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Two-state bright solitons in doped fibers with saturating nonlinearity
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Fundamental bright soliton solutions are studied numerically in a model for pulse propagation in

semiconductor-doped glass fibers with exponential saturation of the nonlinear dielectric function. It is
shown that the given model possesses two-state soliton solutions in the sense that for a given sei of fiber

parameters there exist two soliton solutions with the same pulse width but with different peak ampli-
tudes, i.e., with difFerent peak powers. The stability of these solitons under weak perturbations and the
effect of the fiber loss are also investigated. A comparison with earlier results for such solitons is made.

PACS number(s): 42.8 jk.op, 42.50.Rh„42.65.Pc

I. INTRADUCTI(ON

For ihe last two decades optical solitons in fibers have
attracted much attention from physicists as well as en-
gineers in connection with their tremendous utility in
all-optical communication systems [1—11], optical
switching devices [12—14], signal processing, optical
computing, etc. Recently, especially after Kaplan's work
[15,16] and the subsequent development [14,17—19] of his
ideas, there has been increasing interest in multistable
solitons in fibers made of composite materials. As shown
by Enns and co-workers [17—19], it is possible to have
easy switching from one stable state of such solitons to
another, which makes multistable solitons attractive and
useful in applications for ultrafast switching devices.

Experimental results of the measurements of the non-
linear absorption [20,30] in semiconductor-doped glass
(SDG) and other composite materials show that non-
linearity saturates at noi too high field intensities. Hence,
in modeling pulse propagation in fibers made of such ma-
terials, one must use the saturating form of the dielectric
function or the nonlinear refractive index. Usually one
adds a saturating term for the nonlinear refractive index
in place of the cubic term in the nonlinear Schrodinger
equation (NLSE) and models the pulse dynamics [22—26].
The other way is to take an appropriate saturating form
of the dielectric function and derive the difFerential equa-
tion, governing pulse dynamics, from Maxwell's equa-
tions or the equivalent nonlinear wave equation using the
standard method of slowly varying envelope approxima-
tion (SVEA) and averaging over the cross section of the
fiber [5,27]. As discussed by Enns and Rangnekar [17],
one can model the system by various forms of nonlineari-
ty in the equation. To the best of our knowledge, besides
the steplike nonlinearity, the following saturable forms:

n2 being the Kerr coe%cient for the refractive index re-
lated to c2 through the expression c2=2n0n2.

II. MQDEI.

Consider pulse propagation in a monomode SDG fiber
governed by the following nonlinear wave equation:

g2DI. jI g2DNL
+2E

2 Qt2 C2 $12
(4)

D = f E(t')E(x, t t')dt', —
0

D e2Is( 1=—exp[ —
~E~ /Is])E (6)

are the linear and nonlinear parts of the electric induc-
tion vector 0, respectively, c being the linear permittivi-
ty. As is customary, we assume the pulse, propagating
along the longitudinal axis x of the fiber, to be supported
entirely by the fundamental mode (HE» or I.Po, ), and
hence we can represent E as

ENL( E ) =IsE2[1—exp( —
~E~ /Is)]

of the nonlinear dielectric function cNL are the most fre-
quently used ones in the literature, where c.2 is the Kerr
coeKcient for the dielectric function, and I& is the inten-
sity at which saturation occurs. One of the authors de-
rived a nonlinear and dispersive partial difFerential equa-
tion [28,29] for the study of pulse propagation in SDG
fibers described by the dielectric function given by Eq.
(2). In this work we numerically determine the funda-
mental (% =1) bright soliton solutions in this model,
study their properties, and compare our results with
those obtained for the model based on the nonlinear re-
fractive index change b, n NL given by [22]

n, /E)'
AnNL =-—

I+(iEi'/I, )
'
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E(t, r, x ) =eR (r) 2 (t,x )exp[ t—'(cot —pox )],
where c is the unit vector in the direction of polarization,
r is a vector in the transverse plane (y, z ), R (r) is the
modal function describing the transverse distribution of
the electric field in the mode, A (t,x ) is the slowly vary-
ing complex envelope amplitude, and Po is the propaga-
tion constant. Assuming the Gaussian form for trans-
verse intensity distribution and small temporal disper-
sion, we use the standard procedure based on SVEA and
average over the cross section of the fiber [5,27] to obtain
from Eqs. (4)—(7) the following nonlinear partial
differential equation for the complex envelope amplitude
A (x, t):

i A + 3, —
—,'k1

Ug

Is~2

= —c. 1—
2kc

The model described by Eq. (10) will be referred to as
the K model, while the one described by Eq. (11) as the
fractional model (f model). In what follows we shall
determine the soliton solutions in both these models and
compare their properties.

III. SOLITON SOLUTIONS (LOSSLKSS CASK)

We look for the fundamental (i.e., X = 1 in terms of the
inverse scattering method) bright soliton solutions to Eqs.
(10) and (11) satisfying

lim q(g, r)= lim q, (g, r)=0
Q~+ oo ~—++ oo

(12)

and the condition of stationarity in g. Following
Hasegawa [27], we put

q(g, r) = [%(g,r)]'~ exp[i@(g, v. )] .

