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Direct Monte Carlo sampling of the short-range screening potentials for classical Coulomb liquids
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A Monte Carlo (MC) simulation scheme to sample directly the screening potentials for Coulomb
liquids at short interparticle distances is formulated on the basis of the importance sampling techniques.
It is applied to the one-component plasmas at various degrees of the Coulomb coupling to obtain the
screening potentials with high accuracy; a fitting formula for the MC values of the potentials is present-
ed. The results for the screening potentials at zero separation are compared with those obtained in vari-
ous approximation methods, and are utilized for the analyses of the excess free energy for binary-ionic-
mixture plasmas through a thermodynamic self-consistency equation with respect to the screening po-
tentials.

PACS number(s): 52.25.—b, 61.20.—p, 05.20.Cxg

I. INTRGDUCTIGN

Classical Coulomb liquid, a collection of charged parti-
cles with the same sign, is one of the fundamental systems
in statistical plasma physics [1], and offers an accurate
theoretical model for the interior materials of dense as-
trophysical objects such as white dwarfs [2,3]. The inter-
particle correlations and thermodynamic properties for
the liquid have been studied by various kinds of theoreti-
cal methods including integral equation formalisms [2,4]
and Monte Carlo (MC) simulation techniques [5,6].

The screening potential [7,8] is defined as the
differential between the potential of mean force and the
bare Coulomb potential in such a liquid. Accurate values
of the potentials at short interparticle distances are essen-
tial in various phases of the theoretical calculations: The
enhancement factor of the nuclear reaction rates in the
liquid due to many-body correlations may depend sensi-
tively on the short-range screening potentials [9]. The
screening potentials at zero separation play important
roles in the theoretical investigation of the equation of
state for binary-ionic-mixture plasmas [10].

MC simulations for the Coulomb liquids have been
performed to obtain the screening potentials from first
principles [9,11]. Due to the strong Coulomb repulsion
at short interparticle distances, however, the potentials
could be sampled directly in the MC runs only for the
distance r ~ a = (4vrn /3) '~ (n denotes the mean density
of plasma particles) in the strong coupling regime [9].
Various approximation schemes [8,9] which exploit the
MC values at r & a, as well as the short-range expansion
[12] of the potential with respect to r, have been pro-
posed to evaluate the potentials at r & a.

In this paper, we present a MC simulation scheme to
sample the screening potential for such a Coulomb liquid
at short distances, i.e., r Sa. In the scheme, sampling
probabilities at r & a are enhanced by introducing an at-
tractive interaction potential between two particles in the
liquid in addition to the Coulomb potential. The present
MC scheme is applied successfully to the one-component
plasmas to obtain the short-range screening potentials

with high accuracy at various values of the Coulomb cou-
pling parameter. Values of the screening potentials at
zero separation obtained in those MC runs are compared
with those obtained in approximate theoretical methods,
and are utilized to investigate the excess free energy for
binary-ionic-mixture plasmas through a thermodynamic
self-consistency equation with respect to the screening
potentials.

g f dr;5(r —r,2)exp( —P@~)
g(r)=g(r)= V'

g f d r; exp( —pC&~ )

(2)

Here r, 2 =
~ r, —r2 ~

and @& denotes the total interaction
potential in the system calculated as

N —I x (Ze)2 N Ze
+pb g f dl

z =1 g =1+1 E=I

+'," fdrfdr
with the charge density pt,

= ZeN/V for backgr—ound

II. DIRECT SAMPLING SCHKMK
FGR SCRKKNING PGTKNTIALS

For simplicity, we consider a one-component plasma
(OCP) [2,13] consisting of N point particles with charge
Ze embedded in the uniform background charges of
volume V; the position of the particle i E [1,2, . . . , N] is
denoted as r, The thermodynamic state of the OCP is
characterized by the Coulomb coupling parameter

P(Ze)
a

with the ion-sphere radius a =—(4n.N/3 V) '~, and the in-
verse temperature in energy units P = 1/ktt T.

