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Achievable spatial resolution of time-resolved transillumination imaging systems
which utilize multiply scattered light
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We describe theoretically and measure experimentally the best achievable time-dependent point-
spread-function of light in the presence of strong turbidity. We employ the rescaled isotropic-scattering
solution to the time-dependent radiative transfer equation to examine three mathematically distinct lim-
its of photonic transport: the ballistic, quasidiffuse, and diffuse limits. In all cases we follow the con-
straint that a minimum fractional number of launched photons must be received before the time-
integrating detector is turned oK We show how the achievable ballistic resolution maps into the
diffusion-limited achievable resolution, and verify this behavior experimentally by using a coherently
amplified Raman polarization gate imaging system. We are able to quantitatively fit the measured best
achievable resolution by empirically rescaling the scattering length in the model.

PACS number(s): 42.68.Ay, 42.68.Sq, 42.30.—d, 41.85.Ja

I. INTRODUCTION

Although time-resolved laser-pulse transmission and
imaging through both turbid ocean water [1—5] and aero-
sols [6,7] have been researched extensively, these subjects
have undergone a revival recently due to their potential
use in nonionizing medical imaging diagnostics [8—22].
Imaging in the presence of turbidity is made dificult be-
cause light used to image an object may be scattered be-
tween source and detector, which degrades spatial resolu-
tion. Time-resolved transillumination imaging works on
the principle that at times shortly after the time it takes
for light to traverse a turbid material, only those rays
which have been forward scattered (and thus not greatly
time delayed) will be present in the detector. These rays
will obviously have better image information than those
that have taken longer random paths to the detector.

Despite the relative intuitive ease in understanding
time-resolved imaging, it is not a simple matter to predict
the achievable optical resolution of a time-resolved imag-
ing system given a signal-to-noise criterion of at least one
photon per pixel arriving in a given time slice. Multiply
scattered photons in general obey a time-dependent trans-
port process; theoretical solutions to even the efFective-
medium time-dependent transport equation are notori-
ously difficult [23—25]. Nevertheless, we describe in this
paper solutions to the radiative transfer problem which
efFectively describe the achievable spatial resolution of
time-resolved imaging through turbid materials.

Before we proceed with a discussion of the theory of
photonic transport, it is necessary to define conventions
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used in this paper. First, throughout most of this paper
we will be discussing the point-spread-function (PSF) of
an imaging system which maps spatially and temporally
localized point source at the input surface of a turbid slab
of thickness d to the output surface (an analysis is
presented below which extends our results to embedded
objects). Figure I shows the general geometry with the
coordinates used in this paper. In reconstructing an im-
age of the broadened point source with a lens, the object
plane must be specified. If the direction of propagation
Q is not randomized, the correct object plane corre-
sponds to the input surface. We refer to this case as OP
imaging. (OP stands for object plane, because it corre-
sponds to the object plane without a turbid slab. ) If the
angles Q become randomized, the correct object plane
corresponds to the output plane at z =d. The point
source in this case will be broadened to some width on
the exit surface and be composed of incoherent point ra-
diators. We refer to this case as EP (exit plane) imaging.

Second, we need to define what we mean by resolution.

"Abject Plane"

Input P

Turbid
Medium

Output Pulse

FIG. 1. Configuration used in transillumination imaging with
scattered light.
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In incoherent Fourier optics, image quality is governed
by a PSF which can be convolved with an intensity in the
object plane to obtain the final output image. The PSF
will thus broaden a point source at the input of an imag-
ing system to some characteristic width which depends
on the imaging system's parameters. The full width at
half maximum (FWHM) of the PSF, which we denote as
A, is a measure of the approximate minimum distance
between two point sources at the input of the imaging
system that can be "resolved. " We define the contrast be-
tween two point sources symmetrically placed about p=O
as

where I(p,„)is the intensity at its maximum value, and
I(0) is the intensity at p=0. A FWHM separation of
two Gaussian PSF's results in a contrast C =7.2%,
which we define as our resolution condition. We will also
find it convenient to use the half-width 1/e point of the
PSF, denoted as %,. The two are related for a Gaussian
PSF as A =2&in(2)%, .

The remainder of the paper is outlined as follows.
First, we describe the necessary theoretical approaches
which allow us to predict imaging performance quantita-
tively. Second, we discuss imaging experiments per-
formed using a subpicosecond resolution coherently
amplified Raman polarization (CARP) gate system which
has allowed us to map out the best achievable point-
spread-function for our given system sensitivity. Finally,
the results are discussed from the viewpoint of applying
these techniques to tissue transillumination imaging. Ap-
pendixes A and 8 give details of the theoretical calcula-
tions.

II. THEORY

Although theoretical descriptions of the time-
dependent PSF of photons which have traversed a turbid
material exist in the published literature [2—5,7,9,17,20],
these works have described the optical resolution in-
dependent of constraints on system sensitivity. Since real
imaging systems have some finite number of photons
available to launch, a natural question to ask is what is
the best resolution obtainable given some fixed system
sensitivity? It is essential that the question of optical
resolution be formulated in this manner, as it will be
demonstrated below that most theories predict that arbi-
trarily good resolution can be obtained for arbitrarily
short integration times. At these arbitrarily short times,
however, the transmitted fraction of photons is so small
that no signal arising from any reasonable number of in-
put photons can be measured.

In order to predict accurately the number of photons
which will be received in a detector as a function of time,
it is necessary to use radiative transport theory. This
theory ignores the phase of the photon field, which
should be a good approximation for turbid materials
composed of small scatterers separated by many optical
wavelengths. The radiative transfer equation (neglecting

absorption) for the photon density P(r, t;Q) (units of
cm sr ') at a space-time point (r, t) traveling in a direc-
tion Q due to a unit point source initially at the origin is
[24,25]

[cQ 9+8,+cp, ]g(r, t;Q)

=cp, f dQ'S(Q, Q')f(r, t;Q')+5(r)5(t)5(r —Q)
4~

(2)

where p, is the scattering coefficient in units of inverse
length, S(Q, Q') is the probability density that a photon
traveling in the direction Q will scatter into a direction
0, and c is the effective speed of light in the material.
The scattering length l„i.e., the average distance be-
tween collisions, is l, =p, '.

