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Propagation of an intense laser pulse in an underdense plasma is modeled by treating the electrons as a
cold relativistic Quid. For sufhciently short pulses, the ion motion is negligible. The disparities between
the optical, plasma, and propagation length scales are dealt with by using a multiple scales technique to
derive approximate equations averaged over successively larger length scales. This argument does not
require the quasistatic approximation (QSA) often used in earlier works, and it shows that, in the coordi-
nate system moving with the pulse, the Auid will exhibit transient temporal oscillations. Asymptotically,
i.e., for times that are long on the plasma scale, the transient solution approaches the QSA. The problem
of matching the transient (inner) solution to the asymptotic (outer) solution is solved by means of a uni-

formly valid, two-time expansion. The QSA is shown to suff'er from instabilities, which could cause seri-
ous problems for numerical simulations of long pulses, and an "improved-QSA, " suggested by the inner-

outer analysis, is demonstrated. An analytical solution for a planar, weak-field model is presented that
explicitly displays the transient behavior of the Quid. For a short, cylindrically symmetric, weak-field

pulse, numerical simulations that include relativistic self-focusing, forward Raman scattering, and pon-
deromotive forces show the importance of the transient eAects in a more realistic case.

PACS number(s): 52.40.Nk, 42.65.Jx, 52.35.Mw

I. INTRADUCTIQN

The fast igniter concept [1] for inertial confinement
fusion has produced a new surge of interest in the propa-
gation of intense (I & 10' W/cm ) laser pulses in under-
dcnsc plasmas. This problem has bccn stUdlcd fol some
time in connection with laser acceleration of particles [2].
The two applications difFer mainly in emphasis; the prop-
agation of the strong pulse itself is the main point of in-
terest for the fast igniter application, whereas the plasma
waves generated in the wake of the main pulse are the im-
portant phenomenon for laser wake-field acceleration. At
these very high intensities, the propagation of the pulse
and the generation of wake fields are highly nonlinear
phenomena. The standard analytical techniques used in
the study Qf linear propagation are therefore of little use,
and numerical simulation is required.

The general nonlinear propagation problem has been
extensively studied by means of particle simulations [3-5].
In principle, this method can include all the relevant
physics exactly, but the simulations are memory intensive
and long running. As a consequence of this practical lim-
itation most fundamental calculations are restricted to
one transverse dimension, and even these restricted com-
putations are still very time consuming. Since self-
focusing singolarities are difFerent in one and two trans-
verse dimensions, it is clearly essential to study the
inhuence of dimensionality. In addition to this funda-
mental 1ssUc, thc design Rnd interprctat1on Qf experiments
requires exploration of the parameter space. For this
purpose it is very desirable to have a suite of programs
that require smaller computational resources. After these

approximate simulations have located the appropriate
small range of parameters, more exact particle simula-
tions could be used to perform the final optimization.

The Auid model of the plasma that we use in this paper
has also been extensively employed in previous propaga-
tion studies [6-13], and it is much less computationally
demanding than particle simulations. The most basic
feature of propagation in underdense plasmas is that the
laser wavelength is small compared to the plasma wave-
length, which is in turn small compared to the difFraction
length. The presence of large ratios among the funda-
mental length scales leads to "stifF"' difFercntial equations
[14],both in the particle and fluid simulations. Stiff equa-
tions require special numerical methods, but there are
analytical techniques for which the disparity of length
scales is an advantage. These approaches, which include
the method of averages [15], multiple time scales [16],
and the renormalization group [17], are well known in
nonlinear optics [18] and plasma physics [19]. In the
present paper, we have carried out a multiple-scales
anRlys1s Qf thc combined Maxwell and 1clatlv1st1c Quid
equations. In this ploccdUlc thc opt1cal length and time
scales are explicitly eliminated, and phenomena occur-
ring on the plasma and difFraction scales are treated by a
two-variable expansion [20]. The approximate equations
obtained in this way are similar to those used in earlier
work [9], but our analysis provides a clear and explicit
derivation that shows that the equations represent the
leading order in a systematic expansion scheme. Further-
more, csscntlally all cxlstlng Rppllcat1ons Qf these cqUR-
tions also make the well-known quasistatic approxima-
tion (QSA) [21,22]. In the QSA, the electron Quid is as-
sumed to be stationary in the frame of reference moving
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with the pulse; there is no independent plasma dynamics.
In this approximation the Auid variables cannot satisfy
the initial conditions, e.g. , quiescent plasma, which are
physically required. Thus a complete description re-
quires some way of connecting the initial conditions to
the QSA. In our analysis, the higher-order time deriva-
tives are multiplied by the small parameter of the expan-
sion. This feature is known to produce solutions that
display boundary layer behavior [20]. In our case the
variable is time, so we will refer to the boundary layer as
th. e irlitial layer. Our arlalysis shows that there ar"e tran-
sient oscillations in the plasma that asymptotically ap-
proach the QSA result. For sufficiently large propagation
lengths, this initial transient behavior may not be impor-
tant, but experiments involving thin plasmas should re-
veal significant deviations from the QSA.

In this paper the laser pulse duration is assumed to be
short enough to allow the neglect of ion motions, and the
intensity high enough to drive the electrons to velocities
large compared to their thermal velocities in a few optical
periods. Under these circumstances the electrons can be
treated as a cold relativistic Auid. In a later paper we will
treat intense long pulses for which significant ion motion
is involved. For a typical laser wavelength of 1 pm, the
critical density is about X, =10 ' cm, and a pulse in-
tensity of the order 10' W/cm will produce a quiver en-
ergy of order 20 keV, which is large compared to the
plasma temperatures expected in current experiments.
The dynamical response of the electron Auid can be fol-
lowed in three dimensions, but we mill initially assume
cylindrical symmetry in order to decrease the computa-
tional costs. The Quid equations, together with the as-
sumption of paraxial propagation for the laser pulse, will
allow us to treat diFraction, ponderomotive e6'ects, and
relativistic self-focusing.