The radial distribution function, i.e., joint probability
of two particles at an interparticle separation r, is defined
as [4)
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charges.
The screening potential is defined in terms of g(r) as

[7]

H(r)= +—ln[g(r)] .(Ze) 1

r

Accurate values of H(r) at short distances are essential in
the improvement of the liquid theory through analyses of
the short-range bridge function [14], as well as in the cal-
culation of the enhancement factors for the nuclear reac-
tion rates due to many-body correlations [9].

In the usual MC simulations for the OCP's [5,6], one
generates a series of particle configurations in proportion
to the probability function p ( [r; ] ) ~ exp( —p@2v ). Sam-

pling probabilities for g (r) at r «a are extremely small
in number due to the largeness of (Ze) /r, 2 in @1v at
r12=r «a. Qgata, Iyetomi, and Ichimaru (OII) [9] per-
formed extra-long MC runs for the OCP's at I = 10 and
at 160 using N=432 MC particles to sample H(r) at
short distances. The minimum values of r12 sampled in
their runs were 0.4a at I =10 and 1.1a at I =160. We
note in this connection that their MC values of H(r) at
I = 10 contained relatively large error bars for
0.4a ~r &0.5a, as depicted by open circles with error
bars in Fig. 6 (below).

We may enhance the sampling at r + a by introducing a
fictitious attractive potential w (r,2) between the two par-
ticles, i=1 and 2. This idea is realized by rewriting g(r)
in Eq. (2) as

N

f dry~(r r12)e"p[ P~'1v Pw ("12}]e"p[Pw("12}]
g(r)= V

N

g fdr;exp[ —PC 1v
—Pw (r, 2 ) ]exp[Pw (r, 2 ) ]

G (r)exp[Pw(r)]

G 1101m
(5)

with

G ( )=I'(&( — ))

G„"" = (exp[Pw (r,2)] )

where

erfc(a, r,2/a) 12
pw(r12)= —I +a26a r12 a a

2

erfc(x) = f exp( t )dt . —
with the complementary error function defined as

(10)

N

f d r; A exp [ —P42v —Pw ( r, 2 )]
(a).—= '

„'

+ fdr;exp[ —P@1v—Pw(r12)]

for any function A. We note that g(r} in Eq. (5) is in-
dependent of the forms for w (r,2). Equation (5) signifies
that g (r) for the OCP may be obtained from MC simula-
tions for a different system with the total interaction po-
tential

Values of a1 and a2 in Eq. (9}are chosen as

(0.85, 5.0)
(0.85, 3.0)

2'= (O. 85, 1.O)

(0.85, 0. 1)

at I =10,
at I =40,
at I =80,
at I =160,

III. MONTE CARLO SAMPLING RESULTS

for the purpose of importance sampling at 0 ~ r 5 2a.

1v+ W (r12 } (8)
A. Screening potentials for OCP's

In such simulation runs, the potential w(r, 2) acts to
enhance the sampling at short distances, since MC
configurations are generated with the probability
p'( j r, I ) ~ exp( —pC&Iv).

An explicit formula for w (r12) suitable for the direct
MC sampling of the OCP H(r) at r &2a may be deter-
mined by taking into account the following requirements:
(i) w (r, 2 )~—(Ze) /r, 2 at r,2~0, and (ii)
(8/Br12)[w(r, 2)+(Ze) /r, 2]&0 at r,2&2a. Require-
ment (i) acts to reduce the Coulomb potential between
the two particles (i= I and 2) at r 12 =0; and (ii) is
effective to bound the two particles within r, 2 ~2a. We
thereby adopt the following formula for w (r 12):

