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Channeling process in a bent crystal
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(Received 14 March 1995)

We have investigated the channeling process of charged particles in a bent crystal. Invoking
simple assumptions we derive a criterion, which determines whether channeling occurs or not. We
obtain the same criterion using the Dirac equation. It is shown that the centrifugal force acting
on the particle in the bent crystal significantly alters the effective transverse potential. The cases
of axial and planar channeling are considered. The channeling probability and the dechanneling
probability due to tunneling of the particle under the barrier in the effective transverse potential are
estimated. These probabilities depend on the specific scaling parameter characterizing the process.
Using the quasiclassical theory of synchrotron radiation we have calculated the contribution to the
radiation spectrum, which arises due to the curvature of the channel. This contribution becomes
significant for TeV electrons or positrons. Some practical consequences of our results are brieQy
discussed.

PACS number(s): 41.75.—i, 61.85.+p, 03.65.—w

I. INTRODUCTION

Channeling was discovered in the early 1960s by com-
puter simulations of ion motion in crystals [1,2]. Large
penetration lengths were obtained. for ions incident along
crystallographic directions of low indexes. Such a guided
motion had already been predicted [3] by Stark in 1912.
A comprehensive theoretical study [4,5] introduced the
important continuum approximation for the interaction
potentials between energetically charged particles and
lattice atoms arranged in atomic strings and planes, re-
spectively. These concepts were subsequently widely
used in the interpretation of channeling experiments (see,
e.g. , the review' article [6]). The idea of channeling was
explored in difFerent physical processes. As argued in [7]
one could collide two electron beams under channeling
condition. The possibility that high-energy photons are
channeled when passing through an oriented single crys-
tal was investigated in Ref. [8].

Radiation phenomena during the interaction of
positrons and electrons with crystals had already been in-
vestigated before channeling was discovered. Frisch and
Olsen [9] observed an enhancement in the soft quanta
region for 1 GeV electrons aligned with the (110) axis
in a germanium crystal. Numerous theoretical and ex-
perimental investigations in this field were subsequently
performed (for review see also, e.g. , [10]).

Experiments with electrons in the GeV range [11] as
well as in the MeV range [12] have shown that the ob-
served radiation spectra are in agreement with the gen-
eral predictions given in [13,14] concerning the energy
dependence of intensity and photon energies. Because of
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the intensive theoretical and experimental investigation
further review articles were published [15,16].

One of the most powerful and successful methods in
the theory of high-energy channeling is the semiclassi-
cal method. The semiclassical method was developed
in Ref. [17]. Using this method the spectra of photons
and electron-positron pairs were successfully described.
The quasiclassical method was also successfully applied
in a number of papers [18,19] to describe the position of
the experimentally observed peak in the spectrum of 150
GeV electron energy loss in a thin germanium crystal.
This calculation was also done purely quantum mechan-
ically in [20].

Channeling was also successfully used to bend ion
beams [21—24]. The basic efFect is that charged parti-
cles traveling through a crystal nearly parallel to a crys-
tal axis experience the collective electric Geld of the ions
and are thus steered into the interatomic region (for pos-
itively charged particles) or into the vicinity of the atoms
(for negatively charged particles). Due to this efFect ion
beams can be bent much more strongly than with exter-
nal electric or magnetic Gelds. The eFiciency is, however,
typically smaller than 10'%%uo. In Ref. [25] the question of
whether the channeling eKect can also be used to focus
beams, especially ion beams, was discussed. To this end
a crystal is needed in which the crystal axes are no longer
parallel, but are slanted more and more the farther away
they are &om the axes of the beam. Then the bending
angle of particles far away from the beam axes would be
largest and a general focusing eKect would result. Such
a crystal can in principle be produced by varying the
germanium to silicon ratio in a mixed crystal [25].

