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Nonlinear inverse bremsstrahlung and highly anisotropic electron distributions
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A procedure is proposed to deal with the approximate solution of the kinetic equation for the velocity
distribution function of electrons in a fully ionized plasma in the presence of strong, high frequency radi-
ation. The Legendre polynomial expansion is applied after the kinetic equation has been written in an
oscillating frame, where some directions are appropriately scaled, with the aim of making approximately
isotropic, on the average, distributions that are otherwise anisotropic. The equations are derived for the
isotropic part of the electron distribution in the scaled frame and for the scaling factor. The procedure is
meant to display its potential in cases where the electron distribution is expected to be highly distorted
by the external field. As a case study, a high-Z plasma, ignoring electron-electron collisions, and a
linearly polarized laser field are considered. Within the proposed procedure, the existence of self-similar
solutions is addressed as well. For small anisotropy, we recover and improve upon a known result. For
large anisotropy, a completely di6'erent self-similar solution is found, allowing, in a simple way, the study
of many plasma properties under conditions in which the laser Geld strongly alters the electron veloci-
ties. In the unscaled laboratory frame any part of the electron distribution is oscillating, anisotropic, and

evolving in shape.

PACS number(s): 52.40.—w, 52.5O.Jm

I. INTRGDUCTIQN

The description of physical processes and phenomena
occurring in an ionized medium or in a plasma in the
presence of intense laser fields requires, as a rule,
knowledge of the electron velocity distribution function
(EDF). When the laser and medium parameters are such
that the field-free EDF is not strongly altered by the pres-
ence of the Beld, the Boltzrnann equation is profitably
solved using the well-known procedure based on the
Legendre polynomial expansion (LPE) of the unknown
solution. Such "small anisotropy" cases have been
thoroughly investigated, and the results may be relied
upon to study plasma properties and processes.

An important, qualitative criterion for successful prac-
tical application Qf the LPE is

where U, =eEO/me@ is the peak velocity of the plasma
electrons in the laser field, E=Eocos~t, and
UT =+T, /m is the electron thermal velocity. For litera-
ture on the LPE see [1—3] and references therein. In par-
ticular, several investigations have demonstrated and ex-
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ploited the fact that, in the case of small anisotropy,
non-Maxwellian, self-similar (SS) EDF may be formed
[4—12]. Critical in all these investigations is the condi-
tion that electron-ion collisions dominate, and electron-
electlofl (e-8) oiles ale negligible. A ieceilt illvestlgatloil
[13],however, has extended the knowledge on this topic,
showing that a SS EDF exists also when e-e collisions
cannot be neglected. The distinctive feature of the SS
EDF in analytical form in Ref. [13] is that it changes
smoothly, under the appropriate limits, over to the previ-
ous result, pertinent to the absence of e-e collisions, and
to the Maxwellian, established by randomizing e-e col-
lisions.

For large anisotrop, i.e., when one expects the field-
electron interaction to distort signif][cantly the EDF, few
investigations are available and the results are still partial
and sparse [7,11,14,15]. On the other hand, the increas-
ing availability of powerful laser sources in research la-
boratories and plasma physics applications necessitates
knowledge of the characteristics and properties of laser-
embedded plasmas.

In a recent work [15] we have addressed numerically
the EDF with large anisotropy for a fully ionized plasma
embedded in a linearly polarized laser field. We have also
studied the evolution of an initially isotropic EDF in
two-dimensional velocity space. In particular, we have
found that after some field periods (the actual number de-
pending on the ratio v„-/cu, with v„ the electron-ion col-
lision frequency and co the laser frequency) the shape of
the EDF becomes quasistationary in the reference frame
oscillating with the plasma electrons. The EDF appears
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to be anisotropic and stretched out along the external
field polarization direction. This result has been observed
for up to 100 field periods. For larger times, whether the
EDF evolves towards a larger anisotropy or, on the con-
trary, towards an isotropic shape remains an open ques-
tion.