There are three physically distinct limits of time-
dependent photon transport. Light obeying the first lim-
it, the ballistic limit, corresponds to those photons which
have traversed the sample without scattering. The third
limit, the diffusion limit, contains those photons that
have scattered enough between source and detector so
that they have essentially lost all their directional infor-
mation.

In between these two limits, there may be photons
which have scattered in the materials, but not sufficiently
to obey diffusion statistics. Historically, this regime has
been known by many names. Bucher and co-workers [6]
called this regime the "forward scatter" regime, while in
the more extensive theoretical and experimental work of
Mooradian et al. [7], these photons were named "type-
II" photons ("type I" and "type III" corresponding to
the ballistic and difFuse limits, respectively). In the Soviet
literature [5], photons in this regime are usually labeled
by the variously applicable mathematical approximations
to the radiative transfer equation which best describe
them [e.g. , small-angle approximation (SAA) and small-
angle difFusion approximation (SADA) [5]]. Lately, pho-
tons in this regime have been associated with the term
"snake light, " although more than one definition of this
term appears in the literature [13—16]. We will use the
term "quasidiffuse" to label photons in this regime in the
present work, because we will show below that these pho-
tons will generally display optical resolutions closer to
the diffusion limit than the ballistic limit when the ballis-
tic component is immeasurably small.

A. Ballistic limit

The photons which arrive at the causal time without
scattering in the turbid material are called "ballistic"
photons, Pb. They are described by the ballistic or
"streaming transport" propagator, i.e., the response of
the system ignoring the photons scattered back into the
direction of propagation. This quantity is obtained by
solving Eq. (2) with the scattering function S set to zero.
The result is

(3)

Two things are immediately observed about ballistic
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photons from Eq. (3). First, they retain perfect direction-
al information, and thus are encoded with the
diffraction-limited resolution of the optical imaging sys-
tem (and so OP imaging should be used). Second, their
intensity drops exponentially with the number of scatter-
ing lengths. Thus, even assuming 10' input photons
(around one J) in 10 pixels, the quantum limit (i.e., one
photon per pixel) is reached in about 35 scattering
lengths. Ballistic photons have been observed for attenua-
tions [21] up to e . Imaging through turbid materials
thicker than this will require use of photons which have
scattered at least once in the material.

B.DiIIusion limit

n(r, t)= f dQ'f(r, t;Q')
4m.

(5)

J(r, t)=c f dQ'P(r, t;0')(0') . (6)

Inserting Eq. (4) into Eq. (2) yields the equation of con-
tinuity and Fick s law with a time-varying Aux, respec-
tively, i.e.,

V J+B,n =5(t)5(r)

and

DVn+ d, J+J=O,1

c 1 —gp,
(8)

The "opposite" limit of transport theory, the diffusion
limit, occurs when the photons traversing the material
have scattered so much that they have lost almost com-
pletely their initial directional information. In this limit,
the radiative photon density is approximated by

3f(r, t; Q)= n(r, t)+ J Q,
4m

'
4m@

where

n (r —r', t —t') = g G (p —p', z z—'+2md, t t'—)

—6 (p —p, z +z'+2md, t t—'),
where 6 ( r, t) is the infinite-space propagator

e
—r /4Dt

G(r, t)=
(4irDt )

(12)

and r =V'z'+p'
Letting n =0 on the physical boundaries is only an ap-

proximation of the boundary conditions. A better ap-
proximation is to express the boundary conditions to Eq.
(2) in terms of n and J. The resulting boundary conditions
are approximately equivalent to stating that the number
density goes to zero on the extrapolated surfaces [27] at
z 3 lt and z =d +—', lt . We may thus use the Green ' s

function for n (p, z, t) =0 on the boundaries, provided we
use the correct surfaces.

In order to calculate the total Aux calculated from
Fick's law received in a detector on the output surface of
the slab, we take the following actions. First, for slabs
that are many transport lengths thick, the effective size of
the point source, which is about one I, , wiH be much
smaller than the output resolution. Thus we may replace
the source with a 5 function embedded in the slab at one
transport length deep. Second, we will use a square win-
dow integrating gate on the detector, and ignore the
causal transit time for the moment (this approximation is
discussed fully below). Third, we will integrate over the
detector's area 2 =ma . There are two detector size lim-
its which interest us: the case a »d and the case a «d.
We usually encounter the second situation in experiments
where the size of the pixel at the center of the PSF (the
maximum fractional number of photons will be received
in this pixel) is much smaller than the PSF and the thick-
ness of the sample.

Thus, for the total fractional number of photons N col-
lected at some short time ~ for a detector at d, we obtain

where D =c/[3(1 —g)p, ]. The anisotropy factor g is
defined by

N=DV, f dt f p pdOdn(p, z, t)~, (13)

g= O'S O.Q' Q.Q',
4m

where we have assumed for simplicity that S is a function
of only the angle between its two arguments.

The diffusion equation is obtained by substituting Eq.
(7) into Eq. (8). The result is

[ DV +B, ] (r—,nt)=5(t)5(r), (10)

where we have also neglected the term proportional to
B,J in Eq. (8).

From the above definitions we can also define a trans-
port length /, =fd(g)l„where fd(g)=1/(1 —g). This
length represents the distance over which the direction Q
becomes completely randomized.