In the present paper we investigate the channeling pro-
cess of electrons and ions in a bent crystal. We consider
a charged particle moving along the bent channel. Us-
ing the Dirac equation we calculate the probability of
channeling and investigate its dependence on the char-
acteristic parameters. We describe the following specific
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features of the channeling process in a bent crystal: the
alteration of the transverse potential due to the centrifu-
gal force acting on the particle, the polarization of the
states of the transverse motion, and the tunneling of the
particle through the barrier in the eBective transverse
potential. Within the framework of the quasiclassical
method [17] we calculate the spectrum of radiation orig-
inating due to the bending of the particle's trajectory.
This method treats the motion of the charged particle
in the electric Beld quasiclassically. It takes into account
the quantum corrections to the motion of the particle as
well as the recoil e8'ect during the radiation of the pho-
ton. Therefore the results of the calculation are applica-
ble even for photon energies comparable to the energy of
the incident particle. We demonstrate in our paper that
such high-energy photons can be emitted in the electric
Beld of the bent channel, if the energy of the particle is
suKciently large. For an electron or a positron the energy
must be in the TeV range, which should be accessible in
colliders of the next generation. We consider in our paper
the cases of axial. and planar channeling.

8

FIG. l. Oscillations of the particle in the electric field of a
bent channel.
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we derive from (2) the condition

C= E'llew

Upp
(4)

A ~ Quallf atlve corisiderat iorl

If a fast charged particle moves at a very small angle
relative to crystal axes or a crystal plane, then the trans-
verse motion of the particle is strongly inIIIuenced by the
field of the crystal (see, e.g. , [16,17]). As was demon-
strated by Lindhard [4], the coridition for the particle to
be trapped in the transverse directions by the Beld of the
channel is

2Up8&8L, —
XApC

Here ell = mpc p is the kinetic energy of the longitudinal
motion of the particle in the channel. We shall see that
any physical quantity characterizing the channeling pro-
cess in a bent crystal is a function of the parameter C,
appearing in (4).

The total bending angle of the particle passing through
a crystal of length I can be estimated as follows:

8rnax + 8L &racy

where N, is the number of transverse oscillations the
particle makes on the length of the channel. It can be
estimated as

In this equation 8 is the angle between the direction of
the incident beam and the crystal axes or the crystal
plane, 8I, is the critical I indhard angle; Up is the depth
of the transverse effective potential; mp is the mass of
the particle; c is the velocity of light; p is the relativistic
Lorentz factor. This condition arises from the require-
ment that the transverse kinetic energy of the particle in
the channel has to be less than the depth of the transverse
potential.

Now let us assume that the channel has a certain cur-
vature radius equal to p. Moving along the channel a
particle oscillates in the transverse plane as shown in Fig.
1. It is qualitatively clear that the channeling eQ'ect in
the bent crystal takes place if the bending angle 8i of
the channel for one period of the transverse oscillation of
the particle is much smaller than the Lindhard angle:

8& &&8L, .

Using simple relations between the variables, character-
izing the process

and the inequality (5) reads

UpI 1 I8mam (7)

F ~F

This equation shows that the large bending angle
1 of the channeling particles can be achieved

even for the small fractions I/p (( 1, if the main con-
dition of channeling (4) is well fulfilled. The important
feature of (7) is that the maximum bending angle does
not depend on the curvature p of the channel, but is de-
termined by its total length.

Now let us derive the same conditions considering the
dynamic of a particle in the Beld of a bent channel. It
is qualitatively clear that the centrifugal force F~ acting
on the particle must be compensated by the transverse
binding force of the channel F2..
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Ei ——ma,
Va=— m=mop

channeling. In this case the potential depends only on
the transverse coordinate r~ and therefore the solution
of (12) is of the form

@(p) = exp (tp~~ T) p(T~)
F2 ——IV~U(r~)l .

Substituting (9) into (8) and taking into account that
p = I/O, we obtain

I'7~ U(&~) I ~Omaz 2moc p

Estimating IV'~U(r~)
I

Uo/B we derive that the con-
dition (10) is equivalent to (7). It is clear that it can also
be expressed in the form (5).

The given conditions are applicable both for axial and
planar channeling. In the latter case a~I must be con-
sidered as the energy of the longitudinal motion in the
direction of the plane.

