
into the new phase space rectangle. Now, typical values
of momentum are very low compared to those needed
in the unmapped case leading to low sampling density

In the scaled phase space the available volume is given
by

1

Q —A arctan(PQ)
(3.5)

0.02 i

0.01

where J = 1 —
q+(pq), .PA

To demonstrate the scaling for L = 800 the following
scaling parameters A = 3999.9 and P = 0.00025 are cho-
sen (these parameters are chosen such that the mapped
phase space energy shell is completely included within
grid rectangle). Figures 3 and 4 show the series of clas-
sical energy shells of up to n = 20 for the unmapped
and mapped grids, respectively. As can be seen, in the
unscaled case a large portion of the classically available
phase space is not represented by the grid.

This part corresponds to high momentum at small q.
The missing phase space volume can be calculated. For
example, the volume of the n = 20 energy shell is deter-
mined by the Born-Sommerfeld quantization rule [18] as
V = 27t;n = 125.7. The volume contained in the grid is
calculated as

0

—0.01

—0.02

-3000 -1500 0 1500

Q (a.u.)
3000

FIG. 4. The part of the energy shells n = 1, 3, ..., 20 which
is represented by the grid rectangle in the scaled phase space.
It is seen that the grid covers all the shells up to n = 20.
The shape of the scaled phase space corresponds to grid of
32 x 2 points with L = 3881. The extremely narrow feature
at q = 0 should be noticed.
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demand at the working grid.
Using this scaling the eigenstates of the hydrogen atom

are calculated by direct diagonalization of the Fourier
grid Hamiltonian. The difFerence between the calculated
and theoretical energies are shown in Fig. 5.

It is seen that up to n = 22 the correct energy is re-
constructed up to 3 digits at least, and that the accuracy
declines sharply after that. Energies with n ) 22 lose
precision rapidly with increasing n. In many cases the
accuracy is much better than 3 digits. The source of
the inaccuracy is due to the quantum nature of the wave
function, which leaks beyond the classically allowed en-
ergy shell. This can be demonstrated by looking at the
Wigner distribution of the 18 state for the scaled and
unscaled function as shown in Figs. 6 and 7.

Most of the amplitude of the Wigner distribution is
within the classical energy shell. This means that the
unscaled distribution extends outside the grid. This can
be seen more clearly in the stereoscopic projection. The
scaled distribution becomes localized in the grid, with
a signifl. cant part of the amplitude within the classical
energy shell. The small peaks on the Q = 0 line should
be noticed. These peaks are localized on the Coulomb
singularity.

A similar behavior is found for the 16s state (Fig. 8).
Most of the amplitude is localized very close to the energy
shell. Inside the energy shell a highly oscillating behavior
is found and exponential decay outside. As in the 18 case,
the Q = 0 line localizes some amplitude.

The sampling efficiency can be estimated by inspecting
the outermost energy shell in Fig. 4. The ratio in area
is approximately 62'%%uo and is consistent with the ratio of
20 converged eigenstates to 32 grid points, as predicted.
Note also that the unscaled coordinates in the same grid

0.05

0 P (a.u. )

-0.05

I

-500
I

0
I

500

q (a.u. )

are not able to reproduce any eigenenergy to a reasonable
accuracy.

As mentioned above, one manifestation of the severe
problem of Coulomb wave- function representation on a
Fourier grid is the fact that there is a discontinuity in the
higher derivative at q = 0. The mapping is able to reduce
the efFect of this singularity but is not able to eliminate it
completely. This can be observed by studying the scaling
of relative error with the size of the grid or the sampled
phase space, Fig. 9.

For the ground state, initially the scaled grid converged
much faster but eventually the asymptotic scaling for
very large volumes of phase space is determined by the
singularity at Q = 0. The asymptotic slope of 2 is con-
sistent with the discontinuity in the second derivative.

10

e e ~ ~ eeeeeee

10
0

e ~

5 10 15 20 25 30 35

FIG. 5. Shown are the deviation between the calculated
and the exact eigenenergies for the lowest 32 eigenstates cal-
culated using scaled coordinates. A 64-point grid is em-
ployed in the range q (—800,800) using the scaling param-
eters A = 3999.9 and P = 0.00025. The negative q side of
the grid serves to impose the Q(0) = 0 boundary condition,
as discussed in the text. In accordance with the fact that the
grid covers the n = 20 classical energy shells in phase space
(see Fig. 4), energies with n ) 22 lose precision rapidly with
increasing n.

