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Soliton solutions of the one-dimensional (1D) complex Ginzburg-Landau equations (CGLE) are analyzed.

%e have developed a simple approach that applies equally to both the cubic and the quintic CGLE. This

approach allows us to find an extensive list of soliton solutions of the COLE, and to express all these solutions

explicitly. In this way, we were able to classify them clearly. %'e have found and analyzed the class of solutions

with fixed amplitude, revealed its singularities, and obtained a class of solitons with arbitrary amplitude, as

well as some other special solutions. The stability of the solutions obtained is investigated numerically.

PACS number(s): 42.65.—k, 47.20.Ky, 47.27.Te

I. INTRODUCTION

Many nonequilibrium phenomena, such as processes in
lasers [1—3], binary fiuid convection [4], phase transitions

[5], and wave propagation in nonlinear optical fibers with
gain and spectral filtering [6—8], can be described by the
generalized complex Ginzburg-Landau equation (CGLE).
We write it here in the form used in nonlinear optics,

where t is the retarded time, z is the propagation distance,
8, P, e

r p„, and v are real constants (we do not require them
to be small), and t/'I is a complex field. For the specific case
of the optical fiber mentioned above, the physical meaning of
these quantities is the following: l/t is the complex envelope
of the electrical field, 6' is the linear gain at the carrier fre-
quency, P describes spectral filtering (P)0), e accounts for
nonlinear gain-absorption processes, p, represents a higher
order correction to the nonlinear amplification-absorption,
and I is a higher order correction term to the nonlinear re-
fractive index. Equation (1) has been written in such a way
that if the right-hand side of it is set to zero we would obtain
the standard nonlinear Schrodinger equation (NLSE).

If the coefficients 6, P, e, and v on the right-hand side
are smail and v=0, then solitonlike solutions of Eq. (1) can
be studied by applying perturbative theory to the soliton so-
lutions of the NLSE [9,10].This approach, however, cannot
give all the relevant properties of solitonlike pulses and the
regions in the parameter space where they exist. Finding ex-
act solutions is an important step for understanding the full
range of properties of the complex CGLE, thus helping to
predict the behavior resulting from an arbitrary initial condi-
tion. We consider both the cubic and the quintic CGLE, and
derive all soliton solutions for both cases following the same
procedure. In this way, we cover the solutions which were
known before and obtain other solutions.

The case of the cubic CGLE has been studied extensively
(see, e.g. , [11—14]) and its general solution, i.e., pulse with
fixed amplitude, is known. Nevertheless, we found that an

important class of solitonlike solutions had been overlooked.
As we investigate the solutions with fixed amplitude more
carefully, we notice that it becomes singular at some values
of the parameters, corresponding to special line on the

(P, e) plane. Although the solution with fixed amplitude does
not apply in this case, a new class of solutions arises, namely,
the class of arbitrary-amplitude solitons. We present an ana-

lytic expression for this class of solutions.
The case of the quintic CGLE has been considered in a

number of publications using numerical simulations, pertur-
bative analysis, and analytic solutions. Perturbative analysis
of the solitons of the quintic CGLE in the NLSF limit has
been developed by Malomed [10]and Hakim, Jakobsen, and
Pomeau [15].The existence of solitonlike solutions to the

quintic CGLE in the case of subcritical bifurcations (e~0)
has been shown numerically [16,17].A qualitative analysis
of the transformation of the regions of existence of the pulse-
like solutions when the coefficients on the right hand side
change from zero to infinity has been done by Hakim, Jakob-
sen, and Pomeau [15].An analytic approach based on the
reduction of Eq. (1) to a three variable dynamical system
which allows one to get exact solutions for the quintic equa-
tion has been developed by van Saarloos and Hohenberg
[18,19], although solutions in explicit form have not been
written.