To get some feeling for the typical quantities character-
izing the channeling process let us substitute I 2 x 10
cm, R 2 A, Uo 100 eV, and E 100 GeV in (1),
(4), (6), and (7). Then we get

HL, 5x10, N, 60, 0 &3x10

where y(r~) is the solution of the Schrodinger equatioii
for the particle with the relativistic mass m = mop:

52
+ U(r&) 4(r&) = s&@(r&) .

2m

Now let us consider Eq. (12) in the case of a circu-
larly bent axial channel. This is the most important
case, because a bent channel of arbitrary shape can be
approximated by pieces of circles. The cylindrical coor-
dinate system which we use is plotted in Fig. 2. The
fast longitudinal motion of the particle in the channel
corresponds to the rotation of the particle relative to the
axis z. The slow transverse motion takes place in the
plane (p; z). The potential of the channel depends only
on the coordinates (p, z) and does not depend on the an-

gle y. Therefore let us consider the solution of the Dirac
equation (12) in the form

B. The equation of motion

To derive the conditions proposed in the preceding sec-
tion let us consider the Dirac equation for a particle mov-

ing in a bent channel. Since we are not going to analyze
in this paper the spin motion of the particle, it is more
convenient to start our consideration with the second or-
der Dirac equation [26]:

2c c 2 . cA—h A —p + —s4 ——4 +i nE 4(r) = 0—.
c2 c2 C

4 = exp(iM(pj 4(p;z),

where M is the angular momentum of the particle in z
direction.

Substituting (15) into (12), we derive the following
form of the Dirac equation for the motion in the plane

(p; z):

1 o) ( 0) 0'
——

I p—I+; +,+&(p '))
p o)p ( Bp) Bz 2mp

x 4 (p; z) = 4 (p; z) . (16)

Here c, p are the total energy and the momentum of the
particle; s /c —p = moc; 4 = 4(r) is the potential of
the channel; E = 7'U(r), U(r) = e—4; n = p p. Equa-
tion (11) includes the static electric field of the channel.
The magnetic field is neglected.

This form of the Dirac equation is convenient for the
treatment of the spin-moment coupling, which is de-
scribed by the last term in (ll). This term as well as
the previous one does not depend on the energy c, while
potential is proportional to c. Keeping only the last term
for s )) IU(r)l leads to the nonrelativistic Schrodinger
equation

This equation can be simplified if one notes that the
potential U(p; z) depends in fact only on the local radial
transverse coordinate of the particle r&. We will suppose
that the potential U(p; z) has local axial symmetry and

(i2)
po X

I et us note that the momentum p and the mass of the
particle are relativistic: p = mo + s /c and m = mop.

The separation of the transverse and the longitudinal
motion in this equation is trivial in the case of linear FIG. 2. The coordinate system for the bent axial channel.
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therefore U(p; z) = U(r&) (see Fig. 2). Then, substitut-
ing

M =&~~(po+ po)

/

P = Po+P
where po is the initial local coordinate of the particle in
the channel, and taking into account that po && p', po, we
derive

tional to the channel's curvature. In the limit of the lin-
ear channel (po', oo) this contribution vanishes. The
transverse energy of the particle in the channel depends
on the initial coordinate of the particle in the channel po,
which is described by the corresponding term in the right
hand side of (18).

Let us now discuss in more detail the behavior of the
efFective potential (19). The potential U(r&) in (19) has
two parts,

M2
U(&~) = V(&~) +

2
(20)