In Sec. II we present the exact dynamical equations for
the Auid model and discuss the choice of appropriate nor-
malizations. The slowly varying envelope approximation
is used in Sec. III to separate the optical frequency oscil-
lations of the laser carrier wave from the plasma
response, and in Sec. IV we derive a uniformly valid ex-
pansion of the field and the Auid variables in the small pa-
rameter 6=+%,/%, . We use the leading order in this
expansion to show the existence of transient oscillations
in the Auid variables that asymptotically approach the
quasistatic form, which has been frequently used in ear-
lier work [9]. The transient behavior is interpreted in
terms the inner and outer solutions employed in the
analysis of boundary layers. In Sec. V we present the ful-
ly relativistic model and exhibit the instabilities of plane-
wave solutions in the quasistatic approximation. The
case of weak Aelds, for which the electron motion is
weakly relativistic, is studied in Sec. VI, and exact solu-
tions for a one-dimensional (10) version are used to
demonstrate explicitly the approach of the initially quies-
cent Auid to the quasistatic limit. In this context we also
use the boundary layer analysis to construct an improved
numerical scheme that alleviates some of the stability
pr'oblems associated with the quasistatic approximation.
In Sec. VII the improved QSA is used in simulations that
display the interplay between difFraction, relativistic self-

focusing, and wake-field generation. Two additional
simplified models, which are valid for. arbitrary field
strengths, are brieAy discussed in Sec. VIII and Sec. IX
presents a summary and conclusions.

II. THE FLUID MABEL

Under the assumptions discussed above, the dynamical
equations are Maxwell's equation for the total elec-
trornagnetic field and the relativistic Auid equations for
the electrons:

V A=O (gauge choice), (2.1)

1 p 4m 1A= eX v+ QBt4'
C C C

(2.2)

V @=—4m[ —eX, +eXon;(r)], (2.3)

B,P+(v V)P=eVN+ —8, A ——vX(VX A), (2.4)
e e
C C

B,X, +V (X,v)=0, (2.5)

with the immediate consequence that the "vorticity"
0=V X (P —(e/c) A) is conserved [9,12]. The initial
conditions for our problem, a quiescent plasma and no
field, guarantee the initial absence of vorticity; therefore
the vorticity vanishes at all later times. This simplifies
(2.6) to [9,12]

P ——A =eVN —moc Vy .
e

(2.7)

Since our primary purpose is to study the propagation
of the laser pulse, we use the so-called "pulse" variables
[9] defined by

1Z=z ct, Z =ct, B, =—Bz, —B, =B 0
—Bz . (2.8)

C

The normalized equations for the Auid model are then

V.@=0 (2.9)

(Vi+28 OBz
—8 0)a=k gp+V(B o

—Bz)P, (2.10)

( Vi+ Bz )P =kp(y r) n; ), —

(a,—a )(p —a)=V(y —y),
(&zo —&z)(qy)+V (gp)=0,

1 =&1+&'

(2.11)

(2.12)

(2.13)

(2.14)

where coi, =4m Woe /m (plasma frequency), kz =co&/c
(plasma wave number), p=P, /(mac) (electron momen-

where 8, =—8/Bt, A and N are, respectively, the vector
and scalar potentials, P=moyv is the electron momen-
tum, X(r, t) is the electron density, Xo is the mean densi-
ty, and n,.(r) is the density profile of the iona. The force
equation (2.4) can be cast into the equivalent form

P ——A —v X 7 X P ——A =eyq —~2y~
(2.6)
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g=kpZ, ri=kpxi, T=Z /I ~ . (2.15)

Rewriting Eqs. (2.9)—(2.14) in these variables introduces
the dimensionless parameter

kp Q)p

k co

' 1/2
0

(2.16)

which is the characteristic diffraction angle for an
effective transverse aperture width k~ '. For underdense
plasmas 0 is the small parameter of the theory. The di-
mensionless equations are

V.a=0,
(V,'+2ea, a,—e'a', )a=gp+ eVa, y —Vay,
V /=re n;, —

(ea —ag)(p —a) =V(P —r ),

(2.17)

(2.18)

(2.19)

(2.20)

turn), il =N, /(rNo ) (ProPer electron density),
P=e&P/(moc ) (scalar potential), and a =—e A/(moc )

(vector potential). For 1-pm radiation the normalized
vector potential is lal =1 for an intensity I=1.73X10'
W/cm .

The dynamical response of the plasma is characterized
by the plasma frequency co&, and the initial Z depen-
dence of the entering pulse is characterized by the Ray-
leigh range corresponding to the transverse pulse width.
Since the plasma response may lead to transverse inho-
mogeneities of order kz, and typical pulse widths are
larger than k& ', the safest assumption is that the subse-
quent evolution of the pulse is characterized by the Ray-
leigh range corresponding to the width k&, i.e.,
Iz =kkz, where k is the central wave number of the
pulse. The Z dependence of the incident pulse is charac-
terized by the pulse length L =cT . For a nominal plas-
ma density X, =10 cm, a pulse width I. =k& ' corre-
sponds to a pulse duration T =2 fs. Such ultrashort
pulses are not currently of interest, so it is safe to assume
that I. & k '. Since the incident pulse envelope can be
modulated by the plasma response, the appropriate
characteristic length for measuring the pulse variable Z,
as well as the transverse coordinates x~, is k '. This sug-
gests the use of dimensionless coordinates, g, ri, and T,
defined by