Exploiting information from numerical calculations
[15], in the present paper we propose a procedure that al-
lows fast convergence of the LPE also in the case of large
anisotropy, thus opening the possibility of constructing
analytical EDF for this case as well. The proposed pro-
cedure is presented in detail in Sec. IV. Here, the basic
concept is formulated as follows. We write the kinetic
equation in a scaled oscillating velocity reference frame.
The scaling concerns the component of the electron ve-
locity along the field direction (i.e., the parallel direction),
and it is accomplished by introducing a time-dependent
scaling factor to transform an anisotropic configuration
as much as possible into an isotropic one. The frame os-
cillates with the external field frequency. In the scaled
oscillating frame, conditions are imposed to force the
EDF to take an approximately isotropic form. The hope-
fuHy small residual anisotropy is then handled by apply-
ing the usual scheme of LPE. In other words, we propose
to use the LPE only after an appropriate transformation
has brought the EDF into a space in which it appears
largely isotropic. Eventually, after the scheme of the
LPE has been worked out and an approximate EDF
found, appropriate reverse transformations will restore
the anisotropy embodied in the scaling factor: in the fixed
laboratory frame we will finally have a time-dependent,
oscillating, anisotropic EDF.

In Sec. II we provide the main equation for the interac-
tion between a collisional plasma and an external, linearly
polarized laser field. We consider the physical situation
in the plasma in which inverse bremsstrahlung is the
main absorption mechanism. In other words, we do not
take into account processes like resonance absorption, for
which the laser field inhomogeneity plays a crucial role,
nor nonlinear efFects like parametric instabilities. In Sec.
III we briefly review the conventional procedure of LPE
for small anisotropy. Section IV is devoted to the gen-
eralization of this procedure to the case of large anisotro-
py. In Sec. V we consider two model SS solutions of the
resulting equations. Section VI contains short final re-
marks.

II. THE KINETIC EQUATIGN

The evolution of the EDF in a uniform, collisional, ful-

ly ionized plasma can be described by the equation [1,16]

eEO+ .coscot
Bt m Bu

Coulomb logarithm, in the modified form suggested by
Silin [16] for interactions between plasmas and fast oscil-
lating fields, and 6„ is the Kroneker delta symbol.

In Eq. (2) the e-e collision term has not been included.
In general, for suKciently intense fields and/or high ionic
charge Z, the e-e collision term is negligible [4]. In such
a case, the inequality

r 2
Ve

(3)
3

zVy

must hold. It is satisfied in the cases considered
throughout this work [17]. Equation (2), based on gen-
eral kinetic equations of particles ensembles, is derived,
e.g., in [1, 18], where the conditions of its validity are dis-
cussed in detail. Generally, Eq. (2) is not solved directly.
Provided the anisotropy is small, simplified equations are
derived by expanding the unknown solution in spherical
harmonics. For the solutions of such well-known
simplified equations, see, e.g., [4,5,13].

To solve Eq. (2), it is useful to change to a velocity
reference frame oscillating with the same frequency as
the external field [5,8]. For the electron velocity one has

aq aq+ Qy Q~
Bu (u 2+ u 2)3~2 Bu Bu

(5)

where p(u, t')= f(u+v sin(t), t), t'=t. Equation (5) is
dimensionless: the velocity components are in units of u„
time is in units of to ', u, =u, +sin(t'), and

v„(u, )5=
267

Explicitly Eq. (5) contains only the small parameter 5,
which expresses the strength of the laser-plasma interac-
tion. Another important parameter is the ratio u, /uz. ,
stemming from the initial conditions. In previous work
[15],we solved Eq. (5) and investigated the time evolution
of the resulting EDF. In the present work, taking advan-
tage of the numerical information of Ref. [15],we aim to
develop a systematic procedure able, in principle, to pro-
vide accurate analytical EDF in the domain of high an-
isotropy.

Q=v —v, sinMt .