where V(r&) is the transverse potential of the axial chan-
nel and M~ is the angular momentum of the particle's
rotation in the channel. Vibrations of atoms forming the
channel infIluence the shape of the transverse potential
V(r&). It makes the shape of V(r&) shghtly diff'erent
at difFerent temperatures. The shape of V(r&) is well
kIlown in many crystals. There are analytic approxima-
tions for the transverse potential V(r&) (see, e.g. , [17]),
which depend both on crystal parameters and tempera-
ture. The shape of the efFective potential (19) depends on
many variables: M~, m, r~~, po, and the angular position
p of the particle in the channel (p' = r~ cosy). Figures
3(a) and 3(b) illustrate the potential curves U, y(r&, p')
for the cases M~ = 0 and M~ ——100 a.u. (the solid
lines). The three-dimensional plot (the lower part) as
well as the central cut (the upper part) of the efFective
potentials are given in these figures. The effective poten-
tial V(r&) shown in the upper parts of Figs. 3(a) and
3(b) by the dashed line is calculated for 300 GeV elec-
trons aligned with the (110) axis of the Ge crystal, and is
at a temperature of 280 K. The curvature of the channel
is equal to 1 cm. The asymptote of U,y(rz, p'), which is
determined by the second term in (19), is shown by the
dotted line in the upper parts of Figs 3(a) and 3(b). The
main difference between the two cases is the spiky fea-
ture in Fig. 3(b). This feature originates f'rom the second
term in (20), being the centrifugal energy of the particle
rotating in the axial channel. Physically this means that
the particle rotating in the axial channel is not classically
allowed to penetrate to the center of the potential.

The case of planar channeling is very similar to the
one considered above. In the planar channel the parti-
cle has two dimensions for fast quasi-&ee motion parallel
to the crystal plane. The motion of the particle in the
direction perpendicular to the crystal plane is governed
by the crystal potential. In the bent channel one of the
directions of the quasi-&ee fast motion becomes bent too.
Choosing the z direction as that for which the particles
are bent and performing some transformations, which are
very similar to those we did deriving (18), one obtains

+ — — 4' ~, p

+ U r~ ——p 4' r~'p
Po

I

=
~

~~ —s~~P'
~
e(r~;p') . (i8)

po)

Equation (18) divers from (14), which was derived for
linear channeling. It contains additional centrifugal po-
tential terms in both sides of the equation. Comparing
these terms in (18) with the typical depth Uo of the po-
tential U(r~) we come to the conclusion that if the con-
dition (4) is fulfilled then the centrifugal potential terms
are small and can be neglected. In this case Eq. (18)
coincides with the one obtained for the linear channeling
case. It proves that channeling in a bent crystal has to
take place indeed if condition (4) is fulfilled.

Equation (18) determines the specific features of the
channeling process in a bent crystal, which we discuss in
the next section.

III. SPECIFIC FEATUB.ES OF CHANNELINC
IN A BENT CRYSTAL

A. The efFective potential of the transverse nation

The motion of the particle in the transverse plane is
determined by the effective potential acting on the par-
ticle. This potential appears in the equation of motion
(18). Iiideed the first term on the left hand side of (18),

h2 02 t92 h2

2m Bp'~ BZ2 2m

is the transverse kinetic energy of the particle into the
channel. While the second term is the effective potential
energy

(i9)

Here we have used the local azimuthal coordinates
r&,'p' of the particle in the channel. They are connected
with P and z as P = r~ cos p; z = r~ sin (p . Tbe cases
of cos p' = 0 and cos p' = vr correspond to the parallel
and antiparal]el orientation of the vectors r' and p'. The
effective energy contains two parts the transverse po-
tential of the channel U(r&) and the centrifugal potential
contribution. The latter term increases with the energy
of the particle in the channel and is inversely propor-

, , +U(x) ——x @(x)(
Q2 d2 ~z g I

2m dx'2 Po

xone

s& —s, —
~
C(x),

po j
mv

m = mop 6'zy+Cz+CJ )

U, y(r~; p') = U(ri) ——p' = U(r~) — r~ cos p' . —
Po P
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Here x' is the local coordinate of the particle in the chan-
nel, c is the kinetic energy of the particle in z direction,
po is the curvature radius, and xo is the initial coordinate
of the particle in the channel.

The condition (4) in the case of planar channeling must
be replaced by

e B &+1.
Uopa

(22)

Under this condition the centrifugal potential terms in
(21) become negligible. The condition (22) can be much
better fulfilled than (4), because s', can be much smaller
than the total energy e r„.The efFective transverse
potential for Eq. (21) is plotted in Fig. 4. This figure
shows the transverse potential at room temperature in a
bent Ge crystal for the three neighboring (110) planes in
comparison with that in crystal without bending. The
energy of the electron is equal to 50 GeV and the curva-
ture of the channel is 1 cm.

