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Cluster dynaxnics for randoxnly frustrated systexns with finite connectivity
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In simulations of some infinite-range spin-glass systems with finite connectivity, it is found that
for any resonable computational time, the saturated energy per spin that is achieved by a cluster
algorithm is lowered in comparison to that achieved by Metropolis dynamics. The gap between
the average energies obtained from these two dynamics is robust with respect to variations of the
annealing schedule. For some probability distribution of the interactions the ground state energy is
calculated analytically within the replica symmetry assumption and is found to be saturated by a
cluster algorithm.
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Many systems composed of a macroscopic number of
interacting elements share the property of being compu-
tationally difIicult. By this we mean that their relaxation
time, as well as the time scales related to the system in-
vestigation, grow very fast with the size of the system [1].
This concerns both the actual dynamics of the physical
systems as well as pseudodynamics used in computer sim-
ulation [1]. Such systems appear in many physical fields,
from statistical mechanics, to the study of quantum field
theories (for review see [2,3]).

A typical example of such difIiculties is the critical
slowing down at second-order phase transitions. This
phenomenon is simply the divergence of the relaxation
time as the critical point is approached. Consequently,
the typical time needed to produce a large Boltzmann set
of decorrelated configurations diverges and the standard
local Monte Carlo simulation methods become inefIicient.

To solve such problems, multiscale-cluster-type algo-
rithms were devised, and the entire subject of global
collective dynamics attracted considerable attention. It
is generally believed [3] that for several classes of sys-
tems, multiscale methods may overcome the slowing-
down problems. Moreover, the multiscale algorithms are
conceptually important insofar as they encode the un-
derstanding of the relevant large-scale physics. In par-
ticular, these procedures isolate the relevant degrees of
freedom and act directly on them, in a manner con-
sistent both with their effective macroscopic dynamics,
and with the basic interactions that define the system
at the microscopic scale (for a review see Ref. [2]). The
cluster-multiscale methods have been applied successfully
to many fields in physics (second-order phase transitions,
disordered systems, quantum field theories, fermions in a
gauge background, quantum gravity, and more [3]), and
in many cases a dramatic acceleration of the numerical
simulation was achieved.
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However, the general applicability of the multiscale
methods is in question. The situation is particularly un-
clear for models with complex energy landscape. Their
physical properties are notoriously hard to investigate,
especially in the low-temperature phase. Some of the
most important families of systems presenting such dif-
ffculties are the randomly frustrated systems (RFS) and
in particular spin glass (SG) systems.

The study of SG has attracted wide research activ-
ity over the last two decades (for review see [4,5]) and
their theoretical understanding goes beyond its original
scope of understanding experimental results of real phys-
ical systems [4]. The progress of the statistical mechanics
methods related to SG contributed to the understanding
of a wide variety of other disordered systems. One of the
most promising directions is to apply the SG knowledge
to the study of hard optimization problems belonging
to the nondeterministic polynomial (NP) class [5]. This
relationship goes beyond a mere analogy, and the task
of determining the optima of a problem can be rigor-
ously mapped in to finding the ground state (GS) of the
analogous SG system. A typical SG system presents a
complex energy landscape consisting of many local min-
ima, separated by huge barriers that scale with the size
of the system, and lead to an infinite hierarchy of expo-
nentially divergent relaxation time scales [6]. Therefore,
besides the problem of proper sampling in simulations
at low temperatures, the system has a tendency to get
stuck in local minima that prevent the measurement of
equilibrium properties within a reasonable time. Further-
more, the simulated annealing technique that prevents
some systems from getting stuck in local minima, failed
to provide a complete solution in SG systems.

On the other hand, the general question of the exis-
tence of efficient cluster algorithms (CA's) for RFS is still
an open problem even though a number of successes have
been achieved for some particular systems. For instance,
Kandel, Ben-Av, and Domany [7] found an efficient CA
for a special case of a fully frustrated system on a square
lattice, but with the lack of randomness. In the special
case of two-dimensional (2D) Ising SG, in which its GS
can be found in a polynomial time in contrast to the NP
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feature of the general SG, Swendsen and Wang [8] devel-
oped their "replica" algorithm. Nevertheless, in general,
the cluster algorithms are unable to identify the impor-
tant large-scale degrees of freedom in RFS, and therefore
they show no improvement on simple local algorithms.