In the coordinates (ui, u, ), with u, and ui, respectively,
the velocity component parallel and perpendicular to the
direction of the external field polarization, Eq. (2) has the
form

~B 8 zulus Bg BQ
u, Qg

Bt Bui (ui+u ) Bug Bu

v„(u)(u 5„—u„u )
2 BU~ ~~en III. SMALL ANIS(OTROPY

where e and m are the electron charge and mass, U„ is the
nth component of the electron velocity,
v„(u) =4ire n, ZlnA/m u, n, is the number of electrons
per unit volume, Z is the ion charge, 1nA is the Coulomb

To clarify the connection of our approach to the usual
procedure, we first briefly review the well-known method
of expanding the unknown EDF into Legendre polynomi-
als.
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5 t)
sin8

v'sin8 i)8
(7)

In Eq. (7) dimensionless variables are also used. In a
spherical frame, the nature of the collision operator (the
right side of the equation) appears in its clearest form. It
changes only the anisotropic part of the EDF, which is
present because of the external field. When the field van-
ishes, any isotropic function can be taken as a solution.
The Maxwellian EDF is formed only because of the e-e
collisions.

The LPE for the EDF of Eq. (7) is written as

f(v, 8, t) =fo(v, t)+f, (v, t)P, (cos8)

+fz(v, t)Pz(cos8)+ (8)

where the coefBcients fo,f i,f2, . . . are unknown. Sub-
stituting (8) into (7) and leaving only the first two terms
under the assumptio~ of small anisotropy, we have

r

~fo 1 ~fi 2+cost — + f, =0,
Bt 3 av 3v

~fo 2S+cost + f, =0 .
Bv v3

(9a)

(9b)

This is the system of two equations for the isotropic and
the leading anisotropic part of the EDF, fo and f, . The
next step is connected with some basic assumption about
the properties of fo and fi. If fo is a slowly oscillating

This method is most e6'ective in the case of small an-
isotropy. We outline the basic steps, writing Eq. (2) in
spherical coordinates in a fixed velocity frame:

v„=v sin8 cosP,

v~
= v sin8 sing,

v, =v cosO,

rjf df sinO Bf+cost cosO
Bv v

function of time (within a field period), while f, is a rap-
idly oscillating one, it is possible to solve (9b) to get

~fo
'

fi=-
av

sint 25 cost
45 v 45

6 6

(10)

IV. LARGE ANISOTROPY

A. Preliminary considerations

Here we show how the I.PE can be extended to the
large anisotropy domain by exploiting information from
existing numerical calculations. The numerical solution
of Eq. (2) in Ref. [15] has shown that, after a relatively
short time interval of fast changes, the EDF averaged
over the external field period acquires some regular shape
in the oscillating frame. Specifically, the shape is
stretched out along the field polarization direction and, of
course, is far from that of a spherically symmetric func-
tion (see, for instance, Fig. 8 of Ref. [15]).

An appreciation that a quasistationary, anisotropic
EDF has been established is given by Fig. 7 of Ref. [15],
which shows the time evolution up to the first 100 field
periods of the ratio E (it)/E (lt), with Ei and El being,
respectively, the ensemble-averaged perpendicular and

Now, substituting (10) into (9a) and using the smallness of
5 and removing fast oscillations by averaging over the
field period, we get the equation for fo, e.g. , [4],

')fo 5 t) fo 5 r)fo

Bt 3v' Bv 3v~ r)v

The fast convergence of the series (8) is crucial for the
derivation of Eq. (11), which implies the inequality
fo »fi. The latter is equivalent to the condition
vT »v, . Thus the domain of validity of Eq. (11) is re-
stricted to moderately intense laser fields. The entire pro-
cedure is useful insofar as it can be truncated after the
first few terms. In the present version, the procedure is of
little use when v T =v, or vT & v, .

TABLE I. Differences in the applicability (in the sense of fast convergence) of the Legendre polyno-
mial expansion (LPE) in unscaled (A) and scaled (B) oscillating velocity frames in the cases of small and
large anisotropy. Velocities are in units of v, . When a = 1, ( u ) = (s ) = Vr, when a »1, (s )=u„and
(u ) =a(s )»v, .