III. THK SLOWLY VARYING ENVELOPE
APPROXIMATION

The rapid optical oscillations can be treated by defining
a dimensionless "fast" coordinate y:

ky=kz co—t =kZ=
kp 0

(3.1)

and imposing a strong form of the SVEA by the ansatz

X(ri, g, T,X)=Xo(ri, g, T)+Xf(ri, g, Ty),

Xf(ri, g, T,y)= —,
' g' X (ri, g, T)e™,

X (ri, (,T)=X (ri, g, T), (3.2)

where X represents any of the dynamical variables. The
primed sum indicates the omission of the m =0 term, or
equivalently

Xf(ri, g, T,X)=Re g X (ri, g, T)e'
m=1

(3.3)

This ansatz ignores counterpropagating modes, but does
allow for harmonics of the fundamental laser frequency.
Using (3.2) and the chain rule substitution

'Bg + 'Bg+ By
1

g X ' (3.4)

in the dynamical equations (2.17)—(2.22) yields an infinite
set of equations for the Fourier components of the
dynamical variables. These equations describe the evolu-
tion of the laser fundamental and its harmonics in in-
teraction with the corresponding Fourier components of
the material polarization. Since harmonics are not
present in the injected pulse, they can only appear
through beating of the laser fundamental with the funda-
mental of the polarization. Therefore the harmonics will
remain small, and they will not significantly affect the
evolution of the fundamental. Thus it is a good approxi-
mation to neglect all higher harmonics, i.e., all Fourier
components, X, with lm I

) 1 are dropped. This reduces
the dynamical equations to a finite set.

The m =0 (slow) equations are
V.ao=o, (3.5)

(V +2ea,a,—e'a )a =[imp] +eVa P
—Vap, (3.6)

V'0o= [rn]o n;—
(ea, —a, )(~r )+v. (~p) =o,
r =&1+p',

(2.21)

(2.22)

(eaz. —a&)(po —ao) =V(go —ro),
(ea —

a&)[~r ]o+v. [qp]o= 0,
ro= 1+po+-,'pi pi —

—,
' Irll',

(3.8)

(3.9)

(3.10)

where V =Vz+zB&.
The interplay between phenomena occurring on the

propagation scale I.z and the plasma response scale 1/kz
is complicated by the optical scale oscillations of the car-
rier wave. In the next section, we will separate out the
optical scale behavior by means of the slowly varying en-
velope approximation (SVEA), and in subsequent sections
deal with the remaining length scales.

where

[XY]o=XoYo+ —,'Re g X Y
m=1

(3.1 1)

The m =+1 (fast) equations are
(3.12)

[XY] =Xo Y +X Yo+ —,
' g' X „Y„,m&0 .
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a„=eva, ,

l
(V +2ia +2ea a~ —e a )a, = ——V P, +[imp ],+eV a P, —V ag, ,0

(v', +2ia, +2ea, a,—e'a', )a„=', y, +[~p, ],+ea,a,y, —'a—P, +ia,y, aP—, ,02 0
—Pi+2i cap) + e V pi =e [yri] i,
( ea —a~)(p„—a„)——(p„—a, ) =v, (p, —y, ),

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(ea T
—a~)(p„—a„)——(p„—a„)=a~($( —y ()+—(pi —y i), (3.18)

ea —
aq

——[ny]i+v I apl(+ —[np. ](=0 (3.19)

Po'P1
V1

~0
(3.20)

IU. TWO-UARIABLK EXPANSION

Our next task is to disentangle the plasma-scale and
propagation-scale behaviors. We first present a straight-
forward formal procedure to accomplish this end, and
then give a more detailed justification by relating our pro-
cedure to the method of matched asymptotic expansions.
The formal procedure begins with the introduction of a
second time scaling by r =k Z =k~L~ T=T/e. A
two-variable expansion scheme ([20], p. 115) is imple-
mented by treating T and ~ as independent variables and
using the chain rule substitution

guaranteed by (4.7); the result is

( V', +2i a, )a,",'= q,")a(,',), (4.9)

V a")=0
0 (4.10)

where go
' is the ~-averaged density. In Sec. IV A we will

see that go
' is in fact the density calculated in the quasi-

static approximation [9].
Using the conditions (4.3)—(4.7) in the slow equations

(3.5)—(3.10) yield the lowest-order equations, which form
the basis of our model:

1BT~BT+ 0
(4.1)

(4.12)

(V +2a,a~
—a, )a =i)' 'p' '+V(a, —a()P' ', (4.11)

(0) (0)
~o Vo '90

in (3.5) —(3.20). Each Fourier amplitude X is then ex-
panded as

(a a )(p(o) a(0)) —v(y(o) y(o))

(a a )(~(0)y(0))+v (~(0)p(0)) ()

(4.13)

(4.14)
X (r), g, T,r)= g e"X("'(r),(, T,r),

n=0
(4.2)

and the coefficients of equal powers of 0 are equated. El-
iminating the negative powers of 0 in the fast equations
(3.13)—(3.20) yields

~(0)—a (0) 0'Y1 az1

(0)—011

pP,
' =aI, '

( definition of quiver velocity ),
(0)— (0)

71 Jzl
g+(0) —0

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

and all that remains is the modified paraxial wave equa-
tion:

(Vt+2iaT)aI) +2ia~&'( =go aI)' . (4.8)

The first-order amplitude a(i')) in (4.8) can be eliminated
by carrying out a long-time average over the plasma-scale
variable ~, and using the ~ independence of aj 1'