B. The polarization of the transverse energy states

Equations (18) and (21) are analogous to the equations
of a two- or one-dimensional atom placed in the external
uniform electric Beld. This analogy lets us make some
conclusions about the transverse motion of the particle.
Moving along the channel, the particle populates one of
the discrete levels in the transverse potential. In a bent
crystal these energy levels become shifted and split, com-
pared to the linear channel case, like the energy levels of
an atom in an external electric Geld.

This splitting can be calculated as [27]

1 f~)(b
+sn;M~ ~n;M&

p j
1 ). i(n'; M~ + liras in; M~) [

2

/(n'; Mg —1/r~ [n; Mg) /'

En; Mg n'; Mg —i.

I
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FIG. 3. (a) The efFective transverse potential of the axial channel in Ge: axis (110); M~ = 0; T = 280 K; s~~ = 300 GeV.
The upper part of the figure shows the central cut of the effective potential. The lower part demonstrates the dimensional plot
of U, f(rz, p'). The units used in the lower part of the figure are the same as in the upper one. (b) The efFective transverse
potential of the axial channel in Ge: axis (110); M~ = 100; T = 280 K; et~ = 300 GeV. The upper part of the figure shows the
central cut of the efFective potential. The lower part demonstrates the dimensional plot of U f(rz., p'). The units used in the
lower part of the figure are the same as in the upper one.
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probability of d.echanneling &om a certain level in the
transverse potential is equal to the probability of the
particle's tunneling under the barrier, which can be cal-
culated quasiclassically [27]. It is important to know the
shape of the potential in this calculation. The calculation
can be done analytically if one takes a simple transverse
potential such as the oscillatory, square-well, or cutofF
Coulomb potential with the appropriate parameters. The
result of the calculation for the square-well potential is
given by the expression

4 s~ p+2m. ~s~~
TV exp

3 eii
(27)

TRANSVERSE COORDINATE (A)

In (24) n„~ is the polarizability of the state ~n, ; M~).
The summation in (24) is performed over all discrete and
continuous states of the transverse motion. The transi-
tions M~ -,' M~ + 1; M~ —1 only contribute to the
polarizability o,

The states of the transverse motion become polarized
due to the bending of the channel. The induced dipole
moment of the state with the principal quantum number
n and the angular momentum M~ is equal to

(24)

Estimating the polarizability o. .M as

B2
SLY J U.

0
(25)

FIG. 4. The e8'ective transverse potential of three succes-
sive planar channels in Ge: plane (110); room temperature;
c = 50 GeV.

In fact this result is slightly sensitive to the chosen
shape of the transverse potential of the channel. The
shape of the potential determines the preexponential fac-
tor omitted in (27), while the exponential factor turns out
to be the same. One can also derive (27), approximating
the potential barrier by the zero-range potential.

The quantity s~ in (27) is the binding energy of the
particle in the transverse potential, which can be esti-
mated as e ~ Uo. The momentum appearing in the
exponent is approximately equal to +2m~a~ /5 I/B
Then one obtains that the expression in the exponent
is proportional to 1/C, which is large if the condition
(4) is fulfilled. This result shows that the probability
of dechanneling due to the tunneling effect turns out to
be exponentially small. It becomes large only when the
channeling effect itself is practically absent.

The model potentials which were used for the estima-
tion of the probability of the tunneling efFect are also very
helpful in obtaining other characteristics of the channel-
ing process in a bent crystal, e.g. , the condition channel-
ing and. the polarization of the transverse energy states.

D. The probability af the channeling process

D„~, eB
~ ~

= eAC((eB.(s)(B&

This condition shows that if (4) is fulfilled then the
polarization of the transverse states is small. The in-
duced dipole moment D ~ is much smaller than typical
values of the transition dipole matrix elements between
states of the transverse motion.

C. The tunneling efFect

The right hand wing of the effective transverse poten-
tial of a given bent channel has a barrier (see Figs. 3
and 4). Therefore a particle captured by the potential
can leave the channel by tunneling under the potential
barrier in the efFective potential.