Hence, an eKcient CA for RFS, if any, will enhance
our understanding of the low-temperature physics of SG
systems, and its consequences on related problems, such
as eKcient heuristics algorithms for solving NP problems.
In particular, finite connectivity models at low tempera-
tures are directly connected to graph partitioning [10,11].
This is the problem of dividing a given graph into sub-
graphs, with minimum connections between them. Be-
side these applications, an eKcient CA for SG may serve
as a tool for the understanding of replica symmetry brak-
ing (RSB) and its properties. Note that a quantitative
Gtting to Parisi s picture, and the existence of RSB in fi-
nite connectivity models, are still open and controversial
questions.

In this paper we present a step towards understanding
the applicability and the limitation of CA for RFS. We
consider an Ising system described by the Hamiltonian

where S, = +1 (i = 1, ..., %) and the probability distri-
bution of the links is

(2)

This model is known as a highly diluted system with
finite connectivity, since the probability for a spin
with connectivity A: follows the Poisson distribution:
c exp( —c)/k! with average connectivity c, which is taken
to be O(1), and f(JU. ) is the distribution of the sur-
viving links after the dilution. In the present work we
would consider the following types of unbiased [f(J;~) =
f ( J;~)] distr—ibution: (a) Gaussian distribution, (b)
J,~

= +1, and (c) a special case iii which the links get
four values: Jj = +1y Jzj —+E.

This model with J,j = +1 was systematically stud-
ied near the glass transition temperature by Viana and
Bary [9), and at low temperatures by Kanter and Som-
polinsky [10] and by Mezard and Parisi [11]. The self-
consistent description of the low temperatures is based
on the probability distribution of the local Geld defined
by 6; = T tanh (S;)T. Physically, this field is the erst
excitation, namely, in the limit T ~ 0, ~h;~ is the min-
imum energy cost for flipping the ith spin 6.om its GS
by the "best" reorganization of the system. This local
Geld is in truth an oxymoron, since it depends on global
properties of the cluster, the exchange field P J,~m~,2.u
on the other hand, is truly a local property depending on
the local connectivity (note that ~h;~ &

~
P. Jzm~. ~). In

a simple ferromagnetic case (that is J = 1) as T ~ 0
the distribution of the local fields reduces to a discrete
spectrum [10,11]

P&
——(cP) exp( —cP)/I! I = 0, . . . , oo, (3)

where P is the fraction of the spins belonging to the

macroscopic cluster. The quantities P~, characterize
global properties, for instance, in the ferromagnetic case
Po is the fraction of spins belonging to the finite clusters
and Pq is the fraction of spins that can be disconnected
from the infinite cluster by cutting only one link.

Many geometric properties of this system are well un-
derstood [10,11]. In particular, the system undergoes
a percolation transition at c = 1. The maximal clus-
ter is of O(log&) for c & 1, O(K ~ ) at c = 1, and
of O(K) for c ) 1 where its size is explicitly given by
P = 1 —Po = 1 —exp( —cP) .

The topological structure of diluted models makes
them good candidates for employing CA's. CA's usually
consist of two main steps. First, blocks are constructed
stochastically from many single elements where the links
between them have been "frozen" according to their ten-
dency to act coherently, and the other links deleted. Sec-
ond, updates are performed in which entire blocks Hip
rigidly, in such a way that the Gibbs distribution is still
fulfilled. Accordingly, the lattice splits into a set of clus-
ters each formed by sites that can be linked by a chain of
frozen links. For general SG systems this procedure fails
because it freezes the entire lattice into a single block.
However, for a highly dilute lattice the additional dele-
tions may be just enough to actually split the lattice into
disjointed blocks. In this way, the CA s are effective in lo-
cating and acting upon large regions that interact weakly
with the rest of the configuration. In addition, the CA's
may have an efIicient way of pinning the frustration to
weak links. The global decisions made by the CA on
large-scale degrees of freedom are directly connected to
the structure of the field that presents global features.