Ensemble

Anisotropy

average
velocity,

&u&

Peak
oscillatory
velocity U,

Domain of
expected values

of a
Ratio

&u )/v,

Applicability
of

LPE

small
large

UT

UT

(A) Unscaled oscillating frame
11

1

»1 yes
no

small
large

a&s&
s&s&

(B) Scaled oscillating frame
1

1 »1
»1
»1

yes
yes
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parallel kinetic energy. This ratio, which is rigorously
equal to 2 for an undistorted, initial Maxwellian EDF,
undergoes significant changes during (approximately) the
first 20 field cycles to become almost constant afterwards
(but numerically smaller than 2).

The idea at the basis of the extension of the LPE into
the large anisotropy domain is to perform a time-
dependent transformation of the parallel (with respect to
the field polarization) velocity scale in the oscillating
frame, amounting to a contraction. An appropriate
time-dependent transformation coefficient a(t) is intro-
duced. As a result, we work in a scaled oscillating frame,
where the originally anisotropic, quasistationary EDF is
expected to be squeezed into a distribution function with
an isotropic bulk. The small residual anisotropy left after
the transformation then may be treated following the
standard procedure of LPE.

We point out that (i) the transformation coefficient a (t)
needs to be a function of time, because the anisotropy of
the EDF, as a rule, changes with absorption of energy
from the external field; (ii) the deviation of a (t) from uni-

ty is a measure of the departure of the EDF from an iso-
tropic shape; (iii) as in the usual LPE, to achieve fast con-
vergence it is necessary that the terms accounting for the
EDF anisotropy be much smaller than the isotropic term.
However, it is not necessary that the electron oscillatory
velocity u, be smaller than the thermal velocity uT. The
release of the constraint (1) for fast convergence of the
LPE derives from the circumstance of working in a
scaled oscillating frame (see also Table I).

B. The equation for the isotropic part
of the electron distribution in the scaled oscillating frame

S =U

Z u, /a(t) =- S,

Considering the relations (12), or the similar relations be-
tween scaled moving and fixed coordinates,

$~ =u sin0=$ sin8,

a(r)s, =u cos8 —sinai=a(t)s cos8, U=U/v, ,

Eq. (5), or Eq. (2), is transformed into

0F
s sin8

r

—s cos Ising a 'aF
a Bs

2 a BF+s sin 8 cos8 — =I„»(F),
a

(14)

where F(s, t)=y( tu'), a=da /dr, and I„»(F) is the col-
lision integral. In analogy with Eq. (8), we write the EDF
as a series of Legendre polynomials,

FIG. 1. Schematic of time-dependent scaling of the parallel
electron velocity in the oscillating frame.

To develop the procedure outlined above, we define a
scaled, oscillating frame (see also Fig. 1):

F(s, @,r) =F»(s, r)+Fi(s, r)P, (cos8)

+F2(s, r)Pz( cos8) + (15)

s~ =u~ =s sin8,

a(r)s, =u, =a(t)s cos8, (12)

Substituting (15) into (14) and integrating over the angle
8, we get the equation for the isotropic part of the EDF
in the scaled oscillating frame,

where a(r) is an unknown time-dependent factor altering
the length of u, . Thus s, is the contracted parallel veloci-
ty component, while u, is the uncontracted counterpart.

aF,
2$

2 2 a ~F0 0——s — =I (F ),coll 0

where the collision integral I,,»(F» ) is

BF0
I„»(FO)=5 — ~ sin (Jr+J»2)+s sinr 2a ——(J, +J3)+—(J, —J, )

a ' ' a

+ a ——s aJ +aJ4—1

a 2

J,—2J2+ J4

2
sin rs(J& —J2)+2sinrs a —— (J& —J3)+ a —— s (J2 —J4) . .

s a
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In (17),

sin8(cosB)"
d

o g 3/2

2a
sin 7

a
2

2
sins.

s

and R =s s111 8+(as costi+slur ) . III 'tile collis1011 111-

tegral (17), Fz and the next components of the EDF have
been neglected because they are of the order of 6, which
is much smaller than 1. %'e note that we do not need to
solve the equation for F1 nor for F2, because the collision
integral I„ii(FO) in the oscillating frame is not equal to
zero and contains all the necessary information. On the
contrary, the collision integral I,,II(fo(v)) in the fixed
frame is identically zero as can be seen from (7) and (9a).
Therefore, in this case, the term containing f, (v, t) must
be included, as it results to be the leading one.