FIG. 6. The Wigner distribution representation on the
Fourier grid rectangle of the 1s state in the unscaled coor-
dinates. Calculated energy R = —0.0378 689. (a) Contour
plot. Superimposed is the classical phase space 1s energy
shell shown as the two almost parallel lines around q = 0. (b)
Stereoscopic projection.
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When l g 0, the centrifugal barrier masks the Coulomb
singularity in Eq. (3.1), making it easier to represent
the wave functions. This can be seen by examining the
scaling of the energy accuracy of the low-lying states in
Figs. 9 and 10.

For the first excited state the uniform gri.d shows a
scaling relation of 3 consistent with the discontinuity
in the third derivative at q = 0. The scaled grid shows
an improved asymptotic scaling ratio of 7.5.

It can be seen from Fig. 10 that the scaled functions
converge faster for larger / values due to the softening of

0.02

0.0 I

P (a.u. )

-0.01

the singularity at the origin.
The Coulomb problem is an extremely difBcult case.

From the analysis it is clear that the mapping procedure
has great advantages. In the next section the mapping is
examined for a milder case.

C. Using the mapping for Morse potentials

The Morse oscillator serves as a generic system in
molecular dynamics. At low energies the unharmonici-
ties of the Morse oscillator vanish. This means that the
sampling efFiciency should be similar to the harmonic os-
cillator, i.e. , vr j4. For higher energies the phase space
boundary becomes pear shaped and the sampling efB-
ciency therefore decreases.

It has been shown that for a given number of grid
points the sampling efIIciency has a maximum for a spe-
cific grid spacing [2]. In order to compare the sampling
eKciency for the uniform and mapped grids it is nec-
essary to optimize the grid spacing for each case. For
the mapped grid the mapping parameters were also op-
timized, where the same mapping function Eq. (3.3) was
used.

I I I I I I

-3000 -1000 0 1000 3000

-0.02

0.02

Q (a.u. ) 0.01

— o P (a.u. )

-0.01

I I I I I

-3000 -1000 0 1000 3000
Q (a.u. )

-0.02

~J- R

s
9 ~

I-
SS I ISS II I I

IIIP,

=~ masiaassaeP, 'l

FIG. 7. The Wigner distribution representation on the
Fourier grid rectangle of the 1s state in the scaled coordi-
nates. Calculated energy E = —0.499 923. (a) Contour plot.
Superimposed is the classical phase space ls energy shell. (b)
Stereoscopic projection.

FlG. 8. The Wigner distribution representation on the
Fourier grid rectangle of the 168 state in the scaled coor-
dinates. Calculated energy E = —0.001 95304 compared to
E,„,q ———0.001 953 125. (a) Contour plot. Superimposed is
the classical phase space 16s energy shell. (b) Stereoscopic
projection.
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FIG. 9. The convergence of eigenenergy of hydrogen as
a function of the number of grid points Ks. (a) ls state,
g(r) = re ~ . The asymptotic scaling law of the mapped
grid has the same slope as the uniform grid. (b) 2p state,

(r) = r e

FIG. 11. Mapped and uniform grids sampling efficiency for
the Iq Morse potential (115 bound states). Sampling effi-
ciency and the number of converged eigenstates (seven dig-
its of accuracy in energy) vs logro of number of grid points.
Mapped (solid) and uniform (dashed). Each point on this
graph is optimized with respect to grid spacing and mapping
parameters.

The sampling efFiciency of all the eigenstates of I2 were
examined (115 bound states). The results are shown in
Fig. 11. The eÃect of improved sampling efficiency at a
given number of sampling points in all mapped grids com-
pared to uniform grids is clearly seen. Figure 11 refers
to seven digits of precision in energy. The same behavior
was found for higher precision calculations, which gave
parallel results to those in Fig. 11.

For the Morse case better mapping functions can be
found, i.e. , a mapping function that exploits the fact that
the potential is not symmetric with respect to the mini-
mum.