Equation (10) has a well-known Green's function solu-
tion for a slab [26] where the boundary condition is taken
to be n (p, z =O, t) =n (p, z =d, t) =0,

%,=&4D~ . (14)

The ratio %,/d is a recurring quantity in Eq. (13). We
therefore define a quantity xo by

%e =d/xo (15)

and substitute it into Eq. (13). By expanding Eq. (13) at

Equation (13) is solved below for a given received pho-
ton fraction X, which sets the necessary integration time

To solve for the PSF, we remember from Eq. (4) that
the directional information Q in the diffusion limit is by
definition lost, so for the PSF system we must use the in-
tensity profile on the slab output surface (i.e., EP imag-
ing). The PSF in the diffusion case is given by the p
dependence of Eq. (11) evaluated at the integration time r
and z =d. Examination of Eqs. (11) and (12) shows that
the p dependence is approximately Gaussian with a 1/e
half-width A,
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4D
3d2

4X oCI 2

Equation (17) predicts that short integration times will
be necessary for thin samples. Since the diffusion approxi-
mation does not obey causality, it will break down at
short times. We therefore need to specify what minimum
thickness can be used in this limit. Intuitively, one might
expect that as the necessary time gate becomes large
compared to the causal transit time, the diffusion equa-
tion should describe the measured signal to arbitrary pre-
cision. We show in Appendix A by calculating the first
transport correction to diffusion theory that, provided
the time gate satisfies cell, »(d/l, ), diff'usion theory
should describe the measured signal.

Defining the causal transit times as r, =d/e, we thus
find that the diffusion approximation is valid for

1/3

4x ()I,
(18)

short times, we find that only the m =0 and —1 terms
contribute significantly, and we obtain the result that the
resolution at a particular fractional number of received
photons N scales as Eq. (15), where the quantity xo is
given by the solution to the transcendental equation

aN+o ~ (16)

where a=(&nd)/(21, ). When aN goes between 10
and 10,xo only changes between 4.7 and 6.8, respec-
tively. Thus the achievable resolution is an extremely
weak function of all parameters except sample thickness.

This is a somewhat surprising result, but has a simple
physical explanation. The received power is predicted to
rise extremely quickly in the diffusion limit, but the reso-
lution is only a weak function (the square root) of the in-
tegration time. Thus one merely needs to open the time
gate slightly to make a large difference in the received in-
tensity at short times, which will not affect the width of
the PSF significantly.

The optimal time gate ~ required to obtain the best
achievable spatial resolution in the diffusion limit is

the optimal resolution obtained by numerically integrat-
ing the causally corrected and uncorrected (acausal)
Green's functions (with N = 10 ' ), along with the
asymptotic limit A, =d/xo in Fig. 2. Even with this
stringent condition on the number of received photons,
there is little difference in the three methods for samples
greater than about 45 transport lengths thick.

The turbid slab with zero density on the extrapolated
surfaces is the most physically appealing solution in the
diffusion limit. Many other permutations of boundary
conditions are possible in this limit. For instance, it is
possible to ignore completely that any boundaries are
present and use the infinite space Green's function G (r, t)
for the propagator. In the absence of boundaries, one
may also use either the integrated photon density or Aux

to model the received signal. The results of the various
permutations of boundary conditions and integrated
quantities (i.e., either fiux or density) are summarized in
Table I for the case when the detector radius a »d. In
all cases, a transcendental equation for xo(aN, p) of the
form

X
aNxo=e (19)

is obtained, where p = 1 or 3, and a is some combination
of parameters which typically vary by less than a few or-
ders of magnitude (aN will always be very small in any
case). The cases where a ((d can be obtained from the
information in Table I by letting u~(d/a) a and

p —+p —2. Figure 3 plots xo versus o;X for the three
relevant p values. The quantity xo scales extremely slowly
with aN in each case, and varies little in value relative to
the various approximations used. We conclude that the
resolution scaling law is robust to any reasonable com-
bination of boundary conditions and detector
configurations.

For embedded objects, one may calculate the Aux

through any small volume of the sample by constructing
a source term from the input point source to some point
in the sample (p, z, t'), propagating it to the exit surface in
a total time ~, and averaging over t'. This procedure was
explicitly calculated in a slab geometry in Ref. [17] for
the random-walk theory; the continuous space analog can

Taking xo-—5, we find that the inequality of Eq. (18) is
satisfied for samples greater than 14 transport lengths
thick. We find below that for samples much thicker than
this limit the diffusion approximation adequately de-
scribes the measured signal at all times.

The restriction that the integration time must be much
larger than the causal time can be removed to first ap-
proximation by utilizing random walk theory.
Gandjbakhche, Nossal, and Bonner [17] have shown that
the central-limit propagator (i.e., a Gaussian propagator)
can be substituted into a random walk on a cubic lattice
to obtain more accurate modeling of transport where the
diffusion equation solution is not as good an approxima-
tion. Examination of the method, however, shows that it
ultimately relies on substitution of a causally corrected
propagator in the Careen's function propagator identical
to G(r, t) used above except with t~t r, . We compare—

30
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d/I,

FIG. 2. Optimal resolution in the diffusion limit at an atten-
tuation threshold of %=10 ' obtained via three different
methods. Curve R: asymptotic solution %', =d/xo. Curves C
and 2: numerically integrated causally corrected and un-

corrected solutions to the diffusion equation, respectively.
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be constructed with the Green's function described
above. The calculation is outlined in Appendix 8, the re-
sult of which is quoted here and summarized in Table I
for an object embedded at a depth z =6, where 0 & 5 & d.
The resolution scaling law for A, (5,d), the embedded
resolution, for an object placed between source and detec-
tor at 5 reduces to

%, (5,d)=% (d)
Xp

where the solution for xp in this case is also near 5, and
%,(d) is the achievable 1/e resolution for a slab of thick-
ness d. The achievable width of the PSF from the object
embedded at 5 =d /2 is exactly twice as narrow as that
possible for a slab of thickness d, as expected from more
heuristic arguments presented previously [22].