Let us estimate the probability of this process. This
can be done using different methods. It is obvious that
the tunneling of the particle with the large relativistic
mass can be considered as quasiclassical. Therefore the

ND

N~+N~ ' (28)

where %~ and N~ are the number of states in the discrete
and continuous spectra, respectively.

Let us investigate the d.ependency of TV on the param-

Let us now estimate the probability of the particle to
be captured by the 6.eld of a bent channel. We only con-
sider the case where the particle moves initially parallel
to the direction of the channel. If the channel is linear
then the particle populates one of the discrete levels in
the efFective transverse potential. In the case of a bent
channel the continuous spectrum of the energy levels co-
exists with the spectrum of the quasidiscrete levels (see
the potential in Fig. 4). The channeling effect occurs
only if the particle populates one of the levels of the qua-
sidiscrete spectrum. Assuming that all the states in the
discrete and the continuous spectra are being initially
populated with equal probability, we come to the conclu-
sion that the probability for channeling can be estimated
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eters of the system. The number of states in the continu-
ous spectrum can be estimated &om the density of these
states: "dp2R

Ng ——2 x
p 27l

p ..= /4m[U ..f
.

The factor 2 in &ont of the integral takes into account
the spin of the electron; p is the maximum momentum
the electron can have in the effective potential of a given
channel; U is the maximum value in the right hand
wing of the effective potential of a given channel (see Fig.
4).

The number of discrete levels in the potential well
formed by the efFective transverse potential can be easily
estimated, if one approximates this well by a square-well
potential with the appropriate parameters. The number
of states in a square-well potential of depth U and width
o, is [4]

spectrum arises because of the rotation of the induced
dipole moment of transverse states.

We have demonstrated that the polarization of the
states of transverse motion cannot be large under chan-
neling conditions. Therefore the contribution to the total
radiation spectrum arising &om the polarization of the
transverse particle states turns out to be much smaller
than the contribution from transitions between different
levels of transverse motion. The latter mechanism exists
also for linear channeling and has been investigated in
detail [17—20].

In this paper we consider only the radiation generated
by the additional acceleration in the Geld of a bent chan-
nel. This problem can be easily solved using the results
of the theory of synchrotron radiation in a uniform mag-
netic field [26]. Replacing the magnetic field by the trans-
verse force e'~~/p acting on the particle in a bent channel,
we derive the spectrum

2ma2U
7r2

(30) (32)

In our case the depth of the potential is U Up-
U = Up. The width of the potential a is deter-
mined by the radial position of U . Approximating
the tail of the potential of the channel by Z, f/T' we find
that the coordinate of U, and therefore a, is equal
to (Z, yp/s~~) . Using these estimates in (30) and then
substituting KD and %c in (28), we derive the following
expression for R":

1

1+aC~«

Here the parameter C is the main parameter of the
problem de6ned in (4). The constant a = (4UoB/Z, f) ~

depends on the potential characteristics and can be con-
sidered as an empirical constant. Substituting the typical
parameters Up 4, R 2, and Z, y 2 written in atomic
units one derives that a 2. The result (31) shows again
that the probability of the channeling in a bent crystal
is determined by C.

E. Radiation by a particle channeled
in a bent channel

The radiation emitted by a particle moving in a bent
channel differs from that in the case of a linear channel.
The additional contributions to the radiation spectrum
arise due to the curvature of the channel and disappear
in the case of a linear channel.

Let us qualitatively discuss the origin of these contri-
butions to the radiation spectrum. The first one is a
result of the emission by the charged particle accelerated
due to the bending of the particle's trajectory in the Geld
of the crystal. This radiation is very similar to the tra-
ditional synchrotron radiation of the particle moving in
the uniform magnetic field. Another contribution to the

2
E~~

= mpc

The value of the transverse force s~~/p acting on the
particle was obtained from the Dirac equation analysis
performed in Sec. IIB. The spectrum (32) is only deter-
mined by the curvature of the crystal and the energy of
the electron. Therefore the same spectra are emitted in
difFerent kinds of crystals with the same curvatures, if
the projectile electron energies coincide.