We have performed MC simulation runs for the system
with the total interaction potential NIv in Eq. (8) at
I = [10,40,80, 160] using N= 1000 MC particles to obtain
QCP H(r) at short distances. Starting from a
configuration in which r2, r3, . . . , r1ooo are distributed
randomly and r1=r2, we have generated a series of MC
configurations following the Metropolis algorithm [15].
The particle i to be displaced on trial in the algorithm
was chosen with the probabilities 25%%uo for i = [1,2I and
O.OS%%uo for i =[3,4, . . . , 1000I. In each run, we waited
for the initial interval of c/X=O —+16X10, where c
denotes the sequential number of MC configurations, un-
til the system reached an equilibrium state.
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FIG. 1. Sequential evolution of —lnG„"" in the MC run at

I =160. Values of the parameters in w(r, 2) [Eq. (9)] are

(al, a&) =(0.85,0.1). Each data point is obtained as the average
over the period of hC/N =8 X 10'.

FIG. 3. MC results for I3H(r)/I at I =160. Solid circles
represent present results, open circles the OII results in Ref. [9].
The solid curve represents the fitting formula [Eq. (14)].

Averages G„(r) and Gno™in Eqs. (6) were calculated
from the sequential MC configurations in the period of
c/X =16X10 ~112X10 as follows: We first construct
the histogram EX&(k) of r,zE[d(k —1),d(k)] with
d(k)=0. 04ak (k =1,2, . . . ). Denoting the volume of
the bin as b, V(k)—:(4m/3)[[d(k)] —[d(k —1)] I, we
thereby evaluate the quantity G (r) and G"" as

~lV, (I) g™x&V(k)
tu ( I —(1/2) ) g 1/.

(12)
", bXi,(k)

max

AX@(k )exp(Pdk ( i /p) )

G norm k=1
W

max

g bXi, (k)
k=1

(13)

where dk (»z) ——[d(k —1)+d(k)]/2, and k,„corre-
sponds to the maximum number of k with b.X&(k))0.

Figure 1 shows the sequential evolution of Gno™[Eq.
(13)] obtained in the MC run at I'= 160; each data point
was obtained as the average over the short interval of
hc/X=SX10. MC data for Gno™appear to be fluc-

tuating uniformly as a function of c/X, which is a mani-
festation of the equilibrium state. We find from Fig. 1

that ln6"" = —16.2+0.5.
MC values of G„(r) [Eq. (12)] at I =160 are depicted

in Fig. 2. As was intended, MC samplings were well per-
formed for 0 ~ r & 1.7a. Relative uncertainty
~5G (r)/G„(r)~ at each value of r is about 0.07 for
0 ~ r + 1.5a, which is much smaller than that of

~

5G"' /G no™
~

-e =0.6. Hence the accuracy of
H(r) defined in Eq. (4) with Eq. (5) depends mainly on
that of G"" in the present sampling scheme.

Figure 3 displays the MC results for the normalized
screening potential, PH(r)/I', in Eq. (4). The solid cir-
cles with error bars represent present MC results calcu-
lated through Eqs. (4) and (5) using values of Gno™and
G„(r) presented in Figs. 1 and 2; the open circles with er-
ror bars, OII MC results in Ref. [9]. Present data agree
with the OII data to within their error bars for
1.1a ~ r ~ 1.7a where both data exist. For r & 1.1a, while
no OII data exist, the present MC scheme can predict
PH (r)/I with high accuracy.

Present MC data for PH (r) /I at different values of I
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FIG. 2. Sampling results for G (r) obtained in the MC run at
I =160. Values of the parameters in w(r, 2) [Eq. (9)] are
(a„a ) =(0.85,0.1).

Flax. 4. MC results for PH(r)/I at I'=80. Solid circles
represent present results, the solid curve the fitting formula [Eq.
(14)].
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FIG. 5. Same as Fig. 4, but at I =40. FIG. 6. Same as Fig. 3, but at I = 10.

are depicted as solid circles with error bars in Figs. 4
(I'=80), 5 (I =40), and 6 (I =10); they are accurate for
0& r &2.0a at I =80, for 0& r & 2.0a at I =40, and for
0&r &1.8a at I =10. At I'=10, present MC data agree

with QII MC data to within their error bars for
0.4a & r & 1.8a as seen in Fig. 6.

