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Discrete lattice efFects on breathers in a spatially linear potential
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In the presence of a spatially linear, time dependent potential, we study discrete lattice efFects
on a nonlinear Schrodinger breather in the form of a composite excitation comprising two soliton
components. We obtain an exact breather solution by generalizing the Hirota method to include the
external potential. The solution is a discrete generalization of the two-soliton continuum solution
with the initial condition as a superposition of two identical solitons. Unlike the continuum breather
in the presence of a static ramp, the discrete breather will break up into two spatially separate,
coherent structures undergoing bounded individual motions. We show that this breakup is a general
discrete efFect for breathers in an external potential.

PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z, 42.81.Dp

where

+ [v( )+2l&l' @=0,

V(x) = —Fx. (2)

Discrete nonlinear Schrodinger (NLS) equations play
a fundamental role in the study of lattice dynamics in
fiber optics, condensed matter physics, biology, etc. [1]
in that they capture the discrete nonlinear dynamics in
the low amplitude limit and enable us to gain rich ana-
lytical insight into these dynamical systems by virtue of
their simple mathematical structures. In this work, in an
attempt to go beyond the single-soliton dynamics, we will
study the dynamics of breathers comprised of two soliton
components and discuss discrete eKects on breathers in
the presence of a spatially linear, time dependent external
potential. To obtain an exact breather solution, we will
invoke the Hirota method [2] and generalize it to systems
with an external potential. We will compare the discrete
breather with its continuum counterpart and point out
qualitative difFerences in their respective dynamics.

First, we will briefIy discuss the breather solution in
the continuum NLS in the presence of a static ramp po-
tential. The governing equation is

The following transformations [3],

g(x, t) = Q'(x', t') exp iFxt ———iF t

bring Eq. (1) to

For the continuum NLS, starting with the initial condi-
tion,

g(x, t = 0) = 2rl sech(rlx), (5)

the solution is a breather with two solitons riding on top
of each other with a coinciding center [4] (the two-pole so-
lution of inverse scattering transform theory). Using the
two-soliton solution from Ref. [4], which we shall refer to
as the Satsuma-Yajima (SY) solution in the following, we
obtain the two-soliton solution with the initial condition
(5) in the presence of the linear potential (2),

cosh 3rl (x + Ft ) + 3 exp(8irl t) cosh rl (x + Ft )g(x, t) = 4exp irl t —iFxt ——iF t
3 cosh [4rl (x + Ft2)] + 4 cosh [2rl (x + Ft')] + 3 cos(8rlzt)

This is a breathing soliton with the same temporal evolu-
tion of the envelope as that of the SY solution [4]. How-
ever, the center of this breather translates in a parabolic
trajectory in time. This is expected since the breather
can be viewed as a particle with an internal degree of
freedom and it will accelerate down a ramp just as a
Newtonian particle will do.

Next, we discuss the discrete NLS dynamics. The
Ablowitz-Ladik discretization [5] of the NLS in the pres-
ence of an external potential is

where —2g in the finite difference Laplacian has been
removed by a trivial gauge transformation. We will dis-
cuss a potential of the following form,

(8)

where F(t) is any function of time. This potential corre-
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sponds to a time-dependent, spatially uniform force along
the lattice. Equation (7) with this potential (8) is inte-
grable and the general aspects of its dynamics have been
studied by a time dependent spectral theory in the in-
verse scattering transform (IST) framework [6]. Here we
study special solutions, namely, two-soliton solutions. As
is well known, Hirota's method is very powerful in the
study of multiple soliton solutions [2]. We will generalize
the Hirota method to the case that includes the external
potential V . To obtain a bilinear form of Eq. (7), we set

where AG» „——G» „+» + G» ~ »
—2G» „, etc. For the

potential (8), after Fourier transforming Eq. (16) into k
space to arrive at

—Gq —f(t) G~ ——2i(cos k) Gg,
Bt Bk

where Gq(k, t) is the Fourier transform of Gq (t), and
then applying the method of characteristics to Eq. (20),
we obtain the general solution for G» ~. This is any linear
combination of the form

G„

with E being real, and separate Eq. (7) into the following
two equations,

G»71 ~exp z ko —E t A+2z cosj4 —E(~)ldv )
(21)

(iDq + 2 cosh D„„—V„)G„E„=0,
(cosh D —1) E E„=G„G*,

(10)
(11)

for any kp. Here E(t) = f E(r) dr. Using a special solu-
tion of Gq, namely, a linear combination for kp ———Pi
and kp ———3Pi:

where the operators D and Dq satisfy

2 cosh D„G„E„=G„+gE„g+ G„ iE„+q, (12)
D~™"G„E„=[(0~ —0, ) G„(t)E„(t')]~~ ~ . (13)

For the asymptotic expansion:

where

Gq ——a exp [8(P)] + 6 exp [O(3P)],

a = 4coshP sinhP exp( —Pxp),
6 = 4 cosh P sinh 3P exp( —3Pxp),

(23)
(24)

E„=1+~'E, „+~'P4„+.
G„=~G»„+~ G3„+

we derive from Eqs. (10) and (ll)

(iO, +&+2 —V„)G, „=O,

(14)

(15)

(16)

with xo being an arbitrary real number, and

v('t): cos [E(r)] dr, (26)

8(P) = i3n + 2v(t) sinh P —iE(t)n + 2iu(t) cosh', (25)

AE2 „——G» „G» „, v(t) = sin [E(r)] dr, (27)

(ia, + a+2 —V) G, „,

= —(iD, + 2 cosh D„—V„)Gg „.E2 „, (18)