Now we demonstrate that Eq. (16) averaged over the
field period turns into the well-known Eq. (11) in the limit
of small anisotropy. In this case, the moving frame does
not differ practically from the fixed one, as U, is much
smaller than UT. In the moving fame, the small anisotro-

py case is recovered under the limit

a~1,
and (16) and (17) give

2 sinr/s
s J1=

sin T
a

$2

2 sln7

a $

(23)

~ a'F,
+ [ci(a)+cz(a)s ],2 82 (24)

10a —3k —2a kc, (a) =
8a (a —1)

—6a +k +2a 2k
c,(a)=

4a

(25)

and so on. Substituting (23) into (16) and (17) and averag-
ing over the field period, we get

BFO a UFO g BFo
s —

—,'s — = [ —ci(a)+c~(a)s ]
Bw ' a Bs S3 Bs

Fp BFp
2s =5 [sill r(Jo+J1)+2s sing Ji ]

8 Fp+5 sin rs(JO —JI) .
Bs

(20)

with

a+&a' —1
ln

a —&a' —1

&a' —1
(25a)

The integrals (18) at a = 1 give

2 2 sin%
0 3 ~ 1 4s s

Therefore, from (20) we get

J2== 2

3s
(21) 2 5(a —1)c, (a) = and c2(a)=

3a (a +1) 26(a +1) (26)

Within the range 1 & a & 5, c& and c2 are approximated
by the simpler expressions

~Fp ~Fo sin~ 2 ~Fo sin~ 2
2

s = —6 +6
O'7 Bs s 3 Qs s 3

The comparison of the exact values of c& and c2 to their
approximate ones, Eq. (26), is displayed in Fig. 2.

Rearranging the terms, Eq. (24) is rewritten as

(22)

Averaging Eq. (22) over the field period, and assuming
that Fp is a slowly oscillating function of time, we get Eq.
(11). We note that, working in the oscillating frame, we
have recovered Eq. (11), which has been derived in Sec.
III in the fixed frame. In the case of small anisotropy, as
observed, the moving frame does not differ substantially
from the fixed one. This result therefore helps to remove
the seeming contradiction between the parallel derivation
of the same SS EDF given by I.angdon [4] and Balescu
[5] [see remark in Ref. [5] after Eq. (2.19)].

From the above derivation, we have learned that the
equation for the isotropic part of the EDF, Fo, is ob-
tained by averaging Eq. (20) over the field period. The
integrals J„are expanded in power series of sin(r)/s. For
the integral with even n, terms up to the second order
need to be retained, while for those with odd n, it is
sufhcient to keep the first nonzero term. Under the con-
dition a Xs &1, we get

0.3
Exact values

Approximations

0.0 ~-
1

FICy. 2. The c„coefficients of Eq. (24) vs a (n = 1,2).
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BFo a si BFo B ci BFo BE()
s =— +5 +c2s

B~ a 3 Bs Bs s Bs Bs
(27) 1.25

Under the limit a~1, Eq. (27) goes over to Eq. (11).
Thus, Eq. (27) is the "final" equation we need to solve for
the isotropic part of the EDF in the scaled, oscillating
frame for arbitrary values of a(r). The EDF must satisfy
the normalization condition

CI BGo
+C2$

s Bs

and the normalization condition is

4ma(r) I E(s)s ds =1 .
0

It is possible to exclude a(r) from the normalization con-
dition by the transformation Go(s, r) =a(r)Fo(s, r). In
this case, Eq. (27) is rewritten as

, BGo B a s'
(29)

0.75

0.5

0.2S

0.0
1

4m. f "G,(s)s'ds =1 .
0

(30) FIG. 3. The c„coeKcients of Eq. (31) vs a (n =3,4).

C. The anisotropic parts of the distribution function

The high-order coefficients of the LPE are necessary to
estimate the anisotropy of the EDF, and they have not
entered Eq. (27). If the conditions of fast convergence are
met, the sole Eq. (27) [or Eq. (29)] will be sufficient to de-
scribe the plasma characteristics.