Simulations on the model, Eqs. (1) and (2), and with
a Gaussian distribution for the links, f(J) oc exp( —J ),
were carried out using both local (Metropolis) and clus-
ter (Wolff [12]) dynamics. The simulations were carried
out for various connectivity values, and at temperatures
below the glassy transition T . The size of the system
was between 1000 and 5000, and the results were aver-
aged over at least ten different samples. A typical result
is presented in Fig. 1, and for all times monitored (up to
100 000 Monte Carlo steps per spin), one can clearly see a
gap between the energies of the two dynamics. Clearly, in
the limit of an extremely long time, this gap should van-
ish, but in practice it can be considered as two diferent
energy levels.

An interesting question is whether this gap is robust
even under an annealed schedule in which the temper-
ature is gradually lowered. This is done to avoid be-
ing caught in "false minima, " which is typical for low-
temperature simulations, and also enable the CA to act
on clusters at various scales. Indeed, the results were im-
proved for both dynamics, but the gap still exists [17].
On one hand it is clear that in practice at low temper-
ature, the energy E reached by the CA is lower than
that of the local algorithm E~. However, on the other
hand, this improvement should be evaluated with re-
spect to the true equilibrium energy, E. Quantitatively,
if ~E, —E~

~
&& ~E —E~ ~, then even after the improvement

by the CA, the system is far from equilibrium. Hence, the
calculation of the true GS is important in order to evalu-
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FIG. 1. E(t) per spin for the Gaussian distribution with
average

~

J = 1, c = 2, N = 5000, and T 0.3T . The solid
and the dotted lines indicate WolK and Metropolis dynamics,
respectively. The time scale is in Monte Carlo steps per spin.

FIG. 2. E~(t) per spin for the WS case, c = 2, a = 0.7,
N = 5000, T = 0.5J~, the strong and the weak links was
scaled to 100 and 1, respectively. The solid and the dotted
lines indicate Wolff and Metropolis dynamics, respectively.
Inset: The first 50 steps.

ate the improvement achieved by the CA. Unfortunately,
the analytical calculation of the GS energy for the Gaus-
sian distribution appears to be a very diKcult task since
the local field is a continuous variable [14]. We therefore
need a model whose GS energy can be calculated analyt-
ically and where the difference between Metropolis and
CA is enhanced. tA'e find these two features in what we
shall call the rveak strong (W-S) model. In this model
some of the links are much stronger (in their absolute
value) than others, and explicitly the link distribution is
given by

due to the special discrete link distribution. In order to
emphasize the CA features, we performed measurements
using simulated annealing for both dynamics. This was
performed over a wide range of temperatures, enabling
us to first arrange the strong links, and then lowered the
temperature to the scale of the weak links.

Figure 3 demonstrates one of the examined schedules
from which one can conclude that the "gap" (40%) is

~(J) = [~(J e) + ~(J + ~)1
2

[b(J —1) + 8(J+ 1)].
-0

In the first set of runs we chose the connectivity c and
the fraction of the strong links (1 —a), such that the
density of the strong links by themselves is below the
percolation threshold, cg = c(1 —a) ( 1. It is clear that
in this situation all the strong links are unfrustrated, and
the frustration is located only on the weak links. This
framework simplifies the analytical treatment and only
the energy of the weak links, E~, is considered. In Fig.
2 one can see (up to our running time) a large steady dif-
ference (35%%uo) in the energy between the local dynamics
and that of the cluster dynamics. This difference is due
to the fact that the local dynamics is totally stuck, since
the probability of Gipping a cluster consisting of strong
links is practically zero for local algorithms. On the other
hand, the CA "knows" how to deal with the strong link
structures by considering them as only "one degree of
freedom, " for each cluster. In other words, the CA is
extremely eKcient in the following problem: "How to ar-
range the weak links in the environment of strong links. "
Note that the origin of this effect is the same as in the
Gaussian case. In the WS case, however, it is amplified,
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FIG. 3. Eiv(t) per spin for the WS case, c = 2 and a = 0.7.
The annealing schedule range is T g 123 —0, with AT = 10
for T ) 3 and AT = 0.1 for T ( 3. The jump in E~ at T = 3
is observed since we are getting close to the scale of the weak
link and NE~ become extensive. The solid and the dotted
lines indicate WolK and Metropolis dynamics, respectively.
The horizontal line denotes the analytical GS in Eq. (4).
Inset: PI, , for the WS case (solid), and J = +I case (dotted).
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robust (or even increases) with respect to the annealing
schedule. This provides strong evidence that the CA in-
deed do overcome the local di%culties. In order to put
the CA improvement in the overall picture of the true
equilibrium, one must calculate the GS energy. After
some calculation, one can show that the GS energy of
the weak links within the replica symmetry assumption
is given by