The most comprehensive mathematical treatment of the
exact solutions of the quintic CGLE using Painleve analysis
and symbolic computations is given in the recent work by
Marcq, Chate, and Conte [20].The general approach, used in

[20], is the reduction of the differential equation into a purely
algebraic problem. However, the technique used in [20] as-
sumes that analytical results can be obtained in a reasonable
time only by using computers. More important, the final for-
mulas for the pulselike solutions in [20] have parameters
which are expressed implicitly through the coefficients of
CGLE and still need some work to calculate the pulse shapes
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numerically. For this reason, the use of complicated tech-
nique and the aspiration to find all type of solutions (pulses,
fronts, sources, and sinks) did not allow the authors of [20]
to classify fully the pulselike solutions. In particular, the so-
lutions with arbitrary amplitude, algebraic solutions, and flat-

top pulses were missing in their analysis. Moreover, the
range of existence and stability were not discussed, even
briefIy. The great diversity of possible types of solutions re-
quires a careful analysis of each class of solutions separately.
This is the reason we have concentrated our effort in this
work only on pulselike solutions. In this way we are able to
find in explicit form and classify all the solutions of this
restricted class.

We propose a relatively simple method which allows us to
obtain and classify the diversity of pulselike solutions de-
scribed by our ansatz. Thus we obtain the class of solutions
with fixed amplitude, then we reveal its singularities and
isolate several special solutions, including a class of
arbitrary-amplitude solitons, the family of Oat-top solutions,
a class of algebraic solutions, and the chirp-free solutions.
Although these solutions do not cover the whole range of
parameters due to the restrictions imposed by our ansatz they
can serve as a basis for further generalizations.

Preliminary studies of the stability of our analytic solu-
tions show that the majority of them are unstable relative to
small perturbations. However, the whole class of solutions
with arbitrary amplitude is stable in both cubic and quintic
cases. This fact allows us to suppose that these solutions can
have a variety of real applications. Another example of stable
solitons is the class of fIat-top pulses. We give in this work
only a few numerical examples of stable propagation. A
more detailed study on their stability will be presented else-
where.

The paper is organized as follows. The general ansatz and
the analytical procedure are described in Sec. II. Exact solu-
tions of the cubic CGLE are described in Sec. III. The quin-
tic CGLE solutions are obtained and analyzed in Sec. IV. We
discuss the results obtained, with possible applications and
generalizations, in Sec. V. Finally, we summarize in Sec. VI.

II. ANALYTICAL PROCEDURE

where a prime stands for differentiation with respect to t.
Let us now assume that

P(t) = P„+d in[a(t)], (5)

where d is the chirp parameter and @o is an arbitrary phase.
We suppose $0 = 0 for simplicity. Equation (5) is, obviously,
a restriction imposed on P(t) because the chirp could have a
more general functional dependence on t. However, this re-
striction allows us to find some families of solutions in ana-
lytical form. For the cubic case, our ansatz covers all pulse-
like solutions. In the quintic case the solutions reported in
this paper are only those which can be represented in the
form (3), (5). Equations (4) become then

(1
via+ —+ pd ~a" + pd ——

~2 i ~ 2J a

~d ~ I'd, a'
—Ba+ ——p ~a "+ —+ pd

(2 ] (2 a

+a +pa =0,

—ea —p, a =0. (6)

Now, we have two second order ordinary differential equa-
tions (ODE) relative to the same dependent variable, a(t).
To have a common solution, the two equations must be com-
patible. In general, this is not the case. However, for this
particular system, they can be made compatible by a proper
choice of the parameters.

To find the conditions of compatibility we apply the fol-
lowing procedure. We eliminate the first derivatives from the
set of Eqs. (6) to get

d
2—(1+d )(1+4P )—+ ' —+ Pd + ePd a2—

4 a (2
/ died

+ v —+Pd + p, Pd ——a + (1+2Pd)
2 J ) 2~ 2

Let us consider first the stationary solutions of Eq. (1)
with zero transverse velocity. This happens when p40. The
case p= 0 is considered in a special section. Hence we look
for a solution of the form

+b Pd ——=0.
2J

After integrating Eq. (7) we have

(7)

P(t, z) =A(t)exp( —icuz) (2)

where co is a real constant. The complex function A(t) can
always be written in an explicit form as

d
2

a 1 d
2

ed I

4 a 2L2 2
—(1+d )(1+4P ) 2 + ——+Pd + ePd — a

A(t) =a(t)exp[i/(t)], (3)
+ — v~ —+pd +p, pd ——a + (1+2pd)3 i2 ( 2/ 2

where a and P are real functions of t. By inserting Eqs. (2)
and (3) into Eq. (1) and separating real and imaginary terms,
we obtain

+ 8' Pd ——=0.
2

(co —
2 P' +P@")a+2PP'a'+ —,

' a"+a + va =0,

( —8+ PP' + 2 @")a+ @'a ' —Pa" —ea —pa = 0,
(4)

The integration constant is zero for solutions decreasing to
zero at infinity.