A useful fitting formula for the present MC values of
PH(r)/I applicable at 5 (I (180 is obtained as

A, —
—,'x [1—exp( —A~/x)] for x ( A3,

PH(r)/I = .
A4 —Asx+ —exp(26&x —A7) for A3 (x (2

(14)

with x = r /a and

A
&

= 1.132—0.0094 lnI, A2 =2.55 —0.043 lnI

A3 1.22 —0.047 lnI, A4 = 1.356—0.0213 lnI

A 5 =0.456—0.013 lnI, A6 =9.29+0.79 lnI

A7 =14.83+1.31 lnI

(15)

Considering that the coefficients in the expansion (16)
take on h, = —I /4 and hz/I =0.00+0.01, OII adopted

polynomial formula [PH (r) ]o» = [PH ( ) lo»—( I /4)(r /a)2 for pH (r) at r (r;„. Values of
[PH(0)]o» and r;„were determined from the condition
that [pH(r)]o» connects smoothly at r =r;„with the
OII MC data for pH(r) obtained at intermediate dis-
tances. OII thereby found in Ref. [9] that

Formula (14) is represented as solid curves in Figs. 3 —6
to demonstrate its accuracy.

It is known that the short-range screening potential
may be expanded as a power series of r [8,12,16]:

PH(r)=ho+hi(r/a) +h2(r/a) +O(r )

at r=0 .

The liquid theory gives the identity h, /I = —
—,
' [7,16].

On the basis of the direct MC calculation with respect to
h2, it has been concluded that hz/I =0.00+0.01 [8,9].
Present formula (14) for PH ( r) /I reduces to
PH(r)/I = 2i —(1/4)(r/a) +0(r/a) at r =0 in accor-
dance with these investigations.

B. Screening potentials at zero separation

[PH(0)]o»=l (1.356—0.0213 lnI )

—I (0.456—0.01301nI ) (17)

TABLE I. Values of the screening potentials at zero separa-
tion. PH(0) refers to the present MC result, [PH(0)]oii to the
OII evaluation [Eq. (17)],aud [pH (0)]ii92 to Rosenfeld's evalua-
tion in Ref. [17].

Rosenfeld (R92) [17] extrapolated the OII MC data for
13H ( r ) from intermediate distances toward r =0 by
using a polynomial formula [f3H(r)]„92=[PH(0)]z9z—(1/4)(r/a)2+h2 (r/a) . The parameter h2 was deter-
mined by considering the higher order derivatives of OII
MC data for 13H (r) with respect to r

Table I compares present values of PH (0) with

[PH(0)]Q» and with [PH(0)]it9$ at various values of I .

Various approximation methods have been proposed
for the evaluation of H(0); a comprehensive review of the
methods and their results are given in Ref. [8]. Here we
compare values of H(0) obtained in the present MC sam-
pling scheme with those obtained in approximation
theories.

10
40
80

160

PH (0)

11.18+0.11
43.92+0.32
87.20+0.40

173.28+0.48

[PH (0) loii

11.25
44.44
88.28

175.33

[PH (0) ]i~92

11.01
43.56
86.64

172.16
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from the linear mixing (LM) evaluation

fLM —
( 1 X )fOCP(r )+x fOCP(+ 5/3r )

is thereby obtained as [7,8]

gf HIM(2

2

2focp(r) focp(25/3r) pH(()) (20)

The LM evaluation f,„corresponds to the energy for
the state in which two species of particles contained in
the HIM are demixed totally. The sign and magnitude of
[(t)/»2)bf, „' ]x o play important parts in the analy-

ses of the phase diagrams for BIM's [10].
Table II lists values of [(t)/c)x2)b f,„' ]„ocalculated

through Eq. (20) at various values of I . Here present
MC values are used for PH (0); values of f,„are calcu-
lated from the fitting formula [6]

f,„"(r)= —o. 898 oo4r+ 3.s7144r'"
—0.882 8121 -'"
—0.86097 lnI —2. 526 92 .