We have used (32) to calculate the spectrum of emitted
photons at difFerent values of the relativistic parameter
p and curvature p. The results are plotted in Fig. 5.
The intensity in Fig. 5 is defined as md'/dw/I and
given in cm i. The photon frequency is plotted as w/s~~.
This Ggure shows that with increasing electron energy the
radiation intensity increases and the frequency maximum
of the emitted photons is shifted to the higher values.
With increasing channel curvature the intensity of the
radiation decreases. These dependencies are qualitatively
clear. The electron radiates more intensively when its
acceleration is larger.

The derived intensities of radiation are rather charge
compared to those obtained for linear channeling [17].
For example, the maximum intensity of the radiation of
the 150 GeV electron aligned with (110) in Ge at T = 100
K is approximately equal to 20 cm . This intensity is
achieved in a bent crystal for 50 GeV, when p = 10, as
is clear from Fig. 5. In this case the main parameter
C l. In this case the main condition (4) becomes vio-
lated and the probability of channeling decreases rapidly,
but it is still rather large, being on the level of 30%, as
follows from (31) and the estimates performed in the pre-
ceding section. At smaller curvatures (see curves p = 5
cm and p = 2 cm in the upper part of Fig. 5) or higher
electron energies (see curve E = 250 GeV in the lower
part of Fig. 5) the intensity of radiation in a bent crys-
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If b 1, then almost all energy of the particle is trans-
ferred to the emitted photons. The representation of b
in the form (33) shows that under the channeling condi-
tions b becomes comparable to unity at p 10, because
«& ~; &.I '"- »-' «I "&- »-'
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FIG. 5. The radiative spectra of an electron channeling in
a bent crystal calculated at diferent energies and curvatures
of the channel. The intensity is given in cm . The photon
frequency is plotted as w/s~ ~.

tal substantially exceeds the intensity of radiation in the
linear case. At the same time the probability of channel-
ing decreases according to (31). As a result of these two
opposite tendencies the efFective intensity of the photon
emission becomes comparable again with the intensity of
the radiation of the electron in the linear channel, even
if C 5. The case C 5 corresponds to the curve
p = 2 cm in the upper part of Fig. 5 and to the one
with E = 250 GeV in the lower part. In this case the
probability W, (31), is approximately equal to 15%.

The total radiative energy loss is determined by the pa-
rameter b = Ruo/s~j, where wo ——cp Ip is the frequency
corresponding to the maximum in the photon distribu-
tion [26]. This parameter can be expressed in the form

We have considered the process of channeling in a bent
crystal. Using simple qualitative arguments we have de-
rived the criterion for channeling and proved it using
the Dirac equation. It was shown that the centrifugal
force acting on the particle in the bent crystal signifjL-

cantly alters the efFective transverse potential for both
axial and planar channeling. We estimated the probabil-
ity of dechanneling of the particle due to its tunneling in
the efFective transverse potential and demonstrated that
it is exponentially small if the condition for channeling is
fulfilled. The total probability to observe channeling in a
bent crystal is also estimated. It depends on the specific
scaling parameter characterizing the process. Using the
quasiclassical theory of synchrotron radiation we have
calculated the spectra of photons being emitted by the
channeled. particle at difFerent energies. We have consid-
ered the contribution to the total radiation spectrum due
to the curvature of the channel and demonstrated that
it becomes sizable for the energy range which is planned
for the electron-positron colliders of the new generation.

I et us brieHy mention some possible practical appli-
cations. Bent crystals can be used for difFerent manip-
ulations of the charged particle beams. One can think
about "channeling lenses" for focusing beams or "chan-
neling magnets" for bending of the charged particles. We
have demonstrated. that the channeling magnets can be
used for generating synchrotronlike radiation.

Let us m.ention some questions left for further investi-
gations. One can generalize the results to the case of a
channel of arbitrary shape. It is also interesting to take
into account the efFects associated with the spin motion
of the particle in the channel. A quite important prob-
lem is the description of the energy loss of electrons or
positrons in a bent crystal. Analogously to the linear
channeling case, rate equations which include the new
radiation terms must be used for solving this problem.
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