On the other hand, we can eliminate the second derivative
from Eqs. (6), obtaining
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d
2 , a" t d e—(1+d )(I+4P ) 2 + P —————ePd a

4 a i 2 2

d
v ——P +p~ Pd+ — a

2l

cc)0
+ coP — ———BPd = 0.

2 2

These last two equations must coincide. Hence the following
set of three algebraic equations must be satisfied:

v(4d+2Pd 6P)+—p(8Pd d+3)—=0,
3d+2Pd 4P+—6ePd+2e —ed =0,
2'(d P+—Pd )+ 8(1—d +4Pd) =0.

Equations (10) are the conditions of compatibility for Eqs.
(6).

If both coefficients p, and v are nonzero, then the first of
these equations gives the relation between the four param-
eters e, P, p, , and v when the solution exists in the form (3),
(5). The parameter d can be found from the second of Eqs.
(1o),

3(1+2eP) ~ $9(1+2eP) +8(e—2P)
2(e —2P)

An important issue is the stability of the exact solutions.
As the system described by Eq. (1) is nonconservative, the
stability can be analyzed only numerically. Such an analysis
includes solution of the linearized problem, i.e., calculation
of the perturbation eigenmodes and their growth rates. In this

paper we are using the results of this analysis to present the
region of parameters where the solutions are stable. In these
cases we present the numerical results of the propagation of
the exact solution with an added small perturbation. In the
cases of solutions with arbitrary amplitude we carried out
numerical solution of Eq. (1) with initial conditions in the
form of exact solution with added small perturbation

0o(t) = 0.(t)+& 0,.„(t),

where a small real constant A is the amplitude of the sym-
metric or antisymmetric perturbations, respectively. For sim-

plicity, we chose as the perturbation function the solution
itself, P„(t), or its first derivative BP„(t)/Bt. The exact per-
turbation function would necessarily grow out of one of
these functions.

We conclude this section by analyzing the region of pa-
rameters, where we can expect stable pulses. The parameter

P clearly must be positive, in order to stabilize the soliton in
the frequency domain. We suppose 6'~0 to provide the sta-
bility of the background. In this case, pulses can exist only
for e above the line given by Eq. (19) below. Finally, we
choose p, ~O to stabilize the pulse against the collapse.

6(1—d +4Pd)
2(d —P+Pd )

(12)

Now taking into account Eqs. (10)—(12), and after some
cumbersome transformations, we can rewrite Eq. (9) [or Eq.
(8)1:

a' 2v 2(2P —e) 8
a~ 8Pd —d +3 3d(1+4P ) d —P+Pd

(13)

The coefficient in front of a" can equally be written in an-
other way:

2v p
8Pd —d2+ 3 3P —2d —Pd2 ' (14)

It is important to note that Eq. (13) is the consequence of the
set (6) and its solutions are equivalent to the solutions of (6).
Equation (13) is an elliptic equation and its solutions can be
found relatively easily. The most important for us is the pre-
sentation of coefficients in Eq. (13).They are reduced to the
simplest forms, which allows us to classify the solutions
mainly in terms of e and P.

In what follows, we consider the solitons of the cubic and
the quintic CGLE separately. In each section we derive the
analytical solution and then look for special cases and singu-
larities.

This is an important result, which shows that (i) d can be
found in terms of P and e only, and (ii) the expression for d
is the same for both the cubic and the quintic CGLE.

From the third equation in (10) we obtain for cu

&2 2(2P —e)
a 3d(1+4P )

6
d —P+Pd (16)

which has the solution:

a(t) =BC sech(Bt), (17)

where

3d(1+4P ) 8
2(2P —e) ' d —P+Pd ' (18)

and d is given by Eq. (11) after choosing the minus sign in

front of the root. The second value of d leads to an unphysi-
cal solution, as the expression under the square root for C
becomes negative. Solution (17) has been found by Pereira
and Stenflo [12] (see also [11,13,14]).An important feature
of the solution (17) is that its amplitude and width depend
uniquely on the parameters of the equation. This is a com-
mon property of solutions in nonconservative systems. In
other words, (17) is the solution with fixed amplitude.