The equation for F, is obtained from Eq. (14) as

BF1
3$ =5

Br

ci BFo c4 B Fo+ sin~+
s as s gs

(31)

where the terms of order 5F
&

and 6F2 have been omitted
as small. Assuming only fast solutions of this equation,
from Eq. (31) we get

c,(a)=

c,(a)=

c7(a)=

cs(a)=

66a+60a +k —56a k —8a "k

16a (a —1)

38a+52a +3k —40a k —8a k
16a (a —1)

—54a —36a +5k+ 32a k+ 8a k
16a (a —1)

214a+92a —21k —116a k —16a k
16a (a —1)

(35)

Figure 4 shows how the coefficients c5 —cs change with
a(r).

3Q c fjF c 8 F
2 0 2 2 cosv)

s s s Bs
(32)

where

8+10a —7ak —2a k

2a (a —1)
(33)

0.6 )

From Fig. 3, we see how these coefficients decrease with
increasing a(r). E, describes the regular oscillations of
the electron bulk; F2 describes its shrinking or stretching.
Just the latter effect was observed in the numerical calcu-
lations [15]. The equation for E2 derived from Eq. (14)
can be written as

0.4

0.2

c
5

BF2—s
s' a ~Fo

15 a Bs

C5 c, aFo
BS '7

(34)
c8 8 Fo—5 c + +
s2 cjs2

where again the terms of order 6F, and 5F2 have been
omitted, and

0.0 ==

FIG. 4. Behavior vs a of the coefBcients c„(n=5,6,7, 8) ap-
pearing in Eq. (34).



1106 PORSHNEV, KHANEVICH, BIVONA, AND FERRANTE 53

D. The equation for the scaling coe%cient a(~) 3.0

We need an equation giving the time evolution of the
coefficient a(r). It is derived from Eq. (34) as follows.
We assuine that a(r) is such that the goal of making the
EDF F(s, ~) "isotropic" on the average has been
achieved. In such a case we have

2.5

2.o l-

&s', ) =2&s,'), (36) 1.5

where the brackets & ) define the average over F(s, ~) of
the quantity inside them:

f s,"F(s, ~)d 3s

&s;")= fF(s, ~)d3S

Substituting expansion (15) into Eq. (36), which is now
rewritten as

f g Fi(s, r)P, (cosd)sin~ds2d's
I

0.5

0.0
1

=2f g F, (s, ~)P, (cos8)s cos28d3s, (37a)
FIG. 5. Behavior vs a of the coeScients c„(n=9,10) appear-

ing in Eq. (40).

we obtain

f QFi(s, z)Pi(cos8)(1 —3cos 8)s d s=0.
1

(37b)

f S Fo(s, T)ds =5(C6 C8 )Fo(0)4a ~4
3 a 0

—25(cs+3C7)f SFo(s, ~)ds
0

+O(Fi, F2, . . . ) . (39)

Omitting from the right-hand side (RHS) of Eq. (39) the
small terms containing F„Fz, etc. , Eq. (39) is rewritten
as

a =5c9(a)FO(0)—5c,o(a) SFO(s, ~)ds, (40)

where

3a 3a
c9 = (c6 cs ) and cio — (c5+3c7)

Recalling that 1 —3 cos 8= —2P2(cosB), from normali-
zation and orthogonality properties of the Legendre poly-
nomials, it follows that

f F~(s, r)s ds =0 . (38)

Multiplying Eq. (34) by s, integrating over the velocity,
and exploiting Eq. (38), the following equation for a (t) is
obtained:

5f "sF ds= f" s F ds=&v„s ),
0 0

(41)

representing the mean energy dissipated by the Coulomb
collisions. By construction, when Eq. (40) holds, the an-
isotropic part, F2 is much smaller on average than Fp.
Equation (27) for Fo and Eq. (40) for a(~) form the sys-
tem of two coupled equations, which substitutes the
kinetic equation, Eq. (2), with the restriction that the
averaging over the field period has been performed. Of
course, the proposed procedure can be considered corn-
plete only when the calculated Fo and a (~) give F

&
((FD,

Eq. (32). When this inequality is satisfied, all the LPE
coeScients are small compared to the first one, Fp.