%e have shown above that even in the diffusion limit
boundary conditions contribute little at short times, and
that the resolution scales in a simple fashion for sma11
embedded objects. Since the diff'usion limit of radiative

5.5

TABLE I. Resolution scaling laws for A, =d/xo(aX, p), as-
suming various geometries and boundary conditions. In all
cases except the embedded case, we assume the detector radius
a »d. For a «d, let a~(d/a) a and p~p —2. The resolu-
tion scaling law for the "embedded at z =6" case is
A, (5,d) =&5(d —5)/xo.

Geometry Integrated quantity

transfer is most sensitive to these conditions, we can thus
be confident that applying solutions to the radiative
transfer equation for infinite geometries when the
diffusion limit is invalid will yield reasonably correct
answers for the predicted best achievable resolution.

C. QuasidiÃuse limit

The ballistic and diffusion limits are the simplest solu-
tions to the radiative transfer problem. However, these
solutions by no means represent a complete physical pic-
ture of radiative transfer in all circumstances. In order to
fully describe the imaging problem, the quantity
g(r, r; 0) must be calculated for the cases when it is not a
virtually isotropic function of Q and the ballistic com-
ponent is immeasurably small.

Unfortunately, direct analytic solution of Eq. (2) has
not proved possible to date for an arbitrary scattering
function S. In this paper, we solve Eq. (2) when
S =I/(4m) (isotropic scattering). We then argue that
when g )0, the scattering length l, in this solution can be
rescaled to some length I„=f(g)l„wheref(g) is as-
sumed to depend only on g. That this rescaling should be
reasonably justified can be seen from solutions to the
small-angle approximation (SAA) of the radiative
transfer equation [3].These solutions describe a photon's
behavior in a strongly forward-peaked scattering material
(g = 1) close to the source. The amplitude decays in this
solution as (1—g)p, d, not p, d as in Eq. (3). Unlike Eq.
(3), however, the angular portion is no longer a 5 func-
tion, so that rescaling l, by replacing I, ~fd(g)l„where
fd(g)=1/(1 —g) (the difFusion-limited length rescaling)
in Eq. (3) should overpredict the achievable resolution.
Physically, this best-case rescaling would replace the
many collisions it takes in a large-g material to random-
ize Q with a single, isotropically distributed collision
event occurring over an average distance t', . In Sec. III,
we will find that this best-case scenario in fact does over-
predict the achievable resolution.

We now calculate solutions to the isotropic-scattering
radiative transport problem useful at short times. In a
previous publication [28] we outlined a solution to this
problem using a Markov chain approach. In this ap-
proach, one asks the following question: Given that the
probability P'"'(r', t', 0') of arriving at a given space-time
point (r', t') traveling in a given direction 0' after ex-
periencing n collisions is known, what is the probability
P'"+"(r,t;0) of arriving at a space-time point (r, t) trav-
eling in a direction 0 after the collision at (r', t', 0')?
The relationship between the nth and the nth plus first
collision is

4.5

P'" "(r,t;Q)= Jd r'dt'dQ'K(r r', t t', R 0')— — —

4
-20 -18 -16 -14 -12 -10

XP'"'(r', t'0') (21)

1O0;1O(n N )

FIG. 3. Solution to the transcendental equation governing
the di6'usion resolution scaling law A, =d/xo for all permuta-
tions of geometries and boundary conditions.

where R is the unit direction vector along r —r'. The
function E is precisely the ballistic or streaming transport
propagator given by Eq. (3). This approach is formally
equivalent to solving the radiative transfer equation, as is
proven in Ref. [24]. In fact, one can show that
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FIG. 8. Effective numerical aperture of the rays emitted from

the exit surface as a function of time.
FIG. 6. Best achievable resolution (FWHM of PSF) vs sam-

ple thickness for three different collection e%ciencies. The
curves are calculated from the isotropic-scattering solution to
the radiative transfer equation described in the text. The dia-
monds represent a cubic spline between the diffuse and
quasidiffuse limits, where neither approximation works well.

tend the entire lens in an f /30 imaging system (which is
used in the experiments below).

III. EXPERIMENT

At least five experimental conditions are necessary to
observe quasidiffuse photons unambiguously. First, the
integrating time of the system must be much shorter than
the transit time of the photons through the turbid materi-
al. This ensures that the photons collected have not devi-
ated significantly from their initial path and still have a
"memory" of their initial launch direction. For
centimeter-sized samples, this condition requires subpi-
cosecond temporal resolution. Second, the number of
scattering lengths I, of a material of thickness d should be
large enough so that no ballistic light is present. The sim-
plest way to ensure that the ballistic component is not
present is to increase d/l, of the sample while monitoring
the ballistic signal. Since the ballistic signal drops ex-
ponentially with d/l„a clear threshold is observable. It
is not absolutely necessary that this condition is satisfied

1000

to see quasidifFuse light; however, it is easy to mistake the
ballistic component for a quasidi8use component unless
the ballistic component is completely eliminated. For a
system with which can collect one photon in 10'
launched per pixel, this condition requires samples in ex-
cess of 23 scattering lengths thick. Third, the system
must have a large enough field of view so that an area
comparable to the square of the sample thickness can be
observed (since the width of the diffusion limited point-
spread-function is a significant fraction of the sample
thickness). Finally, the system's effective f/g must be
small enough so that a significant portion of scattered
light will be collected by the imaging optics; otherwise,
the collection optics will act as a spatial filter and discard
signal amplitude.