To find the range of existence of the solution (17), note
that on the plane (P, e) the denominator in the expression for
8 is positive below the curve S given by

3 $1+4P —1
s= 4+ 18P

(19)

III. SOLITONS OF THE CUBIC CGL EQUATION

A. Solitons with fixed amplitude

First we concentrate our efforts on the cubic CGLE, that
is in Eq. (1) with v= p, =0. Then Eq. (13) reduces to
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Chirp-free solitons

ence, singularity, and stability. Moreover, as we will see in
the next section, another significant class of solutions exists
on this line.

0.4

0.3

0.2

0.1

The line S

8. Solution with arbitrary amplitude

It is easy to see that the solution (17) does not exist on the
line (19). However, if we also impose the condition 6=0, a
new solution, valid only on the line (19), can be found:

a(t) =GF sech(Gt),

where G is an arbitrary positive parameter, and d, ~, and F
are given by

0.4 0.8
$1+4P' —1

(22)

FIG. 1. Line (19) (the line S) on the plane e, P where the solu-

tions with fixed amplitude [(17),(35)] become singular and where
the classes of special solutions with arbitrary amplitude [(21), (41)]
exist. This plot applies for both the cubic and the quintic cases.

and negative above it (see Fig. 1). Hence, for the solution

(17) to exist, the value 8 must be positive below the curve 5
and negative above it. As this solution exists almost every-
where on the (P, e) plane, we call it the general solution. The
curve S itself is the line where this solution becomes singu-
lar, i.e., its amplitude BC tends to infinity, while the width
1/8 vanishes.

To find the stability range of the solution (17), we recall
from the perturbation theory that the solution is stable pro-
vided 8)0 and e&P/2. However, the perturbation theory
c» be app»ed only «r

I
~l I pl I el &1 on the oth«hand, the

curve S separates the two regimes at any values of these

parameters. It has two limits,

e=P/2 for P«I, e—+I/3 for P&) I, (20)

so at small P the curve 5 coincides with the stability thresh-
old given by the perturbation theory. We suppose, using this
observation, that the curve S separates the regions of stable
and unstable solitons on the plane P, e. Thus the solution

(17) exists and is stable below the curve (19) for 6)0. This
conjecture has been checked in our numerical simulations. It
is presented schematically in Fig. 1.

On the other hand, for positive linear

amplification

(8)0), the background state (@=0) becomes unstable. If
the initial conditions are close to the exact solution (17) and
6&&1, this instability develops slowly and the soliton can
propagate distances up to zo- 6 '. Beyond that, radiation
waves growing linearly from the noise become appreciable
and can distort the soliton itself. The distance zo can be large
enough to observe soliton interactions [8].This situation is of
interest for soliton-based communication lines [6,7]. How-
ever, in other problems 6 can be large, so zo is small. The
general conclusion is that either the soliton itself or the back-
ground state is unstable at any point in the plane (e,P). This
means that the total solution is always unstable.

We have to emphasize the importance of the line S. For
the solution with fixed amplitude it gives the range of exist-

(1+4P')(UI+4P'-1), 1+4P',
4 p2 2P

(23)

/dg1+4P'1
ZE

(2+9P ) +1+4P ($1+4P —1)

2P (3$1+4P —1)
(24)

The solution (21) represents the arbitrary-amplitude soliton.
The reason for the existence of the arbitrary-amplitude

solutions is that, when 6=0, the cubic CGLE becomes in-

variant relative to the scaling transformation Q~G P,
t~Gt, z~G z. Hence, if we know a particular solution of
this equation, the whole family can be generated using this
transformation. The singularity of the solution (17) and ex-
istence of the arbitrary-amplitude solutions were discovered
in [21], although the analytical solution was not found. Note
that all the parameters of the solution (21) (except G) and the
coefficient e are expressed in terms of P.

It can be shown that the arbitrary-amplitude solution (21)
arises as the limit of the fixed-amplitude solution (17) for
F~ Fs . To reveal this, we analyze the amplitude-width prod-
ucts, C for the solution with fixed amplitude and F for the
arbitrary-amplitude solution. At the line of singularity S, the
amplitude-width product C remains finite for the general so-
lution (17) and has a finite limit on the line. This limit con-
cides with the amplitude-width product F (see Fig. 2).