We can relate the two-variable expansion presented
above to the standard technique of matched asymptotic
expansions ([20], Chap. 1) by noting that the derivatives
with respect to the propagation variable T, in Eqs.
(3.5)—(3.19), always occur in the combination ea T.
DiIIIerential equations in which the small parameter mul-
tiples the highest derivative terms typically display
boundary layer behavior ([20], p. 345). In our case the
situation is complicated by the appearance of negative
powers of 0 arising from the elimination of the optical
scale oscillations. In order to meet this difficulty we will
use a slight modification of the usual argument employed
in the method of matched asymptotic expansions. The
idea is to study the behavior of the solution in the limit
0~0. We first examine the equations by expanding the
solution in powers of 0 in the "outer" region, where T is
bounded away from the origin and the T derivatives are
finite. Eliminating the negative powers of 0 imposes the
conditions (4.3)—(4.6) on the leading terms in the expan-
sion. With these conditions in force, the fast equations
(3.13)—(3.19) reduce to the paraxial wave equation:
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(V'+2id )a' '= ' 'a'"' (4.15)

and all T-derivative terms are eliminated from the slow
equations (3.5)—(3.10). This is equivalent to setting all
the T derivatives to zero in (3.5) —(3.10), and the resulting
equations constitute the well-known quasistatic approxi-
mation [9j. In this limit the Iluid variables follow the
Acid adiabatically; therefore it is not possible to iInpose
independent initial conditions on them. This cir-
cumstance is not surprising since the order of the Quid
equations is reduced by setting 8=0, but it does require
further analysis in order to recover the freedom to im-
pose initial data. For this purpose it is necessary to con-
sider the solution in an infinitesimal [O(6)) j neighbor-
hood of the origin. This is the "inner" region defined by
finite values of the variable ~= T/8. The inner expansion
is obtained by setting Br =8,/49 and expanding in powers
of 0. Elimination of the negative powers of 8, again
yields (4.3)—(4.6), and in addition (4.7). In this limit
gBT~B so thc QldcI Qf thc Quid cquat1Q11s remains un-

changed, and arbitrary initial conditions can be accom-
modated. Thc inner RIld Outcr cxpRI1s1QIls dctc1II11ncd 1Il

this way must be matched at some intermediate time in
order to get a uniformly valid solution. The intermediate
matching region constitutes the boundary layer, or in the
present case initial layer. The dimensionless thickness,
I;, of the initial layer is order unity. In physical terms
this means that L; is large compared to the optical wave-
length and small compared to the Rayleigh range
(I/O «L, «I.~ ).

The two-variable expansion provides an alternative to
the explicit matching procedure. Thus the outer expan-
sion can be recovered by combining (4.8) with
(4.10)—(4.14), imposing r=r/0 (B,=OAT), and letting
6) —~0. The result constitutes the QSA for the Iluid equa-
tions:

(4.15)—(4.20). This means that iso
' will vanish at large r.

Thc scculaI' terms can thcIl bc avoldcd by lmposlng

q.a(0) —0

y2a — (0) (0) qg ~(0)la0 90 PO P 0

y2~(0) (0) (0)
9 0 ~0 IO ni

g (p(0) a(0)) —V(y(0) y(0))

g (q(o)y(o) )+V. ( g(o)p(o) )
—()

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

2E g~( i) —(0)a(0) /2a(0)'90 ax& (4.21)

The integration of (4.21) will in general lead to unaccept-
able (secular) terms proportional to r, since (4.6) shows
that RJ $ 1s independent Qf 7 To avoid th1s difhculty lct
us return to (4.8), and set, qo =qo +qo, where qo

(0) —(0) -(0) -(0)

satisfies the asymptotic (quasistatic) equations

Thus the QSA describes the asymptotic behavior of the
solution after the transient oscillations in the initial layer
have died out.

The inner expansion results from setting
T= &.(BT=8,/8), and taking the limit 0~0. When (4.7)
is used the result is simply to set the T derivative in (4.8)
to zero. In this case Eqs. (4.10)—(4.14) are unchanged
and (4.8) becomes

( V2+ 2 g )
(0)——(0) (0)

T @ll 10

2L 8+ = "g 8ll +0 @l1

(4.22)

This eliminates the erst-order term a~('j) from the zeroth-
order problem. , and identifies the long-time ~ average
with the QSA value.

We gather here the basic equations for the leading or-
der of the uniform expansion, with the simplified notation
a(l, ) —+aI (leading-order laser amplitude), ri(o '~il (charge
density in the local Quid rest frame), r)0

' —~i) (quasistatic
charge density), aorta (vector potential due to wake
motions), po( '~p (electron momentum of wake motions),

$0—+P (electrostatic potential), yo(
' —+y (electron energy).

At the same time we make use of (4.13) to introduce the
potential A by

(5.1)

This will allow the force equation (4.13) to be written in
either of two forms. The resulting set of equations is

8+1 0

( Vi+2i3T )aI =gaL,

7 a=—0

( V, +2B,B~
—B,)a =qp+ V( 8,—Bg)(t,

(8„—B~)A=/ —y,
(&,—&&-)(p

—a) = V((I) —y ),
(&,—&g)(qy )+V (rip) =0,
y=+I+p +(I/2)ar aL

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

A. The quasistatie approximation

As explained in Sec. IV, the solution of (5.2) —(5.10)
asymptotically becomes independent of the plasma-scale
variable ~. The asymptotic solution, denoted by g, etc. ,
will then obey the QSA equations [9j

(Vi+2iBT )aI =gaL

Vl al+Bp, =0,
Vial —'apl Vi~+ ~

(5.1 1)

(5.13)

The expression (5.10) for y is obtained by combining
(3.10), (4.5), and (4.4). The gauge condition (5.4) and the
continuity equation (5.9) are not both required; each fol-
lows from the other with the aid of (5.5). The propaga-
tion equation (5.3) does not include dispersion. In the ex-
pansion used here dispersive terms would first appear in
O(8 ), so dispersive effects are small for sufficiently un-
derdense plasmas.
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V & ='9P

Vig+Bg=pi) —n, ,

~~(p —a)=V(y —P) .

