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One-dimensional spatial solitary waves due to cascaded second-order nonlinearities
: in planar waveguides
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We report an experimental observation of one-dimensional spatial solitary waves due to cascaded second-

order optical nonlinearities.

PACS number(s): 42.65.Tg, 42.65.Jx, 42.65.Ky

Solitons are stable nondiffracting solutions to the nonlin-
ear wave equation and their unique properties have intrigued
physicists for many years [1]. Electromagnetic waves have
provided the most versatile approach to the experimental in-
vestigation of soliton properties. One-dimensional temporal
(no pulse spreading in time) and spatial (no beam spreading
in space) solitons, both bright and dark, and their interactions
have been investigated optically [2—4]. These phenomena
have all relied upon the existence of an intensity-dependent
refractive index, i.e., a third-order optical nonlinearity. That
is, a high-intensity beam changes locally the index distribu-
tion, which then self-traps the beam (soliton) under appropri-
ate conditions. Recently, another nonlinear physical process
that produces a nonlinear distortion in the phase of a beam
without changing its index has been revisited [5-7]. It in-
volves one of the best-known nonlinear optical processes,
namely, second-harmonic generation (SHG). The phase dis-
tortion utilizes the cascading of two nonlinear second-order
processes: the up-conversion of a fundamental beam to a
second harmonic and the subsequent down-conversion of the
harmonic back to the fundamental. Within certain limits the
equations that describe the copropagation of the beams re-
duce to the nonlinear wave equation for the fundamental, the
same equation that leads to spatial solitons based on an
intensity-dependent refractive index [1]. As a result, it has
been predicted that this cascading mechanism should allow
the existence of spatial solitonlike (solitary) waves in simple
and apparently well-understood processes such as second-
harmonic generation [7—13]. In this paper we show experi-
mentally that such spatial solitary waves do exist in one di-
mension.

The geometry we consider is a planar waveguide with
index differences providing guided mode confinement along
the x axis and propagation along the z axis. The self-induced
trapping will occur in the plane of the waveguide, i.e., along
the y axis. Perpendicular to the film the guided field distri-
butions e;(x) and 4;(x) are waveguide modes, normalized to
unity power flow per meter of film width along the y axis,
i.e., po=1 W/m. i=1,2 identifies the fundamental (w;) and
second harmonic (w,=2w,), respectively. Parallel to the film,
the y dependence of the fields E;(x,y) at every position z
along the waveguide can be expanded as spatial Fourier in-
tegrals
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The up- and down-conversion processes are described in
coupled-mode theory as
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respectively [7,13]. B, is the spatial angular frequency
and the B,,= (87— B;)"” are the z components of the mode
propagation constants 3;. K= [dx ejeies is the overlap
integral, which takes into account the different transverse
electric-field profiles of the interacting modes. Also, the sca-
lar X(z) represents the appropriate tensor coefficient Xﬁl In
the limit of negligible SHG, the case of experimental interest
here, Eqs. (2) and (3) can be recast into a form similar to that
used to describe spatial soliton propagation [7]. Assuming
A= exp(—jBz), Eq. (3) can be integrated approxi-
mately and substituted into Eq. (2) to give
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A comparison with the nonlinear wave equation indicates
that the right-hand side plays the role of an effective third-
order nonlinearity [1,7]. This implies approximate solitonlike
solutions for the fundamental of the form
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for positive phase mismatch 28,—5,>0. 7 is the beam
width. The conclusion of this approximate treatment is that
cascading should support spatial solitonlike waves.

We modeled the evolution of high-power guided wave
beams in planar LiNbO; waveguides based on the exact
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FIG. 1. Effective temperature profile AT=T(z)— T, and wave-
vector-mismatch  distribution  An x={28{[T(2)] - B[T(2)]}/
(2m/\,) for a setpoint temperature T of 334.85 °C.