We have found, from numerical simulations, that the class
of arbitrary-amplitude solutions is stable relative to small
perturbations at any point of the line S. If we take an initial
condition in the form of a superposition of the exact solution
(21) and a small symmetric perturbation, eventually a sta-
tionary solution with some new value of G will be formed,
and the shift in G will be proportional to the amplitude of the
perturbation. For small P, the stationary solution (21) can be
formed from the chirp-free initial condition P„(t)
= r/ sech(r/t) as well. Figure 3 demonstrates the steady
propagation of three well-separated solitons (21) with
G=0.75, 1, and 1.5.

The most important feature of these solutions is that the
background state t/r=0 is also stable because 6=0. This
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b

O

1.8
a(t) = 6——sech (26)

0.2 0.4 0.6 0.8 i.0
(.Oefftcient P

FIG. 2. Amplitude-width products C aud F versus P for the
solution with fixed amplitude of the cubic OGLE and for the solu-
tions with arbitrary amplitude, respectively.

means that, by removing the linear gain from the system and

applying a special relation between the coefficients e and

P, we can achieve the stable propagation of these solitons on
the stable background. It is remarkable that this class of so-
lutions is the only family of stable pulses in the cubic model.

The coefficients 8 and P must have opposite signs for this
solution to exist. As d=O, the solution (26) does not have
any phase chirp, in contrast to other soliton solutions of the
CGL equation. This happens because of the special choice of
the coefficients. In this case the complex constant
(1—i2P) can be factorized out from Eq. (1) when it is re-
duced to an ODE in terms of a(t)

The pulse itself is unstable, as these solutions are located
on the plane (e., P) above the curve (19) (see Fig. 1). We
have confirmed this instability with numerical simulations.

IV. SOLITONS OF THE QUINTIC CGL EQUATION

A. Relation between coefficients

The soliton solutions of the quintic CGLE exist for a wide
range of values of the coefficients P, e, p, , and v. The
ansatz (5) is the condition that restricts this range by impos-
ing the relation [the first of Eqs. (10)] on them. Using Eq.
(11), this relation can be rewritten as a linear equation in d:

C. Chirp-free soliton
12eP +4m —2P

d —2P +p,
2 eP —16P —3

e —2P
d+1 =Q.

Besides the singularity on the line (19), the solution (17)
does not apply on the line e=-2P, as C then becomes inde-
terminate (d~O when e~2P). However, the soliton ampli-
tude remains finite in the vicinity of this line on the (P, e)
plane for finite fixed 6. It follows from Eq. (11) that for
e= 2P the chirp parameter d =0, and from Eq. (12) that
au= 8/2P. Equation (13) becomes

(27)

We can also eliminate d completely from the first two Eqs.
(10) to obtain the following relation between the four coef-
ficients P, e, p, , and v:

27(p, —2P v) (1+2 eP) 32( v+ 2P p)
(~—2P)' (2P v p)—

0 6'
—,+a + —=Q.2

0 (25) 60(1+2eP)( v+2Pp) —p, +2Pv=O. (28)

Its solution is Solving (28) for e, we obtain

4Pp, +30p v+ 120P p v+4Pv ~ 3U
—p, +12Pp, v+32v +108P v

where

U= g(p —2Pv) (3p, +16P p, +4Ppv+4v +12P v2)

(30)

0.5

—20 20

This expression is the relation between the coefficients in
explicit form. Due to the existence of several branches, each
of them must be analyzed separately. In contrast to the cubic
equation, the general solution exists for both signs in the
expression (11) for d. Equation (28) also applies to both
cases. Hence four different cases have to be considered.

Now we consider zeroes of p, and v in the (P, e) plane
which are results of the relation (29). If in the expression
(11) for d we choose the negative sign (d = d ), then p. has
to be zero on the line [solid line in Fig. 4(a)j

FIG~IG. 3. Simultaneous propagation of three soliton solutions with
different amplitudes of the cubic |GL.

1 —3 j].+3P'
8+ 27P

(31)
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0.3

(a) d=d

0.1 p.)0, v&0

or @&0, v&0

I+ 3 $1+3P
8+ 27P

and v becomes zero on the two lines [dashed lines in Fig.
4(b)] defined by

0

-0. 1

e= + 3+16P +3—4P. (33)

-0.2

-0.3

0
0 4 0.8

@&0, v&0

or p&0, v(0

1.6

The value of v changes sign on these lines [see Fig. 4(b)].
These conclusions can be made more specific when we con-
sider regions of existence for solutions.