L-kE4 ~ + (cosh Dnl) E2,n,
' E2. ,nG1, n Gs ~, + G] ~ Gs, n ~

(»)

we can show that the asymptotic expansion truncates
at O(e ). The algebra involved in the proof is rather
lengthy. It suKces to comment that the choice of G»
[Eq. (22)] is a key step to ensure this truncation and to
achieve a specific initial condition [Eq. (29), see below]
for the wave function g„. In what follows, we will omit
the intermediate steps and quote the final exact result
for the wave function:

= 2 sinh(2P) exp [
—iE(t) n + 2i cosh P u(t)]

cosh[3P(n —xs)] + (4 cosh P —1) exp [iOu(t)] cosh)3(n —x, )]
cosh[4p(n —x4)] + 4cosh pcosh[2p(n —x2)] + (4cosh p —1) cos[Qu(t)]

where 0 = 8 cosh P sinh P, and

2 sinh P
x~ —— v(t) + xp,

sinh(3P) —sinh P
X2 = v(t) + xp,

2 sinh(3P)
3

vt +xp,

2 cosh P sinh P
'v t+ xp. '

For t = 0, Eq. (28) is
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(t = 0) = sinh(2P) sech [P(n —xo)] .

: (
—1)"&-

: —Z( —t), (30)

for any odd function Z(t) of time t or the potential-free
case, there are "staggered" breathers (i.e. , deriving the
parentage from the upper edge of the linear phonon zone
rather than the center of the zone) whose solutions are
obtained from Eq. (28) under the above transformations
(30). These staggered breathers have initial conditions
of the form

(t = 0) = (—1) sinh 2P sech[P(n —xo)]. (31)

The translational symmetry and the existence of stag-
gered breather solutions are, of course, special properties
of the Ablowitz-Ladik discretization [7].

For f(t) = 0, i.e. , the potential-free case, the evolu-
tion of the discrete breather resembles that of the con-
tinuum SY solution [4]. An example of such a breather
is shown in Fig. 1. Plotted here is the modulus of g

It is evident that the above initial condition is the dis-
crete counterpart of the initial condition (5) for the con-
tinuum case and Eq. (28) is a discrete generalization of
the breather solution (6) in the presence of a spatially lin-
ear potential (8). This breather (28) is comprised of two
poles at exp( —3P/2) and exp( —P/2) from the perspective
of IST. Note that this lattice solution has a continuous
translational symmetry on account of the arbitrariness
of xo. Furthermore, since Eq. (7) is invariant under the
transformations

In addition to a carrier-wave frequency 0, = 2coshP,
the coherent structure has a breathing shape mode that
has the frequency 0, = 8coshPsinh P. This breathing
mode can be clearly seen in Fig. 1. Although the evo-
lution of the envelope, i.e. , ~Q (t) ~, is periodic, the wave
function g (t) is, in general, not periodic in time since
the frequencies 0, and 0, are generally incommensurate.
However, since limp~o 0,/(0, —2) = 8, the continuum
breather is always a periodic solution. Note that here we
used 0, —2 rather than 0 because, for the continuum
case, the gauge transformation mentioned above has to
be invoked to restore the term —2@, giving rise to an
additional phase exp( —2it). Currently, we are investigat-
ing the resonance issue of the system (7) when these two
frequencies become commensurate.

For the general case, i.e., in the presence of an external
field, the discrete breather (28) behaves quite differently
from the continuum one. As shown in Fig. 2, where the
potential is a static ramp, V = Eon, tg being a con-
stant, the breather no longer evolves as a single coherent
entity as in the continuum case (6). Rather, it breaks up
into two spatially separate, coherent structures, one with
a stable envelope and the other with a time dependent
envelope. Clearly, this is a discreteness efFect and the sep-
aration of the two lumps becomes more prominent with
the increase of the value of P. It can be shown that only
under the conditions P (( 1 and t (( 1/Eo can we recover
the continuum solution (6) from Eq. (28) for the spatially
linear, static potential. Of course, the evolution of the
discrete breather is still periodic with a period, 27r/E'o, as
all scattering data in the spatially linear, static potential
are periodic with the period 27r/fo [6]. For other tem-
poral dependences of Z(t), e.g. , F(t) = A cosset, we also
found the breakup of the breather into two lumps. From

I'IG. 1. Time evolution of a discrete
breather (28) in the absence of an ex-
ternal potential. The initial condition is
vP = sinh(2P) sech(Pn), P = 0.5. Plotted
here is ~g (t)~.
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FIG. 2. Time evolution of a discrete
breather (28) in the presence of a static linear
potential V = Fn with E' = 0.2. The initial
wave function sinh(2P) sech[P(n —xo)], P = 1,
evolves into two spatially separate, coherent
structures with bounded periodic motions, cf.
Fig. 1.

the structure of x;, i = 1, 2, 3, 4 above, we can conclude
that this breakup is a general discrete e8'ect for this two-
pole solution (28). Obviously, as expected, the motion is
then no longer, in general, periodic. We point out that
for a one-soliton solution, the envelope is always a hy-
perbolic secant for both the continuum and the discrete
cases, and only the motion of the center is diferent. For
instance, in the presence of the static, linear potential,
the continuum one is unbounded and the discrete one is
bounded and periodic [6,8].

In summary, we have generalized the Hirota method to
include a spatially linear, time dependent external field.

We have presented an exact breather solution, which is,
in the potential-free case, a discrete generalization of the
Satsuma-Yajima continuum solution starting with two
identical solitons riding on each other with a coinciding
center. Unlike the continuum breather in a spatially lin-
ear, static potential, which remains the same coherent
structure as that in the potential-free case, but with its
center executing a parabolic motion in time, the discrete
breather will evolve into two spatially separate, coherent
structures whose motions are individually bounded. We
point out that this breakup is a general discrete eÃect on
breathers in the presence of the external potential.
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