As we show below, this goal is made easier by exploit-
ing the assumption of Eq. (36), i.e, values of a(~) exist
such that, on the average, the F(s, r) is isotropic. From
Eq. (12), with p(u, t) =F(s,~), we have the following rela-
tion:

the case of small anisotropy, for which the heating rate is
proportional to Fo(0) [13]. The factor before a, in Eq.
(40), namely the mean energy, is in some sense the factor
of inertia, reAecting the resistance of the collisional plas-
ma to increasing the difference between the longitudinal
and the perpendicular temperatures. The remaining term
on the RHS describes the transfer of the energy from the
longitudinal degree of freedom to the perpendicular one.
It is interesting to note that the integral appearing on the
RHS of Eq. (40) may be written as

The behavior of c9 and c&p as functions of a is shown in
Fig. 5. Equation (40) has a clear physical meaning and al-
lows an insight into the essence of the laser-plasma in-
teraction. The first term on the RHS of Eq. (40), being
always positive, describes the plasma heating by the laser
field, which directly sets up the ratio of the longitudinal
to the perpendicular temperature. Note the analogy with

f ugly(u, t)d u
&u,')=, =&s', )fg(u, t)d u

(43a)

(42)

where &y)„=fp(u, ~)d u, and &F),= fF(s, w)d s Be-.
sides,
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and

&a,') =a'(~)&s,') . (43b)

s'=s/W( T),
G'=G W0 (47)

Using the relation (36), together with (43a) and (43b), we
get

letting a /a =a, the heating equation and the SS EDF are
found to be

(44)
5%9

W =8';+ 25 — T
3ci

(48a)

V. SELF-SIMILAR MODEL SOLUTIONS

In this section we consider solutions of our equations
for the two opposite cases of small and large anisotropy.
In the case of small anisotropy, the solution is known
(see, e.g. , [4]). We consider this case, too, because our
equations, for a small but finite degree of anisotropy, al-
low the possibility of finding corrections to and improv-
ing upon the known result. Besides, the small anisotropy
case serves as a check of our entire procedure. For the
second case (large anisotropy), to the best of our
knowledge, no accurate solution is known.

A. Small but Snite anisotropy

From Fig. 2 we see that the coefficients c2(a) and
cio(a) for a & 1.3 are, respectively, much smaller than
c, (a) and c9(a). Under this condition, we can simplify
Eqs. (29) and (40) to the case of small anisotropy in the
scaled, oscillating frame, letting a = 1 and obtaining

, aG,
s

a7.

~ 3 ci BG0=' —'' G.+5 '
(45)

Bs a 3 s Bs

a f s Gods =BC~(a)Go(0) . (46)
0

With the transformation T=j5c
&
d r and the SS trans-

formations

Thus, the squared scaling function a (r) is twice the ra-
tio of the average parallel to the average perpendicular
kinetic energies (evaluated in the unscaled, oscillating
frame) [19]. To some extent, Eq. (44) makes unnecessary
the self-consistent solution of Eqs. (27) and (40). As done
in Ref. [15] (see, especially, Fig. 7), we first find numeri-
cally a(r) in the unscaled, oscillating frame and then con-
centrate on the approximate solution of Eq. (27) in an
efFort to find F0 analytically for the calculated values of
a(~). Examples of this procedure are worked out in the
next section for such time intervals that the establishment
of the SS solutions is an outcome of the EDF evolution.
We conclude by observing first, that if the relation (44) is
taken as an "ansatz, "Eq. (40) for a(r) is readily obtained;
second, that the integrals (18) have been approximately
evaluated under the assumption that a (r) & 1. The latter
assumption expresses the expectation (corroborated by
numerical calculations) that a linearly polarized laser
electric field along the u, direction will yield on the aver-
age a fiattening at the pole's (oblate) distribution (see Fig.
1). Thus, Eqs. (27) and (40), in their present form, are not
suited to treat the case when a(r) & 1, i.e., if the field ac-
tion produces an elongation towards the pole's (prolate)
distribution.