(5.15)

(5.16)

Following Sprangle et al. [9], we now show that the
quasistatic equations can be reduced to a pair of equa-
tions for the laser field aL and the wake potential

P =P —a, . Since the analysis is carried out entirely in the
QSA, the notation il, etc. , will be dropped. We first ob-
serve that the z component of (5.16) implies that
(y —/+a, —p, ) is independent of g. Since this quantity
has the value one for large positive g, i.e., before the ar-
rival of the pulse, we have

the divergence of (5.16), and using (5.12), (5.14), and
(5.17) to get [23],

dg4=yn ii; —Viy +~+'i pi . (5.23)

B. Plalle-wave stabHlty Of the QSA

The QSA is thus reduced to a pair of propagation equa-
tions, (5.11) and (5.23), for aL and g respectively, togeth-
er with the subsidiary equations (5.18), (5.19), and (5.21)
[or (5.22)], which define the variables y, il, and pi as
functions of f and al . The vector potential a can then be
calculated by integrating the transverse part of (5.16) to-
gether with the divergence condition (5.12).

S'. =y —(4+ I) . (5.17)
For a spatially uniform plasma, i.e., for n, (r)—:1, the

QSA has an exact plane wave solution given by

n, +V', it

1+ (5.19)

Under some conditions, e.g. , when cavitation is possible,
(5.19) may yield negative values for il. In this case the
right-hand side of (5.19) should be replaced by zero [6].
To find the transverse electron momentum p~, substitute
/=/+a, into (5.13) and use (5.12) to eliminate Bp„the
result is

This result allows y, given by (5.10), to be expressed as a
function of aL, pi, and g:

1+pi+ ( I /2)al .ai + (Q+ 1)

2(/+ 1)
5.18

The proper density i) can be expressed as a function of lt

by eliminating BP between (5.14) and (5.15), and using
(5.17) to get

0O=, yo=-+ 1+ Ao/2 .
(5.24)

aL0=uA0e

'9oyo 1 Po yo 1 pio

We now consider a perturbation to this solution of the
form

—iAOT
aL ~aLO+5al =u( Ho+63)e

4o+ ~4
(5.25)

28~SU = —7~6 V, (5.26)

and further write the complex function 63 in terms of its
real and imaginary parts, 6A =6U+i5V. The first-order
corrections for y, il, and pi are computed from (5.18),
(5.19), and (5.21). Linearizing Eqs. (5.11) and (5.23) in
this way yields

upi Vidual=V—iai Vi(Vi ai—) . (5.20) 28@6 V= Vi5U+ —(1—yoVi)5$,
70

(5.27)

Vipi —Vi( Vi.pi) —upi = Vidgl . — (5.21)

Thus pi is determined in terms of g as the solution of a
differential equation which only involves transverse
derivatives. In the special case of cylindrical symmetry,
the identity Vipi —Vi(Vi pi) =0 simplifies (5.21) to

1pi= —Vi~gl (5.22)

wherever ii%0. If cavitation occurs, i.e., i)=0 in some
region, then the cylindrically symmetric form of (5.21)
simply shows that ViB&$=0, and provides no informa-
tion about p~. This is of no consequence since the fluid
velocity has no meaning in the absence of any electrons
[6]. The remaining equation for g is obtained by taking

The curl of the transverse part of (5.16) gives

8&[Vi X (pi —ai) ]=0, which in turn implies
V J Xp J VJ X a~, since both p~ and a~ vanish at large pos-
itive g. This observation, together with the identity
ViX(ViXFi)=Vi(Vi Fi)—ViFi shows that
Viai —Vi(Vi. ai)=Vipi —Vi(Vi pi), therefore the trans-
verse potential ai can be eliminated from (5.20) which be-
comes

A0
(1+yoB~)5$= 5U .0 (5.28)

Fourier transforming these equations with respect to r~,

g, and T produces the dispersion relation

qi qi Ao(1+yoqi)+
3

4yo(yoq g
—1)

wh~re q„q&,and II are, respectively, conjugate to ri, g,
and T.

For yoq& & 1 the QSA dispersion relation (5.29) pre-
dicts growth rates that increase without bound as
~qi~ —+ ~. Similar results were obtained by Antonsen and
Mora [24] in the weak-relativity limit. Since q& is mea-
sured in units of the plasma wave number, kz, this means
that perturbations with wave numbers less than kp/+yo
will be unstable. Indeed when the dimensionless wave
number q& satisfies 0&(l —

yoq&) & Ao/(2yo), the pertur-
bation is unstable for all values of qi, and for large ~qi~
the growth rate increases as q~. Thus for longitudinal
momenta suKciently close to the critical value kz/Qyo,
the plane-wave solution (5.24) is unstable to perturbations
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VI. THK WEAK-FIELD LIMIT

As a first application of the model described above, we
will consider weak fields with laL l

(1. For example, as-
suming 1-pm radiation, the value lal =0.3 corresponds
to an intensity I=10' W/cm and a quiver velocity
U/c =0.3. The full equations (5.2) —(5.10) can then be ap-
proximated by keeping only the leading relativistic
corrections. This approximation has been previously dis-
cussed by several authors [24,28 —30].