Even if all these conditions are met, it may be the case
that only photons which obey diffusion statistics are
measurable if the sample thickness (measured in numbers
of transport lengths) is sufficiently large. In the best-case
scenario described above, the theory is scaled directly
into the anisotropic case by replacing l, with I, . By ob-
serving where the difFusion limit is approached (Fig. 6),
we estimate that samples shorter than about 30 transport
lengths are needed if there is to be any hope of observing
quasidifRse photons. This is the fifth condition.

These conditions were met by the imaging system pic-
tured schematically in Fig. 9. The system is based on the
coherently amplified Raman polarization (CARP) image
gate described elsewhere [29]. A frequency-doubled

100

10 =

oo~ooooooo
Nd: YAG, -200 mJ Dye nsc/amp

10 nsec, S32 nm 20 mJ, 565 nm

Stokes, 738 nrn
-1 mJ

L = I m H2 cell
565 nm Dump

0.01

0.001
10 20 30 40 50 60 70 80 90 100

Delay

Pol. g

L = 20 cm H2 cell
Turbid

Medium

U

Pol. 45o

Pol- Intensified
Camera

FIG. 7. Optimal time gate needed for collecting one photon
in 10' launched. The diamonds represent a cubic spline be-
tween the quasidiffuse and diffuse limits.

FIG. 9. Schematic of experiments performed using the
coherently amplified Raman polarization {CARP) gate.
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Nd: YAG (yttrium aluminum garnet) oscillator/amplifier
operating at a 10-Hz repetition rate is used to pump a
broadband ( —160 cm ') dye laser/amplifier which pro-
duces 20 mJ per pulse centered at 565 nm (not shown).
The 565-nm pulses are split into two paths. One path
goes to a 1-m-long cell containing 300 psi of molecular
hydrogen. The output of this cell contains approximately
1 mJ of Stokes-shifted light centered at 738 nm, which
after spatial filtering is used to illuminate the sample as a
0.62-mm full width at half maximum (FWHM) Gaussian
beam. The second part of the 565-nm beam, after passing
through an adjustable optical delay, is used to pump a
20-cm-long hydrogen cell amplifier (at the same pressure
as the 1-m generating cell) after the sample. The polariza-
tion of the pump beam is at a 45 angle to the polariza-
tion of the Stokes used to illuminate the sample. After a
final polarizer orthogonal to the illuminating Stokes po-
larization, the light emerging from the output face of the
cell was imaged onto an intensified camera. Images of
200X200 pixels were digitized and stored on a computer
after averaging over 200 laser shots.

In this particular configuration, the temporal resolu-
tion of the imaging system was 250-fs FWHM, the field
of view was —1 cm, and the spatial resolution (set by the
system Fresnel number) was comparable to the width of
the illuminating beam. We take the measured illuminat-
ing beam width of 0.62-mm FWHM to be the ballistic
resolution of the system. We measured (using calibrated
neutral density filters) that the system could measure a
sample attenuation of about 10' at a signal-to-noise ratio
of unity in a single shot.

A series of custom-made optical cells with x and y di-
mensions (perpendicular to the illumination axis) of 1 X 1

cm and having path lengths ranging between 2 mm and 2
cm were used in these experiments. The solution in the
cells consisted of dielectric spheres in water or in glycerol
with the concentration chosen to have a scattering length
of I, =0.25 mm in all cases. We varied the anisotropy pa-
rameter g by changing the type of scatterers: for g =0.66
we used a Ropaque-62 solution; for g =0.78 we used an
Intralipid solution; for g =0.86 and 0.92 we used 3- and
1.6-pm-diameter polystyrene spheres, respectively; and
for g =0.995 we used 11-pm-diameter glass beads
suspended in glycerol.

Figure 10 shows the images of the received PSF taken
through the g =0.92 solution 25 scattering lengths thick
(d =1 cm) at various gating times. At this density the
ballistic component is unobservable with this system. Ul-
timately, we increased the concentration to make this 1-
cm-long sample a total of 40 scattering lengths thick in
the best achievable PSF measurements below.

We measured the best achievable resolution with this
system by adjusting the delay of the time gate until the
minimum point-spread-function was observed at a
signal-to-noise ratio of about unity. The signal was then
averaged for 200 shots to bring the signal up to a usable
level. We plot the results of these measurements, the
best-achievable FWHM of the PSF as a function of d /I,
for the two largest g values, in Fig. 11. For suKciently
short samples the ballistic resolution is obtained (indicat-
ed in Fig. 11 by the labeled horizontal line). Eventually,

&=Ops t = 0.25 ps

x= 0.5 ps x = 0.75 ps

&= 1ps 'c= 2 ps

10 mm

FIG. 10. Series of images taken through 25 scattering lengths
of polystyrene spheres suspended in water (g =0.92) when the
ballistic component is not present. The physical sample thick-
ness is 1 cm.

the ballistic component disappears. The time-gate posi-
tion is then delayed relative to the now-invisible ballistic
component until a signal appears, and the next point is
taken. The solid line fits to these data are discussed fur-
ther below.

For these particular imaging optics, no component of
light was clearly visible after the ballistic component
disappeared for g values less than 0.86. These g values
correspond to the Intralipid and Ropaque-62 solutions.

The images obtained through the glass-bead and gly-
cerol solution (g =0.995) showed an interesting proper-
ty. Figure 12 shows a series of images taken through "69"
scattering lengths total. We use quotation marks to em-
phasize that in this case the scattering length is probably
not a valid physical quantity. At the concentrations of
glass spheres that we used, the interbead separation was
on the order of the sphere diameter. We therefore expect
that several scattering events add coherently, which is
not described by the radiative transfer theory. Further
evidence that this is the case can be observed in the im-
ages of Fig. 12, which shows a speckle size significantly
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FIG. 11~ Experimentally obtained best achievable resolution
(FWHM of PSF) for labeled g values. The solid curves are fits
from the model described in the text. The scattering length was
l, =0.25 mm for all points.

larger than expected for a PSF of this diameter composed
of incoherent point radiators.