In what follows we consider solutions which exist when
at least one of the coefficients p or v is nonzero, and express
the solutions in terms of P, e, and v. Using Eq. (14), the
solutions can alternatively be expressed in terms of P, e, and

p.

20

10

(b) d=d

@&0, v)0

p&0, v&0

=0

8. Solutions with fixed amplitude

By using the substitution f= a we can rewrite Eq. (13) in
the form

f' 8 v 8(2P —e) 48'

f SPd —d + 3 3d(1+ 4P ) d —P+ 13d

0

-10
p&0, v&0

v=0

This is again an elliptic-type differential equation. Bounded
solitonlike solutions exist only if 46'/d —P+ Pd )0. The
positive solution of (34) is [22]

-20

p&0, v&0

0 ' 4 0.8 1.2 1.6
where

2flf2

(fi +f2)
(35)

FIG. 4. Re1ation between the parameters p, and v on the semi-
plane e, P for which the quintic CGL has analytic solutions. (a) The
case of negative sign in Eq. (11). (b) The case of positive sign in

Eq. (11).

2v

SPd —d +3
p

3P —2d —Pd

and f, and f2 are the roots of the equation:

(36)

The values p, and v have the same sign in the region above
this line and opposite signs below it [see Fig. 4(a)].

If we choose the positive sign in the expression (11) for d
(d= d+), then p, becomes zero on the line [solid hne in Fig.
4(b)]

2v 2(2P —e) 6
f2+

SPd d+3' —3d(1+4P )' d —P+Pd

namely,

],2

—(2P —~)—
18 Bd v(1+4P )

(8Pd d+3)(d —P+Pd—)
~) -(SPd —d +3). (38)

On the line (33), this expression must be replaced by

1,2

—(2P —~)—
9 8'd p, (1+4P )

(3P—2d —Pd )(d —P+Pd )
(3P—2d —Pd2). (39)
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0.5

0
—30 —15 0 15 30

FIG. 5. Simul'multaneous propagation of three sol'

different am l't dp i u es of quintic CGL.

'
n o ree soliton solutions with

roots and ~2 ave opposite signs. If and ef h. ' . an e satisfy (19)

trary amplitude exists
, t e class of soliton sso utions with arbi-

3d(1+4P )P

(2P —e) +5 cosh(2 +Pt)
(41)

where I' is an arbitrar y positive parameter and

18 d v(1+ 4P )
2 —e) +-

(SPd —d +3)

The vallues d and co are given b

d=
$1+4P —1

2P (43)

(44)

We now discuss the conditions undern i ions under which the soliton
exists. Clearly, one of the roots we

~ ~

e. e second one can have either si n. If

v —d-+3~0. Then, ~& is ositive,
—e can have either si n. Hen

of d are suitable. A
'g . ence, both values

value (SPd —d +3 is
sui a e. t any values of e and aat any P) 0, the

is positive when we use d=d
use d=d+, the value (8pd —d +3 is ne ativ
b o has e ines in Fig. 4(b) and

Th f b
0 ~

ore v must e positive in the former c

latter one.
e as e lilies as In Fig. 4(b) 111 tile

(2) 2v/SPd —d +3(0.Both roots andot roots f, and f2 are positive,
must e positive. Only d = d sati

criterion The val (8Pd due — +3) is alwa s os' '

In both cases the solution is defined b E . 3
above analysis shows that, for a ' ivenws at, or a given set of parameters e

v, in t e area betweeneen the two dashed lines in Fig, ut only onew en v is ne ative b
'

ive. onversely, outside of

the restrictions on the
must always be positive,

We can see that the solution (35) has two
branches for the sam t f rs. Ie same set of Darameters. I

transformations.
comp icated algebraic

The solution (35) is unstable for arbitrar choice

ic pertur ation grows exponentiall .
special cases of th 0 — p

'
e

grow.
o e at-top soliton theo — p e perturbation does not

C. Singularity at v~0
When v is ne gative, one of the solutions has a sin u

at v~0 . The value (2p —e)/d must be positive and finite.

f2 as the limit 3 8d(1+ 4 p'-)/2(d —~+

v ~j and so the soliton am litude
The singularit doe

p i u e goes to infinity.
ri y oes not occur when v~ 0 . Th

imi v~ coincides with the solution (17)

singularity is trivi 1 d
'

early, this
a an is not related to any new solution

We found from numerical simulationsa simu ations, that this class of

. ( ). k o d
s a e at any point of the s ecial li

e ackground state is also stable as
igure shows the pulse roAles

= v= . . o changes on the rofiles are
a very ong distance. These ulsesese pu ses are the only