G'(s') =G, exp( —s'), (48b)

where W, is an initial value and K9=c9(1)G'(0)/
f 0"s' G'ds'. The normalization condition gives

G; =0.2672. We observe that the usual SS solution of Eq.
(11) [4] for W(r) does not contain the last term in the
brackets of Eq. (48a).

In the range 1 &a &5, the function c9(a) can be ap-
proximated by the expression

2(a+2)
c9 a

15a

Using Eqs. (49) and (26) in the limit a ~1, we find

a =1+—', ln 1+5 6~
(50)

W=(W, '+Sar)'", (51)

which show that heating proceeds slower than in Ref. [4].

B. Large anisotropy

This regime (a »1) may be described by the equations

, ~G0 a a s' BG0
s = — G0+5C2s

Bw Bs a 3 Bs
(52)

QO 00

a s Gods= —5cio(a) sGods .
0 0

Making the SS transformation of Eq. (47), from Eq. (52)
we get

WWs' G'+ W — G'+ s', =0, (54a)

aW 5ICio

where W=dW/dTand

f "s'G'(s')ds'
45

s' G'(s')ds'
0

(54b)

(55)

having used the approximation c io = ( 15/26)a.
Furthermore, making the approximation c2= —,'„ the

SS solution to Eq. (52) is obtained as

G'(s')=G;exp( —s' ),
provided that

3WW —4'5 —95c2 =0 .52

(56)

From Eqs. (54b) and (57) the heating equation and the
time behavior of a(r) are easily found to be
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W(r) =( W + '"—5r)' (58) VI. CONCLUDING REMARKS

135 6~a(r) =ao 1+
S2

—1/3

(59)

By construction, Eq. (59) is valid for values of a(~) con-
siderably larger than unity, and while a(r) is predicted to
be a decreasing function of time, its time behavior is
correct only at times for which a(r) is larger than at least
3. For larger times, one must use other expressions, ap-
propriate to small values of a(r). Equation (56) is a SS
EDF in the scaled moving frame, appropriate to the case
for which a(r) is considerably larger than unity, and is
one of the main results of this paper. Equation (58)
makes it possible, in a relatively simple way, to calculate
processes and properties of plasmas corresponding to our
model, when the laser field strongly distorts the EDF.

To express the obtained SS EDF in the fixed laboratory
frame, we must perform the transformations required to
go back to that reference frame. First, we make the re-
verse transition from self-similar variables to those of the
scaled moving frame:

1 S 3

F(s,~)=Fr exp
W (r)a(r) W (r)

(60)

Q~
S —Qg+

a (r)
(61)

Finally, we make the back transformation from the mov-
ing frame to the fixed one:

with II the normalization factor. Second, we remove the
scaling in the parallel direction:

We have shown that it is possible to use the Legendre
polynomial expansion within a fast converging scheme to
determine approximate electron distribution functions
when the plasma-laser interaction is expected to cause
strong alteration of the electron velocities.

The basic concept is that of working in an oscillating
frame, in which the coordinate axis is scaled according to
the physical situation created by the given external field,
with the aim of restoring as much as possible, on the
average, an isotropic distribution.

Specifically, we have considered a linearly polarized,
homogeneous, and single-mode laser field. Besides devel-
oping the basic equations for numerical calculations for
arbitrary times and degree of anisotropy, we have also
addressed the existence of approximate self-similar solu-
tions. Checking our equations in the case of small anisot-
ropy, we recover and improve upon the result first ob-
tained by Langdon [4]. For large anisotropy, we obtain
an analytical self-similar solution, which is one of the
basic results of this work. This self-similar solution
should prove useful in several issues of plasma behavior
under the action of strong laser fields. We are confident
that the ideas presented will prove useful in similar plas-
ma situations. However, the best way to assess the poten-
tial of these ideas is to perform parallel calculations, us-
ing more familiar procedures along with the present one.
We note that our procedure was prompted by the numer-
ical calculations of Ref. [15].

Investigations aimed at extending the ideas presented
here, as well as application of some of the reported results
to the study of relevant plasma characteristics, will be un-
dertaken in the future.

[v, +u, sin(cot ) ]
Q =Up+

a'(r)
(62)
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