equations (2) and (3), taking into account the details of the
waveguide and the experimental conditions (discussed later).
In our case only the fundamental beam is input (no second-
harmonic seeding) and the experimental and theoretical con-
ditions were chosen so that SHG was minimal (<5%) and
the solitary waves studied should be well approximated by
Eq. (5). We assumed cw, Gaussian input beams [70 wm full
width at half maximum (FWHM)] because we found their
transverse profiles to very closely match the asymptotic,
stable, solitary waves for our laser power. Assuming the ex-
perimental, positive wave-vector-mismatch distribution
shown in Fig. 1, the field evolution shown in Fig. 2 indicates
self-trapping and self-focusing for input beams with peak
transverse powers exceeding 6 W/um. At 16 W/um the evo-
lution of the field profile is essentially free of oscillations
because the input Gaussian beam launches the asymptotic
stable solitary wave right at the input due to the excellent
transverse field overlap; see Fig. 2(b). For a fixed input beam
width, the field evolution into a stable solitary wave exhibits
transient oscillations along the propagation direction when
the input power deviates from 16 W/um. Regions of nonlin-
ear self-focusing are followed by regions where diffraction
dominates until the balance between self-focusing and dif-
fraction leads to a stable solitary wave. When the input beam
profile does not match the soliton profile such transient be-
havior is typical of solitons in general and can require many
diffraction lengths L ; (the distance for a diffracting beam to
be broadened by v2 times its minimum width) [14]. In our
case, our sample is 47 mm long and L ;= mp 3n/\;=19 mm
with py=(FWHM)/[2 In2]"? and n=2.22. Therefore, for in-
put beam profiles deviating strongly from the asymptotic
solitary waves, or at input powers greater than 25 W/um, our
sample would be too short to reach the asymptotic solitary-
wave solutions. This was not the case in most of our experi-
ments. The calculations were repeated for temporal pulses,
assuming that the pulses are long enough so that temporal
dispersion can be neglected. For our experiments this ap-
proximation is valid. The pulsed beam behavior was qualita-
tively the same, with an increase in peak power from 16 to
25 W/um for optimally launching spatial solitary waves.
The experiments were performed at \;=1.32 um in a Ti
indiffused LiNbO; slab waveguide with propagation along
the x axis of a Y-cut crystal for type-I SHG.
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FIG. 2. Fundamental intensity along the waveguide with a tem-
perature of 334.85 °C for different powers: (a) 7.5 W (0.1 W/um),
(b) 1.2 kW (16 W/um), and (c) 5.3 kW (70 W/um).

X?=x3yQw;w,w)=¢, (—5.6 pm/V) is the applicable sus-
ceptibility tensor element. The indiffusion of a 55-nm-thick
titanium layer through the Y-cut surface at 1060 °C for 9 h
yielded a low-loss one-dimensional waveguide, which guides
one TM mode (Y polarized) at A\;=1.32 um and three
second-harmonic TE modes (Z polarized) at A,=0.66 wm.
With a cylindrical telescope the laser beam was transformed
into an elliptical Gaussian beam, which was endfire coupled
into the fundamental TM, mode. The end faces are polished
for endfire coupling with the output surface tilted at 4.5° to
prevent longitudinal cavity resonances. In order to generate
spatial solitary waves via the cascaded nonlinearity, SHG
was implemented from the TMy(w;) to the TE;(2w,) mode,
which is phase matched around 335 °C for our material, ge-
ometry, and wavelength. For this purpose the crystal was
placed in an oven with temperature controlled to a stability
of =25 mK. We investigated the output beam characteristics
for a 70-um FWHM input beam, both at different beam in-
tensities and different temperatures (corresponding to differ-
ent wave-vector mismatches). The out-coupling surface is
imaged into a camera where the output intensity profile is
measured. In addition, the fundamental throughput, the gen-
erated second-harmonic power, and the intensity in the center
of the output beam were monitored with fast detectors. The
measurements were done with a train of pulses with 90 ps
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FIG. 3. Temperature dependence of the total fundamental and
the second-harmonic outputs for a beam with 94 W total peak
power.

FWHM and a repetition rate of 800 Hz, using a Nd:YAG
(where YAG denotes yttrium aluminum garnet) Q-switched,
mode-locked pulsed laser and an electro-optic single pulse
extractor. The intensity profile measurements of the wave-
guide output were averaged over many shots with a camera
and were corrected for the background light (measured sepa-
rately) due to leakage of the Q-switched, mode-locked pulse
envelope through the pulse slicer.

The variation in the fundamental throughput and SHG
with oven temperature is shown in Fig. 3. Both curves are
asymmetric with respect to the phase-matching temperature
(Tpm=335.55 °C) due to a nonuniform temperature profile
along the waveguide shown in Fig. 1 [15]. The advantage of
this nonuniformity is that in the region below T'py,, large
phase distortions can be obtained with only small fundamen-
tal depletion. Modeling based on a Gaussian index profile
that is dependent on wavelength, polarization, propagation
direction, temperature, and indiffused Ti concentration [16],
and taking into account the oven’s temperature profile, leads
to tuning curves that reproduce the experimental results well,
as illustrated in Fig. 3. The modeling is further confirmed by
the good agreement between the calculated low-power
second-harmonic conversion P,=16.7P% and the experi-
mental value of P,=(16.1+10%)P? at phase matching,
where P, is in mW and P, in uW. Losses of 0.17 dB/cm for
the TM; mode and 0.35 dB/cm for the TE; mode are in-
cluded in the calculations.