'
ns w ic are stable in the w

parameters where they exist
n e whole region of

D. Solution with arbitrary amplitude

Another singularity appears at

K. Flat-top solitons

The soliton 35 becomes wider and flatter as the two
positive roots approach each other. When fi=f2

y. ach of them can beron s wit zero velocit . E
n e orm we ignore the translations along r)

This occurs on the same line 5 in the e la
cubic case [see E . (19)]. T '

w en t eq. ~j~q. The singularity exists when the
f(r) =

1+exp(~ nf, t) ' (45)
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FIG. 6. Shapes of solutions (35) when the two roots f, and f2
are close to each other. Separation into two fronts is the result of
this proximity. Pulses marked 1, 2, 3, 4, 5 correspond to m=1, 3, 5,
7, 9, respectively.

where

(e—2P)(8Pd —d +3)
3dv(1+4P )

(48)

FIG. 7. Evolution of the algebraic soliton at P = 0.15, v=-0, and

p,
———0.2. The parameter d is chosen with plus sign in Eq. (11).

(e —2P)(8Pd —d +3)
6dv(1+4P )

(46)

Equation (34) can then be written in the form

f'+4kol f f ]f'=—0 (49)

and the sign in (45) determines the orientation of the front.
The two roots ft and f2 become identical when

where ko =2 v/(8 pd —d + 3). The solution to this equation
is a Lorentz function:

18 Bvd (1+4P )
(d —P+Pd )(8Pd —d +3)' (47)

This condition involves all parameters of the equation. De-
pending on 6 and v it can exist at any point of the plane
(~ p).

The transition from general solution (35) to IIat-top solu-
tion (45) for ft~fq is shown in Fig. 6. To plot this figure,
we express 8= 8t from Eq. (47) and take
8= Bt(1—10 "'), with m having the values 1, 3, 5, 7, and 9.
The top of the soliton becomes Aatter as the roots become
close to each other.

If ft = f2 exactly, the width of the pulse goes to infinity
and the pulse decomposes into two fronts. Note that in the
region of nonzero intensity solution phase P(t) tends to sta-
tionary value exponentially. So, if we combine the two fronts

~ with opposite orientation to form a wide, rectan ular~45~

pulse of finite width, the inhuence of one front on another is
exponentially small. In other words, the two fronts (45) can
match each other without a domain boundary between them
(«[»])

Pulses and fronts have usually been considered as differ-
ent solutions of the CGLE [18—20]. Our results show that
they can be transformed to each other by changing pararn-
eters of the system. Moreover, our results give, at least
partly, the range of parameters where we can expect smooth
transition from solitons to fronts. Stable stationary flat-top
pulses were observed experimentally in binary fluid convec-
tion [24].

F. Algebraic solution

If 6=0 and (P, e) is not located on the line (19), then
ru=0 and one of the roots of Eq. (37) (say f2) becomes zero.
The other root is

The values ft and kti must be positive, which restricts the
allowed values of the coefficients of the equation for this
solution to exist.

The algebraic soliton is unstable for the full range of the
parameters where it exists. We have carefully studied the
propagation dynamics of the corresponding solitons for
v=0, and observed that it transforms into two fronts when
p, is negative (Fig. 7).

The algebraic solution represents a special, weakly local-
ized limit of the solution with fixed amplitude (35). Note that
algebraic solitons exist and play an important role in other
integrable and nonintegrable systems, including NLSE [22]
and its generalizations [27].

8 46
f'+ vf'+ 4f'+ f—'= o

3

The solution to this equation is:

86v
1 — cosh' 2

(52)

p/

Clearly, this solution exists when 8'/P is negative and v posi-
tive. The value d = 0, and the solution to the CGLE does not
have any phase chirp. This solution arises because the coef-
ficients of the equation are chosen in such a way that a com-

G. Chirp-free soliton

Another degenerate case occurs when e= 2P and

p, =2Pv. Equation (34) then reduces to
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pative effects. The special solutions, including the class of
arbitrary-amplitude pulses, fllat-top pulses, and algebraic
pulses, have not been predicted at all. On the other hand, our
solutions could not be compared with the results of the stan-
dard PT because the parameters in the right-hand-side of the
the CGLE cannot be reduced to zero simultaneously. If we
take v=0, for example, the parameter p, Inust be chosen

higher than 3 Q3.
Let us turn now to possible applications of our analysis.