IV. DISCUSSION

Rescaling the isotropic-scattering solution to the radia-
tive transport equation with the diffusion-theory trans-
port length l, gives a very poor fit to the data in Fig. 11.
As a first approximation we did fit our best achievable
PSF data with the solution to the above rescaled isotropic
transport problem. In the theory we integrated the solu-
tion from the causal time to a time ~~, rather than over a
certain pulse width. This should not affect the results as
there are no measurable photons in the signal before a
pulse width. We rescaled the scattering length to a re-
duced scattering length /„=f(g)/„where f (g) is some
unknown function of g. We find that f(0.92)=2 and
f (0.995)=7. 5 give an adequate fit to the data.

We have thus demonstrated that rescaling the
isotropic-scattering solution to the transport equation to
fit the experimental data yields a scaling function
which is signijlcant/y smaller than the standard
fd(g) = 1/(1 —g) scaling predicted from the diffusion lim-
it. Apparently the difFusion-limited resolution is reached
far more quickly than the standard scaling would predict.
By extrapolating the fit in Fig. 11 for the case of g =0.92,
the difFusion-limited resolution is reached in about 60
scattering lengths, or about five transport lengths. This is
not completely unreasonable, although it is still a remark-
ably short thickness. In the case of g =0.995, however,
the extrapolated theoretical diffusion-limited resolution is
reached in about 225 scattering lengths, or about l, —1.
This comparison is of dubious value, however, because
the radiative transport theory does not well describe the
close-packed nature of the sample. Clearly more work
can be done in this area.

The above-measured resolutions are measurements of
the width of the output PSF %(d) for a slab of thickness
d, and not measurements of achievable resolution of em-
bedded objects. Recall that, in the diffusion limit, we
showed above that the width of the achievable PSF
R, (5,d) for an object embedded at 5 in a slab of thick-
ness d scales as the geometric average of the achievable
resolutions for slabs of thickness 6 and d —5, respective-
ly. This suggests that a reasonable shape for the achiev-
able resolution for embedded objects in the quasidiffuse
case is also the geometric average of the achievable reso-
lutions for slabs of thicknesses 5 and d —5. Mathemati-
cally, this is represented by

A (5,d)=&%(5)%(d —5) .

t =1ps 'c= 2 ps

FIG. 12. Series of images taken through p, d =69 scattering
lengths of g =0.995 glass spheres in glycerol. The speckle size
is much larger than expected for an incoherent of the same size,
showing that the scattering is correlated. The physical sample
thickness is 1 cm.

The best achievable resolution of embedded objects in all
cases can therefore be determined from the data in Fig. 6
using Eq. (25).

It is instructive to compare the foregoing results with
other reported results in the literature. Since we have ar-
gued that the achievable resolution is only a weak func-
tion of the system sensitivity, comparison of the best re-
ported results of different groups should agree with the
present results. There are two common geometries em-
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ployed in most reported transillumination experiments
and simulations: Direct imaging of the exit surface of a
slab of thickness d (denoted as surface object geometry),
and imaging an embedded object at d/2 in a slab of
thickness d (denoted as embedded object geometry). In
the present work, we have shown that the diffusion
limited FWHM value of the PSF is A/d =2&in(2)/
5 =0.33 in the surface object geometry and one-half that
value % /d =0.17 for the embedded object geometry.
These values can change by +15—20%%uo depending on the
system sensitivity. Reported values can also be smaller
than these values if the experiments are not performed in
the diffusion limit.

We will restrict the comparison only to those papers
which contain enough information to deduce the FWHM
values of the PSF. Mitic et al. [32] report (for an embed-
ded object geometry) their best resolution as R /d =0.18
for a slab 40 mm thick (d/i, —5) and A /d =0.13 for
d /l, -2, both of which are consistent with the values re-
ported here. Notice that the resolution in the case where
d/l, -2 is not a diff'usion-limited value. Hebden [20] re-
ports values of A /d =0.15 obtained from direct imag-
ing. (Hebden reports in the same paper a factor of 2 im-
provement over this value using temporal extrapolation,
an advanced signal processing technique. ) Hee et al. [18]
report a best resolution of A /d -0.03 using the quasi-
ballistic light that followed the clearly visible ballistic
peak. In a similar experiment that used chicken muscle
as a phantom, Chen [33] reports PSF's as narrow as
A/d =0.06; however, it is difficult to discuss the mean-
ing of this number since chicken muscle is notoriously
difficult to characterize, and no measure of the transport
length was reported in this paper. Andersson-Engels
et al. [12] report the detection (at a roughly 50%%uo con-
trast level) of a 5-mm sphere embedded in a 35-mm slab,
implying roughly that % /d-0. 14. Thus all reported
best-case values of the FWHM of the PSF to our
knowledge are consistent with the results contained in
the present paper.

Finally, this work sets some practical limits on what
resolution will be achievable in a medical imaging situa-
tion. For g =0.92, which is fairly typical of tissue [31],
we have shown that the sample thickness for which any
significant improvement beyond the diffusion-limited
resolution is achievable is approximately less than five
transport lengths, or 60 scattering lengths. Thus, for em-
bedded abnormalities more than five transport lengths
from an exit surface, the diffusion limit should work ade-
quately for predicting the achievable resolution at arbi-
trarily short integration times for imaging systems that
collect one photon in 10' launched.
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APPENDIX A: SOLUTION OF THE
TIME-DEPENDENT ISOTROPIC-SCATTERING

RADIATIVE TRANSFER PROBLEM

Although solutions to the time-dependent isotropic-
scattering radiative transfer problem are published
[23—25], they are usually of little use for direct calcula-
tion. Here we outline an asymptotic solution to the iso-
tropic radiative transport equation which is useful for
calculation of the time-dependent point-spread-function.