1 2 1 2Egr = — caP —e + —c(1 —a) ) (1 —4o.k)e —h, (4)
k=o

where oy = 2' + p& i P~, h = ph ]h~P(h). Note
that the energy of the strong links, E+ = ——c(l —a), is
eliminated from Eq. (4).

The explicit value of E~ depends on the local Beld,
P(h), which in general is difficult to calculate. Never-
theless, in the limit cg ( 1 and e « —,which implies
h « 1 (there are no "order 1" local fields), the following
distribution of local Belds can be assumed:

P(h) = (1 —Q)b(h) + ) Pib(h —te),
Lgo

(5)

where Pt = P i, and Q = 1 Po the fr—action of the frozen
(zero entropy at T = 0) spins. The quantitative form of
P(h) can be determined from the following self-consistent
equation:

P(h) = e
dy . cQa

exp —iyh + (e'"' + e '"')
2K 2

+c(1 —a) ) Pl(e*"'+ e '"')
l=l

P~ = exp( —cQ) I~ ~
~

(cQ), (7)

where It(x) is the modified Bessel function. A graph of

In principle, one must solve infinitely many coupled non-
linear equations, obtained from the expansion of Eq. (6).
However, assuming that P~ decays with /, we assume
Pl ——0 for l ) 1', and then from the comparison of the ex-
pansion of Eq. (5) and Eq. (6) one can derive t' nonlinear
equations. For the range of c and a in our simulations
we take l' = 8, which gives a negligible error. For com-
parison we calculated PI in the J = +1 case in which we
obtain

P~ for the two cases is presented in the inset of Fig. 3.
One should note that after scaling e to 1, the P~ for the

two cases is very close. However, the exchange field is a
different story. In the J = +1 case the exchange Beld
of a spin is usually not far from its local field (around
the number of its neighbors), but for the WS case the
local field is O(e) while the exchange field may be O(1).
The fact that P~ is much smaller leads us to hope that
the dynamics that prefer a global "decision" are indeed
superior to the local one.

The type of the mean-Beld solution we derived is known
to be unstable [13]. However, in Fig. 3 one can see that
the analytical GS obtained from Eqs. (4) and (6) is in
very good agreement with the averaged GS energy ob-
tained by the CA.

The scope of our analytical calculation is for the
cs & 1 case (below the percolation threshold for the
strong links). However, we also performed simulations
for c~ ) 1, and the results for c 6 (2, 5) show a simi-
lar picture. Thus, the superiority of CA over the local
dynamics is shown clearly. However, a priori, one could
gain the impression that this was achieved only by some
simple geometrical reduction of the system. In order to
check this point we performed another type of simula-
tions (which will be reported in detail elsewhere [14]) in
which the algorithm explicitly reduced all the trees, the
linear chains, and the self-loops. This was carried out
in a manner that is proved to be energetically optimal.
Nevertheless, we show that the CA advantage goes be-
yond these simple reductions. This result completes the
picture of CA superiority, within the scope of the present
work. There are many questions that still remain open.
First, what happens at high connectivity? It is clear that
our CA superiority decreases as c grows. One can investi-
gate this point further, and classify the relevant windows
of parameters. Moreover, one can ask if it is possible to
overcome this limitation by a new type of CA, namely, a
CA that goes beyond the ability to act on blocks having a
considerably weak interaction with the rest of the system.
Second, an interesting question is whether CA can enter
the RSB region. Our results do not clarify this point, and
indeed our results are consistent with the RS GS energy.
However, the existence of RSB in the examined systems
is still in question.
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