Then from (10) and (13) we obtain

where v is the group velocity, and we have taken into ac-
count that for the HE» mode Po=coV'elc =k, k being
the wave number. Note that from here onward a suftix
stands for the partial derivative with respect to this un-
less stated otherwise.

In order to write Eq. (8) in dimensionless form, we in-
troduce the following variables:

co
q=,g= n2Is x, —

2 S

—0+4 +—%4=01 1
'T7 + 'T 'T

—@~+ 4„— (%', ) —
—,
' (@,)4' 77 8@2

+ 1 ——'+'"P' ~) =0,

where, according to Eq. (12), the amplitude ql satisfies

lim %(g,r)= lim ~II,(g, r)=0 .
QO 7M+00

(14)

(15)

n 2Is
c ( —k„)

1/2
x
Vg '11(r)c,=c(g) . (17)

As usual the condition of stationarity in g gives 4&=0,
and hence from (14) we obtain

where we have assumed that we are working in the anom-
alous dispersion region in which ( —k „)& 0. As a result
Eq. (8) can be written as [28,29]

1 exp( —IqI )

I q I' Iq I'

This is the basic evolution equation describing pulse dy-
namics in our model in the absence of dissipation, which
can be accounted for easily and which we shall deal with
below.

For convenience let us also write down the model equa-
tion for the case of hnNL given by Eq. (3) in dimension-
less form, taking into account transformations (9). It has
the following form [22]:

iq&+ —,'q, +q =0 .Iq I'

1+ q

Note that Eqs. (10) and (11) differ not only in the func-
tional form of nonlinearity but also in the fact that while
Eq. (11) is an unaveraged model Eq. (10) has been derived
by performing averaging over the fiber cross section.
Averaging is desirable, since the transverse distribution
of the electric field of the mode is not uniform over the
fiber cross section.

As is well known [27], the conditions of stationarity in g
and localization in ~ can be satisfied only if c(g)=0. As a
result we obtain

@=Pg+No, (18)

where C&o=@
& o, and P is a constant that represents the

nonlinear addition to the propagation constant. Substi-
tuting for N from Eq. (18) into Eq. (15), we obtain

1 tg 1 g2

8qy2
+ (1 —P) =0, (19)

ql' + —P=O4' 8@2 1+gy
(20)

In order to determine the soliton solutions we must in-
tegrate Eqs. (19) and (20) numerically. For that we need
appropriate values of P, since not for all P's but only for
some particular values, for a given input amplitude %o,
Eq. (19) or (20) will have bright soliton type solutions. If

where the prime stands for the ordinary derivative with
respect to r. A similar treatment of Eq. (11) leads to the
following results for the f model. The phase N is again
given by Eq. (18), but 'k satisfies the following difFerential
equation:
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we multiply Eq. (19) by 4' and use the boundary condi-
tions (16), we obtain

1 d% +(1 P—)% E—in(%) =0, (21)
8 d~

1.4—

where Ein is defined through the integral exponential
function E& and Euler constant g as [31]

Ein (y ) =E, (y) +1n(y ) +g .

Since we are looking for &=1 bright soliton solutions
with a maximum qo =Q%o at r=0, we arrive at

Ein (0'o)—1 ——
+o

Similarly one can obtain P for the fmodel. It is given by

ln(1+%'o)

1.1
0 5 10

FIG. 2. Soliton width wo as a function of dimensionless ener-
gy 6'. K model: solid curve; fmodel: dashed curve.

0.4—

IV. NUMERICAL RESULTS

For a given value of Vo we determine the correspond-
ing value of p and then numerically integrate Eqs. (19)
and (20) to determine %(r), i.e., the soliton shape. The
results of our study are depicted in Figs. 1 —12. Note that
in all our figures the solid line corresponds to the results
of the K model, while the broken line represents those for
the f model.

Figure 1 contains the soliton peak amplitude as a func-
tion of the dimensionless soliton energy

@=I,Sf I
y(r)l'«, (25)

where Io =
qo ~

is the dimensionless peak intensity of the
soliton, S is the effective cross sectional area of the fiber,
and f(r) is the soliton shape function. Note that S(K
model)/S(f model) =2(ro/a) = —,

' in the Gaussian ap-
proximation [32], where ro is the distance at which the
intensity drops by a factor of 1/e, and a is the fiber core
radius. In comparing solitons of equal energy we have to
take this fact into account. Figure 2 contains the soliton
width ro as a function of the energy C.

If we analyze these figures, we conclude that both mod-
els admit two-state soliton solutions in the sense that for
a given set of fiber parameters there exist two solitons

10

FIG. 3. Nonlinear propagation constant shift p as a function
of dimensionless energy C. K model: solid curve; f model:
dashed curve.

'T 1.30

1.2—
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FIG. 4. Soliton width ~0 as a function of the nonlinear propa-
gation constant shift P. K model: solid curve; f model: dashed
curve.

10

FIG. 1. Soliton pulse amplitude as a function of dimension-
less energy 6. K model: solid curve; fmodel: dashed curve.

—4 —2 0 2 4

FIG. 5. Soliton shapes for ra=1.3. K model: solid curve; f
model: dashed curve. The vertical lines indicate the full width
at half maximum intensity.
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V. SOLITON BEHAVIORR UNDER FIBER LOSS
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