Small but substantial deviations of PH (0) are found from
[pH(0)]o„at I ~40 and from [pH(0)]~92 at I ~ 10; it is
a manifestation of approximate natures contained in the
QII and 892 evaluations. Extent of such di6'erentials en-
larges as I increases for both cases; at I = 160,
PH (0)—[PH (0) ]o» = —2.05+0.48 and PH ( 0)

[pH ( 0 ) ]g92:1 . 12+0.48'
It has been shown that H (0) corresponds to the

difterential in the excess free energies before and after the
nuclear fusion[16]. We consider a binary-ionic mixture
(BIM) consisting of X, particles with Z, e and Xz parti-
cles with charge Z2e in volume V. Let f,„' (Rz, xz, I, )

denotes the excess free energy in units of N/p
(N =X, +%2) for a BIM with charge ratio Rz =Z2/Zi
and molar fraction xz=Xz/X at a Coulomb coupling
parameter I,—:P(Z, e) /a, with
a, = [(4m X/3 V)( I —xz+ xzRz ) ] '/; f,„(I), the ex-
cess free energy for the QCP. A thermodynamic self-
consistency equation with respect to the deviation

QfBiM(g X r )
—fHIM(g x r ) fLM

TABLE II. Calculated values of [(3/Bxz)hf, „™]„=oin Eq.
2

(20) at various values of I .

gf HIM (2
Bx2

10
40
80

160

—0.19+0.11
—0.40+0.32
—0.80+0.40
—1.60+0.48

value at I =I10,40,80, 160], and (ii) its magnitude en-
larges as I increases. It should be noted that the ending
(i) has been predicted by Ogata et al. [10] through MC
simulation studies for the HIM excess internal energies.

IV. C(ONCLUDING REMARKS
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%e have formulated a direct MC sampling scheme for
the short-range screening potential H(r) in a Coulomb
liquid. In the scheme, values of H(r) are obtained from
distribution of the interparticle distances between two
particles (i= 1 and 2), for which a fictitious attractive in-
terparticle potential to(r, 2) is introduced. The present
scheme is applied to strongly coupled QCP's to obtain
H(r) with high accuracy at short distances. Values of
H(0) obtained in the present MC runs are compared with
those in QII and R92 evaluations to find non-negligible
deviations from both QII and R92 values. Through the
self-consistency equation (20), with respect to H(0), we
find the inequality [(t)/Bx~)hf, „' (2,x2, 1 )]„o&0 at

I =
I 10,40,80,160].

Present value of PH(0) is smaller than [PH(0)]o» by
about 1% at I = 160, as compared in Table II. The prin-
cipal quantity controlling the thermal enhancement in
the nuclear reaction rates due to many-body correlations
is Eo =exP[PH (0) ] [7]. Such a small difFerential between
pH (0) and [pH (0)]o„, however, exerts significant
inhuence on the evaluation of Eo. At I =160, we may
obtain Eo(present) —0.3Eo(OII).

The present scheme for the importance sampling of
g (r) and H(r) at short distances can be applied straight-
forwardly to other systems with repulsive interparticle
potentials, whose results should contribute much to the
development of the liquid theory.

Possible errors contained in this formula [Eq. (21)] have
been assessed to be +0.004 at 5 ~ I"~ 180 [18]. We find in
Table II that (i) [(t)/t)x2)b f,„' ]„=ctakes on a negative

2

Most of the calculations were performed on the HI-
TAC S-3800/480 supercomputer at the computer center,
University of Tokyo.
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