IV. MAPPING IN TWO DIMENSIONS:
THE DIHYDROGEN ION

-15

CO

bQ0 —20

1s

The utility of mapping procedures increases with di-
mensionality since the reduction in the number of sam
pling points becomes crucial. This is the motivation for
investigating a two-dimensional problem. The H2 elec-
tronic wave functions were chosen for this study. Due to
cylindrical symmetry, the system can be formulated as a
two-dimensional problem with the Hamiltonian:

3d

-25
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PIG. 10. The convergence of the energy of 18, 2p, and 3d
states as a function of the number of grid points N~ for scaled
grids. This comparison shows the difference in behaviors due
to the different character of the singularity of each case.
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where q„ is the distance of the electron from the
nuclear symmetry axis and q, is the axial co-
ordinate; the Coulomb attraction potential being
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(4.4)

The Wigner distribution of the ground-state reduced
density in the (Q, P„)coordinates superimposed on the
classical ground-state energy shell is shown in Fig. 15.

The ground-state Wigner distribution has a very dis-
tinct quantum character with negative amplitude on the
Q„=0 singular line.
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FIG. 14. The (Q, P ) cut of the classical phase space
ground-state energy shell, of scaled (solid) and unscaled co-
ordinates (dashed). The cut is taken for the worst case in
the mapped (Q„,P„)coordinates being q, = 1 and p, = O.

The rectangular box shows the boundaries of the Fourier grid.
The effect of mapping is clearly seen as the scaled coordinates
energy shell is contained within the Fourier grid phase space
rectangle, while the unscaled coordinate energy shell spills out
of the grid.
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FIG. 15. The (q„,P„)cut of phase space. The Wigner
distribution representation on the Fourier grid rectangle of
ground state. All data in atomic units. (a) Contour plot.
Superimposed is the worst case classical ground-state energy
shell. (b) Stereoscopic projection.

V. DISGUS SION

The ability to perform a quantum calculation depends
crucially on the representation chosen. The computa-
tional effort scales with the number of representation
points to some power. Moreover, excess representation
points increase the spectral range of the Hamiltonian,
which has a direct consequence on the convergence rate.
For this reason methods that are able to reduce the num-
ber of representation points are extremely useful. It is
also advantageous to pre-estimate the computational ef-
fort before the actual computation is carried through.

The phase space analysis developed in this study en-
ables us to analyze the computational efficiency of the
particular representation prior to its execution. If a low
efFiciency value is found rejecting a low ratio between
the classical phase space volume contained in an energy
shell and the phase space volume of the grid, then one is
motivated to search for an enhanced sampling procedure.

The Fourier mapping procedure has great potential
in enhancing the sampling e%ciency. In the study of
Refs. [7,8] a variational procedure was used to optimize
the mapping function. The mapping function was repre-
sented as a Fourier series, which means that the Fourier
coeKcients were optimized. This procedure, which is
based on the variational principle, is useful for the calcu-
lation of ground-state energy.

This study was motivated by dynamical calculations
where a representation has to be optimized for a partic-
ular prespecified energy band containing the dynamical
event. This Bts the use of iterative propagation schemes
where both time-dependent and time-independent infor-
mation on the dynamical encounter can be obtained si-
multaneously [20]. For such calculations the phase space
analysis based on the energy shell boundary is extremely
useful [17].

The Fourier mapping procedure is a generalization of
coordinate transformation technique. A common use is
to reduce the number of degrees of freedom, thus im-
proving efBciency. This approach was used on both the
Coulombic and H2+ examples.

The detailed study of the Coulomb cases that have
strong singularities was used to establish the phase space
analysis tool. These singularities have hindered the use
of the Fourier grid method in the past. The inHuence
of these singularities on the convergence rate for the
mapped and unmapped grids was found to follow the
wave-packet criteria. The Coulomb case required an an-
alytic mapping function. This is similar to the singular
cases studied in Ref. [6]. The mapping function used was
not unique; it appears that many useful mapping func-
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tions will be found.
The mapped Fourier method is advantageous both as

a general method and because of the ability to optimize
it prior to execution. The phase space analysis was de-
veloped as the main tool used to optimize the sampling
eKciency. This type of analysis should carry on to other
problems and mapping procedures. As a result the sam-
pling eKciency of the Fourier method will approach tai-
lored basis set expansions with the advantage of the fast
Fourier transform algorithm.
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