We start with Eq. (21}. By expanding P'"'(r, t;Q) in
spherical harmonics,

P'"'(r, t; Q) =yP/'"'(r, t) Y( (Q),
Im

(Al)

and substituting Eq. (Al) into Eq. (21), we obtain

P,'"+"(r,t)= Jdr'dt'K (R, t —t')P'"'(r', t*)Y,* (R),
(A2)

where P' is the l =0, m =0 term after n collisions, and

KD(r, t)= J dQK(r, t;Q) . (A3}

We note from the form of Eq. (A2) that the angular infor-
mation depends only on the last collision, as expected in a
Markov process.

We neglect boundaries, so we apply the infinite-space
Fourier-Laplace transform to Eq. (A2) and obtain

Pi'"'(k, s) =Hi(k, s )Fi' (k)P00 "(k,s), (A4)

where

Ps
)

2

(ik)'

Ps+
C

l+1 I+2
2

"
2

l+—3
2

l+1 l+2
l

2
' 2 ' 2'

Ps+ c

2

(A5)

and where I (x) is the gamma function and zF, (a, b;c;x)
is a hypergeometric function. When I =m =0, Eq. (A5)
reduces to

p, +— +ik
Ps

H0(k, s) =h (k, s) = ln
2tk

p, + — —ik
C

(A6)

so that Eq. (A4) becomes

P('"'(k, s ) =M((k, s) Y(* (k) [h (k, s)]" (A8)

By using induction, and the fact that P00'(k, s) =1, we
find that

P~ "(k,s)=[h(k, s)]"
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(A9)

which is Eq. (A8) formally summed from n = [1, oo ).
We rewrite Eq. (A9) as

h k
Pi (k, s) =Hi(k, s) Yi* (k) 1+h (k, s)+

1 —h(k, s)

(A10)

and treat the n =1 (ballistic) and n =2 terms as special
cases.

Concentrating on the third term in Eq. (A10), which
we call I' t', we evaluate the k part of the Fourier integral
to obtain

The problem is therefore reduced to finding the inverse
Fourier-Laplace transform of Eq. (A8).

We will first concentrate on the inverse spatial Fourier
transform. It is necessary to invoke analytic continuation
into the complex-k plane in order to evaluate the inverse
transform of P. We must be careful to work with the to-
tal probability, so the function to be continued is

Hi(k, s) Yi' (k)
1 —h (k, s)

Pi' (r, s)= Ji(r, s) Yi* (r), (A11)

where we have introduced the function

4~( —;)i Hi(k, s)j i(kr)[h (k, s) ]
Ji(r, s)= k dk

(2m)' 1 —h k, s

(A12)

X I k dk H, (k, s)j, (kr)[h(k, s)]" ' . (A13)
0

We now restrict ourselves to the I =I =0 case. The
i, m %0 cases introduce no fundamentally new mathemat-
ics, only somewhat more tedious algebra. Defining the
scattering time r, =1/(cp, , ), we conformally map onto a
variable u =(k/p, , )/(1+sr, ) which leaves an integral in
the complex-u plane,

and where ji(x) is a spherical Bessel function.
By expanding the denominator of Eq. (A12), we also

define functions in analogy with Eq. (A8),

-(„) 4m( i )'—

(2~)

Ps ~"+'") du
20(r, s) =

16(2m)'(u, r "~('+' .) u2

1+iu
ln

1 lu

3
i()+sr )up r —i(1+sw )up r

e * ' —e

tan '(u)
sw, +1-

u

(A14)

Figure 13 shows the contour used for the positive-
exponent term of Eq. (A14) (the negative exponent term
makes exactly the same contribution over a similar con-
tour closed in the lower-half-u plane). There may be sim-
ple poles in the u plane which will lead to residue terms,
as well as the integrals along the branch cuts. By further
substituting u =i +ye*' along the right and left sides
of the branch cut, respectively, and by using the residue
theorem, we obtain the result that

3

Io(r, s) =2mi+R (j)+
16(2m) i)M, r

P i (k,s)=Hi Yi" (k) 1+h+h + . h

&%+a
+

1 —h(k, s)

Im(u)

(A17)

—(1+s~, )(1+y)p, r
dye

(1+y)

where

X [L+(y, s) L(y, s)], —(A15) RQ(ul

L~(y, s) =
ln

2+y

sr, +1+ ln
1 y

2 1+y 2+y

(A16)

We claim that we can neglect the residue terms at
short times. We justify this by noting that Eq. (A9) can be
expanded for any JV,

FICx. 13. Contour used to evaluate complex-u integral for the
positive-exponent term.
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From the form of Hi it is apparent that the first A'

terms do not contain discrete poles, and thus only the in-
tegrals along the branch cuts contribute. If the series
converges in the first A' terms to some suitably low value,
then the series is asymptotic, and should be truncated at
its second-to-smallest term. In this case, the discrete resi-
due terms can be neglected. Although we do not
rigorously derive where this condition will be satisfied,
with care we can tell numerically where the series is use-
ful in its asymptotic form. We find that this series is use-
ful until the diffusion limit is approached (as intuitively
expected). We will discuss the discrete singularity contri-
butions further below.