Since the laser amplitude aL enters into the Quid equa-
tions only through the term laL in (5.10), the fiuid
quantities p, a, and n, where

(6.1)

are all first order in laL l
. Thus the p term in (5.10) is

second order and

) =1+-,'la, l'+O(la, l') . (6.2)

The expansion for g is obtained by inverting the
definition (6.1) of n:

on arbitrarily small transverse distance scales. The diver-
gence of the growth rate as lqil —+ ~ is an artifact of the
QSA and will be removed when a more accurate disper-
sion relation is used [25]. In addition, the finite duration
of a realistic pulse will tend to suppress the instability by
imposing a bound on the growth rates of small-scale
transverse perturbations. This effect will be most pro-
nounced for short pulses, but longer pulses more closely
resembling plane waves can be expected to show
significant pulse modulation. The existence of these
modulations can cause numerical instabilities that make
the use of the QSA for such simulations questionable. In
the context of the weak-field limit considered in the next
section, we will show how to improve the QSA so that
these instability problems can be reduced.

Another shortcoming of (5.29) is that it does not de-
scribe forward Raman scattering [26]. This follows from
the observation that Q=O when q~=0. This defect can
be repaired by including the leading dispersive term in
the propagation equation (5.3) [27]. This yields the
modified dispersion relation

0 = qi+0 qg qi+0 qg Ao(1+yoqi)+ . (5.30)
47'o()'oe g

—1)

The (9 terms are only significant for very small q~. For a
beam with finite spot size w, (qi), ,=1/w so dispersion
will be unimportant for spot sizes satisfying kzm ((1/0
(conventional units). This condition is well satisfied in
high-intensity experiments where the incident laser
beams are tightly focused. The subsequent self-focusing
of the beam renders dispersive effects even less important.

(Vi+2i~r)aL, = Iii;+ii —
—,'ii;lal. l'IaL, ,

T.a=O

(6.5)

(6.6)

(Vi+ 28,B~ B—,)a= n; a+n; VA+ V(B, B—~)P, (6.7)

(6.8)

(6.9)

In certain special situations the wake vector potential a
vanishes identically, The necessary conditions are ob-
tained by applying the curl operation to (6.7), and setting
a=O to get

Tn; XV'A=O . (6.10)

This condition is satisfied for a homogeneous plasma
(n; =1), and it is also satisfied in planar geometries for
which n, and A only depend on z. The latter alternative
will be considered in Sec. VI A, but for the remainder of
this section, we will assume that the plasma is initially
homogeneous.

For the case n; —= 1, the divergence of (6.7) combined
with (6.8) produces

and this, combined with the action of 8, =(8,—8&) on
(6.9), finally gives

[(I3,—B~) +1]n =
—,'V aL (6.12)

(6.14)

The weak-field model is completely specified by (6.4),
(6.5), and (6.12). Since (6.4) guarantees that the right-
hand side of (6.12) is independent of r, the general solu-
tion of (6.12) can be expressed as the sum of a special
solution independent of ~, and the general solution of the
homogeneous equation, i.e.,

n(r gi, T, r)=n(r gi, T)+n(r gi, T,r), (6.15)

where n(rL, g, T) and n(ri, g, T, r) satisfy

(6.16)

(6.17)

In this simple model the propagation equation (6.5) and
the quasistatic equation (6.16) formally decouple from the
equation for n, the ~-dependent part of the density, but
the solution of (6.17) must be chosen so that the total
density n = n + n satisfies the initial conditions at
T=0~=0.

Similar manipulations lead to equations for the potentials
P and A:

(6.13)

r)=n, +n ,'n, laI l
+ —. —. (6.3)

A. Exact 1D solutions

0 (6.4)

The weak-field equations are obtained by inserting these
expansions into (5.2) —(5.7) Useful insights into the weak field limit can be obtained

by considering a simpler problem in which the undis-
turbed plasma and the incident laser pulse are planar, i.e.,



independent of the transverse coordinates. Then there
are 1D solutions obtained by neglecting the transverse
dependence of all the variables. This simplification al-
lows us to examine explicitly features of the general solu-
tion, such as the transient behavior in the initial layer. It
is also important to point out that the same results can be
obtained for averages of the intensity and density over
the transverse coordinates, with no assumptions made
about the transverse profile of the input pulse. This can
be seen by integrating the Quid equations over the trans-
verse coordinates and using the conservation of the total
power passing through a given g plane. This results in
equations of the same form as those given below for the
1D case.

The condition (6.10), which implies a=O, is automati-
cally satisfied for planar geometries, even if the plasma is
longitudinally inhomogeneous. In order to allow for this
possibility, it is convenient to replace the potentials P and
A by the longitudinal Quid momentum, p =8&A, and the
longitudinal electric field, E = —BP. The dynamical
equations for p, n, and c are easily derived from
(6.7) —(6.9). The final simplification for this case is the as-
sumption that the inhomogeneous ion density is station-
ary, i.e., n;=n;(z), or c), n, =(B,—B&)n;=0. With this
fact in mind, manipulations similar to those used in the
homogeneous case lead to

21c)TRL, = [n;+n —
—,'n; IRL, I'}RL,

[(a,—a&) +n, ]E=——„' an&[ a

[(I),—BC)'+n, ]P =—,'B~/RL
' .

n= BE

(6.18)

(6.19)

(6.20)

(6.21)

Since n; =n,.(z) =n, ( g+ r ), the r-asymptotic form n;
represents the ion density deep in the plasma. We will as-
sume that the plasma density is uniform in this region so
that n; is a constant. Inspection of (6.18) shows that
BT~RL~ =0; so the right-hand side of (6.19) is indepen-
dent of T as well as r. The QSA electric field E satisfies