The generation of spatial solitonlike beams was verified
by two separate sets of measurements. By ramping the tem-
perature through phase matching, the wave-vector detuning
was varied, which in turn changed the magnitude of the ef-
fective nonlinearity, i.e., phase distortion. As specified by the
modeling, the input peak power density in the center of the
beam was 25 W/um, corresponding to 1.9 kW total power in
the Gaussian beam with a 70 wm width. The beam stabiliza-
tion into a spatial solitary wave is clear in Fig. 4, where the
output beam profiles at four selected temperatures are com-
pared with the input beam profile. Far from phase matching
the output beam is diffracted to ~3 times the width of the
input beam. Reduction of the wave-vector-mismatch in-
creases the cascaded nonlinearity, which counteracts diffrac-
tion. At T=334.85 °C, just below T'py; and with less than 2%
harmonic conversion, the out-coupled beam has the same
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FIG. 4. Temperature dependence of the fundamental beam pro-
file at the out-coupling surface of the waveguide for a beam with
1.9 kW peak power, (a) experiment and (b) theory.

profile as the input beam, as predicted numerically. The
power reduction of ~20% is due to damping. In this tem-
perature region we take full advantage of the nonuniform
wave-vector distribution since here the condition for spatial
solitonlike propagation is satisfied in the temperature regime
where depletion is minimized and phase shifts are large [15].
In the experiment we needed 20—25 W/um peak power den-
sity for detecting clean solitary-wave production, in good
agreement with the simulations.

At temperatures around T'py; the cascaded nonlinearity is
the strongest and a significant amount of power is converted
into the second harmonic, which explains the reduced funda-
mental throughput at 335.55 °C (Fig. 4). As shown by our
modeling and predicted previously with and without second-
harmonic seeding, mutual self-trapping of the fundamental
and second-harmonic occurs [7—13]. The stronger the SHG,
the larger the deviation of the resulting solitary waves from
xP-like spatial solitons [Eq. (5)]. Our sample is too short for
the interacting fields to stabilize into the asymptotic spatial
solitary waves without second-harmonic seeding. However,
near Tpy we measured a very interesting feature of cascaded
solitary waves. The nonlinear change in the propagation di-
rection indicated by the small position shift of the intensity
maximum at 335.55 °C is a result of the spatial dispersion of
the cascaded nonlinearity and was already predicted in [7]. It
appears here only because we broke the symmetry by propa-
gating ~1° off the crystal X axis. The theoretical simulations
of the measured intensities are plotted in Fig. 4(b) and the
excellent agreement further confirms the model.
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FIG. 5. Normalized output beam profiles at a temperature of
335.00 °C for beams with a total peak power of 127 W, 750 W, 1.27
kW, and 1.9 kW.

We also measured the dependence of the output beam
profile on input power at the fixed temperature of 335 °C,
where minimum SHG occurs. As can be clearly seen in Fig.
5, the width of the output beam narrows with increasing
power until the width predicted for a solitary wave is
reached, and then only changes by at most 10% out to the
largest power studied (intermediate data not shown). These
results are all in agreement with our simulations. At the

power predicted for optimum solitary-wave generation, the
output beam equals the input beam. The data are noisier
relative to the temperature scan because of the temperature
fluctuations due to the temperature regulator.

Comparable results, again in excellent agreement with
theory, were obtained near phase-matched SHG of the fun-
damental TM, to the TE,; harmonic at ~290 °C. The two
SHG resonances, converted into the TE, and TE; modes, are
well separated. No nonlinear coupling between them was
observed in the data, confirming our approximation that SHG
can be considered individually for each process.

In conclusion, we have experimentally observed one-
dimensional spatial optical solitary waves based on a physi-
cal process, the cascaded second-order nonlinearity. We base
this conclusion on the excellent, detailed agreement between
experiment and theory. As a result, we expect that one-
dimensional spatial solitary waves should occur under appro-
priate conditions in other second-order processes, i.e., para-
metric mixing, optical parametric amplification, etc. By
using materials with a higher nonlinear coefficient it will be
possible to lower the input power level to that required for a
practical solitonlike switching device.
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