The results of our work can be applied to different physical
problems. The CGLE appeared first in the theory of phase
transitions. Later it has been studied in plasma theory [12]
and traditionally has been used to describe binary Quid con-
vection [4,24]. These days, however, the most promising area
where the solutions of the CGLE can give a new view of the
problem is optical telecommunications and laser physics
[23]. Consequently, we discuss here only the use of new
solutions in this important area, leaving aside other possible
applications.

It is known that the cubic CGLE is a good model for
describing the optical transmission systems with guiding fil-
ters. The use of the nonlinear gain (e)0) in these systems
allows the reduction or suppression of the growth of linear
radiation. Our results show, in particular, that stronger spec-
tral filtering P- 1 can be used in these systems than has been
considered before, P(~ l. In this case Eq. (19), derived here,
gives the instability threshold. Our results show also that by
removing the linear gain from the system we can achieve
stable propagation of both the soliton and the background.
This possibility has not been discussed before.

The existence of singularities shows a simple and effec-
tive way to control the pulse parameters (say, in lasers) by
small variations in the "material parameters. "The existence
of solutions with arbitrary amplitudes can be used to switch
the system from a "rigid regime" with fixed-amplitude soli-
tons to a "soft" one with solitons having variable param-
eters. This can be done just by changing the parameters of
the system (the relation between the linear and nonlinear
gain, for example).

Note that the very range of parameters where the special
solutions exist is of great importance and many experimental
and numerical observations were performed in this range,
even if this fact was not explicitly realized. We illustrate this
using the example of arbitrary-amplitude pulses. Indeed, for
the systems described by the cubic CGLE (e.g. , soliton trans-
mission systems), the main limitation is due to the growth of
linear radiation (instability of the background state). Emis-
sion of the spontaneous noise by amplifiers also contributes
to this effect. So, it is desirable to reduce this instability, and,
in order to do this, keep the excess linear gain 6 as low as
possible. At the same time, the soliton collapse (which oc-

curs if e) es) also should be avoided. So the optimal regime
lies near the curve 5, where the nonlinear gain and the spec-
tral filtering balance each other so significant contribution
from the linear gain is not necessary.

Another example of the soliton fiber system which has the
working regime near the curve 5 is the soliton fiber laser
with saturable absorption [25,26]. Such a laser is described
by the cubic CGLE, but the difference from Eq. (1) is that
the linear amplification coefficient 6 depends on the total
pulse energy E. In the mode-locked regime, 6 has small
negative value to stabilize the background state. If the pulse
energy increases, the absorption also increases and vice
versa. Clearly, stability of such a system depends on the
slope of 8(E) dependence. However, to provide the self-start
of the laser, 6 should have small positive value for E much
smaller than the energy of the stationary pulse. So, again the

optimal regime lies near the 5 curve, where the nonlinear
gain and spectral filtering compensate for each other and the
absolute value of 6 can be kept small.

The system which is described by the quintic CGLE is,
for example, the soliton Giber laser with fast saturable absorp-
tion [21]. In this case the soliton is supported by nonlinear
gain and loses energy due to three effects: spectral filtering,
linear losses, and the quintic stabilizing term. However, even
small linear loss is enough to keep the background state
stable. So, the stationary state exists basically as the result of
balance between nonlinear gain, spectral filtering, and the
quintic stabilizing term; this proves the importance of the
study of the arbitrary-amplitude pulses in the quintic model.

VI. CONCLUSION

In conclusion, we developed a simple technique which
allows us to find pulselike solutions of both the cubic and
quintic CGLE, using the same procedure. For the cubic
CGLE, we have revealed the singularities of the fixed-
amplitude solutions, and found arbitrary-amplitude and the
chirp-free solutions. For the quintic CGLE, we have obtained
a class of fixed-amplitude solutions, studied its singularities,
and found several special cases. Among them are the class of
arbitrary-amplitude pulses, chirp-free pulses, the flat-top so-
lution, and others. We have investigated the stability of these
solutions by direct numerical simulations and found that
arbitrary-amplitude solitons are stable in the whole range of
parameters where they exist.
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