[c)&+ n; ]E= —,' n; c)& RL— (6.22)

which shows that the QSA density n is also independent
of T. Therefore (6.18) has the solution

RL (g, T)=exp ——[n, +n(g) —,'n, IL (g)]T RL—((,0),

(6.24)

where IL (g) —= ~RL ($,0)
~

. This exhibits self-phase modu-
lation of the laser pulse. The fiuid equations (6.19) and
(6.20) can be solved by reverting to laboratory coordi-
nates, i.e., (8,—8&)—+B„andmaking the change of vari-
ables u =Q(z)t, with Q(z) —=Qn;(z). This yields an ordi-
nary differential equation that can be solved by variation
of constants. With the initial conditions

with the same right-hand side, therefore it is also in-
dependent of T. The asymptotic limit of (6.21) yields

(6.23)

E(z, O) = c), E(z, O) =0, the electric held is given by

where 0(x) is the usual step function. The normalization
of L has been chosen so that the finite pulse has the
same full width at half maximum (FWHM) as the Gauss-
ian pulse exp( g /L~ )With this —form for , the pulse the
111tcglal (6.25) CMi bc CRlllccl out explicitly, and usccl to
produce the numerical examples presented below.

Denote the pulse duration in conventional units by T„,
then

T* == 0.56L /0 fs =0.56L QX,. /X, fs .

The current limitations of laser technology make
difficult to achieve high-energy pulses with durations
much shorter than 100 fs. For this reason, we will make
our numerical estimates using the practical lower limit
T*&100 fs for the pulse duration. Combining this re-
striction with (6.28) imposes a relation between the di-
mensionless pulse length and the small paramete, 6:

L ==1.790T'[fs] ) 1790=--1791/ X, /X„. (6.29)

In all the examples discussed in this section we choose
the initial time, I =0, as the arrival time of the leading
edge of the pulse at the beginning of the plasma region;

Xsin[Q(g+r)r'] .

As r~ ~, (6.25) shows that E(j,r)~E(g), which is a
solution of (6.21). Similar results can be obtained for
p(g, r) and n(g, r).

Study of the transient phenomena e "pected to occur in
the initial layer requires a careful consideration of the im-
tial conditions for the physical problem [27]. For this
purpose it is useful to replace the familiar Gaussian pulse
by a pulse with Pnite support, i.e., a smooth pulse that
vanishes outside some finite interval on the g axis. Let
the plasma occupy the region z &0, and suppose that
IL(g) vanishes identically for all g)0. Physically this
means that the leading edge of the pulse reaches the plas-
ma at t=o. In the region occupied by the plasma,
g+r) 0, (6.25) becomes

E(c„~)=—-„'-Q(g+r)J dr'BtIL(j+.r')
0

X sin[A(g+r)r'], (6.26)

so the r dependence comes entirely from Q(g+r)
=Qn; (g+ r), in other words from the longitudinai inho-
mogeneity of the ion density. In particular if the ion den-
sity 1s lloIIlogcilcous, tlicIl (6.26) llas llo 7 dcpclicicIlcc Rt

all, and it is easy to show that it satisfies (6.22). Thus the
QSA solution is in fact the exact solution for a finite pulse
entering a longitudinally homogeneous plasma.

A simple approximation to a finite pulse, peaked at
(=go, is given by

I, (g) = ~,'e(2&in2L, —~~---g, ~)

~(k —0o)
Xcos

,

4&ln2I.
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the solutions presented here are formally valid for any
pulse duration, no matter how large. Since the initial lay-
er thickness is several times the pulse duration, this im-
plies that the initial layer can be any size. For moderate
pulse durations, i.e., k L (( I/O, the initial layer thick-
ness for the planar solution agrees with the general scal-
ing argument presented in Sec. IV, but for long pulses,
k L ~ 1/6), the planar result gives a much larger initial
layer. This means that the planar result, although exact,
is not very useful for describing the propagation of a
transverse modulation. For this purpose, true 3D calcu-
lations are required. In the following section we begin
the study of transverse effects by considering the stability
of plane-wave solutions with respect to transverse modu-
lations.

B. A.n improved quasistatic approximation

The weak-field equations (6.4), (6.5), and (6.12) have a
plane-wave solution

—iQoT
al.o=uAoe flo= —,'(1——'Ao) ~ "o=O (6.30)

Assuming a perturbed solution of the form—iQOT
al =( Ao+5A)e ', n =5n and linearizing yields

-0.0005.

—0.001-

-0.0015

a,na =0,
(Vi+2i t}T)5A = Ao t5n —

—,
' AoRe(5A )j,

A0
[(8,—t}~) +1]5n = V Re(5A ) .

(6.31)

(6.32)

(6.33)

FIG. 5. Deviation from background density n(g, r) vs r at
the pulse peak, g= —99.9, (Z = —l. 1 mm) for
L =60 (T~*=2.2 ps). qi qi Ao(1+qt)

Q = +
4(q( —1)

(6.34)

Since these linear equations have the same structure as
the 1D equations studied in Sec. VI A, the solutions can
be obtained in the same way, and a Fourier transform
yields the weak-field limit of the dispersion relation
(5.29):

-100
4

-80

-0.0005-

-0.001-

-0.0015-

This result shows that, while the two-variable expan-
sion scheme does correctly deal with the transient
behavior in the initial layer, it does not escape the insta-
bilities associated with the (r asymptotic) QSA. In previ-
ous numerical simulations the QSA instabilities have
been treated by ad hoc filtering methods [24], but these
techniques do not arise naturally from the mathematical
problem at hand. On the other hand, the inner and outer
solutions discussed in Sec. IV do provide a natural
method for softening the singularities. In the outer form
of the weak-field equations, (6.4) would not appear and
the r derivatives in (6.12) would be replaced by t) ~Ot}T.
The linearized perturbation equations (6.31)—(6.33) would
then be replaced by

-0.002-
(Vi+2iBT)5A = AoI5n —'AoRe(5A ) j—, (6.35)

FIG. 6. n(g, ~) vs g at r= 111 (t=4. 1 ps) for
L~ =60 (Tp =2.2 ps).