At short times, therefore, we may apply the inverse La-
place transform to Eq. (A3) to obtain the final result

c r" 4e
—p ct

~( )( )
Ps[PS 1 Ed (e—y) („)7l 3

2"+'( —3)' o (y +1}"
(A18)

When n =2, the results are

20 '(r, t)= ln
cp4

4~(p, r)(cp, t)

—+1ct

ct——1
r

—p ct
e (A21)

and

2' '(r t)
g(2)(r t)

1 ct r—+—— ln
2 r ct

—+1ct
r
ct——1

(A22)

To relate these functions to measured physical quanti-
ties of interest, we note that the angle-integrated proba-
bility can be obtained from Eqs. (A11) and (Al), which by
inspection give

f dQP(r, t;Q)=20(r, t) . (A23)
4m

where

L '"'(y) = ln
1 2+

3'

csin n tan

2

2++

n/2

(A19)

f dQ(r Q)P'". '(r, t;Q)
c'"'(r, t) =

f dQP(")(r, t Q)
4m

By inspection, this is precisely

(A24)

The average cosine of the scattering angle between r
and 0 after n collisions is defined as

2'"'(r, t }= cp, [p, r ]" e

2"(n —3)!

( —y)" ' —y
(y +1)" ' (1+y)(n —2)

I( )L I (n —I)
2(1+y} (A20)

and where e=(ctlr) 1. The abov—e procedure can be
carried out for the I = 1 term to give

c'"'(r, t) =
S(")(r,t)

(A25)

These are the functions used in the text.
We return now to the discrete residue terms of Eq.

(A14). The poles at uj(s) are determined from the equa-
tion

ui=tan[u (1+sr;)] . (A26)

Unfortunately, Eq. (A26) is transcendental and does not
lend itself to simple analysis; however, assuming the
singularities are first order, we may formally evaluate the
residues to obtain

3

R(j)=
16(2n. ) p, r

1+iu (s)
ln

1 iuj(s)—
Q (s)B„D(ui(s),s)

i(1+s)u.(s)p, r i(1+s)u —(s)p,r.
e ' —e J

(A27)

where we have defined

D(u, s)=sr, +1- tan '(u)
Q

(A28)

Jo(r, s) = e
4m@, r

(A29)

By changing variables in the inverse Laplace transform
via st ~z, we may solve for the poles given by Eq. (A26)
for small s to obtain the large-t behavior. This yields
ui(s)=+i+3sr, Back subst. itution of these values leads
to the form

This is precisely the Laplace transform of the infinite-
space diffusion propagator, Eq. (12). Thus we see a
mathematical distinction between the diffuse and
quasidiffuse photons. The discrete terms contain the
diffusion limit, while the branch-cut contributions yield
the quasidiffuse photons. In other words, in the language
of spectral operator analysis [25], the contribution from
the discrete eigenvalues of the transport operator lead to
diffusive behavior, while the contributions from the con-
tinuous eigenvalue spectrum lead to quasidiffuse
behavior.

In order to quantify at what times this approximation
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will be valid, we expand u~(s) to next higher order to ob-
tain u. (s) =+"(/'3sr, [1—(7sr,, /10)]. We will evaluate
the inverse Laplace integral along the branch cut on the
negative real z axis, and the integrand along this axis is ))( 5s

) 1/3( )2/3 ( )2/3 (A32)

getting exponentially smaller with z), we obtain the con-
dition

st —3/3sr [1+(3sr /10)]y. r
ds e

1 —z —ter/3(zr, ft)[1+(3zr, /lot)])t, r
dze

Provided the —z term in the exponent drives the in-
tegrand to zero before the second-order term
(3zr, /t) /10~ becomes significant, the difFusion ap-

proximation should be valid. This consideration implies
the condition

)) (p, r)
1O2/3

(A31)

Assuming that the part of the integrand for z ~ 2 con-
tributes negligibly to the transform (since the integrand is

This is the restriction on the time when the diffusion ap-
proximation is valid.

APPKNBIX 8: RESOLUTION SCALING
FOR EMBEDDED OBJECTS IN THK

DIFFUSION LIMIT

We extend the procedure used in Ref. [17]. A more ad-
vanced method reported by Schotland, Haselgrove, and
Leigh [34] yields similar results. We assume that a point
source at p=O, z =0 emits a pulse that crosses a small
volume centered at p=po, z =5. The small volume at po,
5 acts as a source for the detector of area 3 =era in the
plane z =d. We will then constrain the integration over
a11 possible paths to some finite total time ~ to obtain a
given total number of received photons as before.
Mathematically, we write these operations as

N(po, 5, d, r)=D f dt f dt'f d pG(p, z, t')G(p p(), d —5, r ——t'),
0 0 A

(81)

where G (r, t) is the appropriate Green's function for the geometry chosen.
For simplicity, we will neglect the slab boundary conditions, ignore causality, and use the infinite-space Green s func-

tion. The above convolution is best evaluated in Laplace space. Using the Laplace transform of Eq. (12),
—3/(3sc/i, )(r/t)

G(r, s)=
4m.Dr

Equation (81) can be evaluated at short times using the infinite-space propagator which gives

(82)

N (p(), 5, d, r) = 3
3/4vrD ra exp

—[Qp()+5 +'()/ p()+(d —5) ]
4D~

Qp()+5 Qp()+(d —5) [Qp()+5 +Qp()+(d —5) ]
(83)

where we have replaced the integral over detector area with m.a times the value at p=0.
The exponent in Eq. (83) primarily determines the shape of the PSF. To find the value of p()=%, (5,d) that gives the

1/e half-width of the PSF relative to its value at pa=0, we must solve

A, (d)

%, (5,d)

d

' i/2
2

5+
d

—1 =1 (84)

where we have defined A, (d) =3/4Dt. Equation (84) can be solved to give

A, (5,d) =A, (d) (85)

It is interesting to note that a similar form for embedded resolution is obtained [35] in the time-independent case when a
strong absorption is present. This is fully expected since the time gate effectively acts as an absorptive loss by cutting
off the longer path lengths.

To calculate A f(d) we define %, (d) =d/xo, and substitute this into Eq. (83) when po=0. The result is that xo is
determined by the solution to a transcendental equation

3/2
3 a

4~ 6

X 2

e

Xo
(86)

which gives xo -5 as in the slab-geometry case.
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