[(Ot}T—t)~) +l]5n = V Re(5A), (6.36)

corresponding to the dispersion relation, see also [24,25],
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qi q~ ~ o 1+qua+2fL= +
4 (q~

—80) —1
(6.37)

4
qlc

1 3
0

1+q~,
(6.39)

This means that there are no unstable modes for trans-
verse length scales smaller than 1/qi, . The same analysis
shows that the growth rate I = ImA is bounded by
Ao/~ 8 when Ao &&8 and by Ao/8 when Ao))8.
Therefore the modified dispersion relation (6.38) elimi-
nates the unbounded growth rates of the QSA. Similar
results hold for the real part of the complex frequency, so
OQ satisfies either OQ &V OAo or Nl~ & Ao. This
justifies the approximations used in obtaining (6.38) from
(6.37), since the assumptions Ao «1 and 8 «1 guaran-
tee ~On~ «1.

The improved stability resulting from the approximate
dispersion relation (6.38) suggests the following
modification for the numerical simulation of the weak
field model. First recall that the version of (6.12) ap-
propriate to the outer expansion is

[a', 28',a,—+8'a', +i]n= ~V'~a, ~'. (6.40)

Now consider a diff'erence scheme for (6.5) with step size
AT. In the step Tj ~Tj + & Tj +AT, we replace the qua-
sistatic equation (6.16) by

[a&
—28a&a +1]n =

—,
'V' a, ~', (6.41)

where the O(8 ) term in (6.40) has been dropped, in line
with the approximations leading to (6.38), and the right-
hand side, evaluated at T= T, is independent of T. Thus
instead of allowing the quasistatic part of the density to
follow the field adiabatically, we determine the density at
T.+, by integrating (6.41). The improved stability associ-
ated with the dispersion relation (6.38) suggests that this
procedure will suppress the most damaging QSA instabil-
ity. The modified QSA equation (6.41) has been previous-
ly considered by Mori et al. [26] in connection with for-
ward Raman scattering.

C. Variational formulation of the improved QSA

It is known that the combination of Maxwell's equa-
tions with the relativistic Quid equations is a Hamiltonian
system [19], and the QSA equations [(5.11)—(5.16)] have
also been derived from a variational principle by averag-

which reduces to (6.34) for 8=0. The most serious insta-
bility in the QSA occurs at q&

= 1, where (6.34) has a pole.
In the vicinity of the pole, it is reasonable to neglect the
entire 0 dependence in the numerator and to retain only
the leading [O(8)] term in the denominator of (6.37).
This leads to the approximate dispersion relation

2 2 g2 1+ 2

4 q
—1 —2q 8A

For the critical mode q&=1, this cubic equation has no
complex roots outside the region qj (q~„where

ing the exact Lagrangian over the rapid pulse oscillations
[12]. It is therefore natural to expect that the improved
QSA equations (6.5) and (6.41) can also be derived from a
variational principle. For this purpose, the electrostatic
potential is a more convenient variable than the charge
density. The improved QSA equation for P is

[a',—28',a, +1]y=-,'~a, ~'. (6.42)

This follows from (6.13) by means of the substitution
8 ~OB T and the subsequent neglect of the 0 ( 8 ) term.
The improved QSA defined by (6.42) and (6.5) can be de-
rived from the variational principle

6f dt f dg f d ri [X,+X&+X;„,] =0, (6.43)

nl.
&.=i(aLa, a, —c.c. —V,a, l' n; a,—'+

8

(6.44)

+,=4(a,v'y)(oa, y)+2(a,vy) (a,vga ) 2vy—vy,
(6.45)

(6.46)

The Hamiltonian corresponding to (6.43) is

H=fdgfd ri'

+2(Vy)' 2(VaP)'+—~a, ~'V'y

VII. SIMULATIQN RESULTS
IN THE WEAK-FIELD LIMIT

We describe here simulations of the weak-field model
defined by (6.4), (6.5), (6.16), and (6.17). The propagation
equation (6.5) is solved by a spectral method for paraxial
propagation [33]. The paraxial evolution operator is
truncated at fourth order in hT, and the action of the op-
tical Hamiltonian is conveniently represented in terms of
fast Fourier transforms in the radial variable. This is a
fast and economical method, which avoids the difhculties
associated with Hankel transform techniques. The im-
proved QSA density equation, (6.41), is treated similarly.

The situation modeled here corresponds to conditions
similar to those simulated by Andreev and co-workers
[28,34]. The novel features of the present work are the
demonstration of angular dependence in the Raman spec-
tra, and the detailed calculation of phase histories. Our
results show a decided angular dependence of the spectra.
Our results are consistent with the experimental observa-
tions of Coverdale et al. [35,36] on the blueshifted part of

(6.47)

Since the Hamiltonian H is a constant of the motion, its
numerical value is determined by the in.itial conditions.
This fact constrains the later behavior of the solution,
especially with regard to possible singularities. In addi-
tion H satisfies a minimum principle, so it can be used as
the basis for approximate variational calculations.
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L 0 p
Z
L

(7.1)

the spectrum. The phase information allows one to pre-
dict experimentally observed amplitude phase reconstruc-
tions of the transmitted pulse by techniques such as fre-
quency resolved optical gating [37], which are now being
used to understand laser-plasma interactions [38].

The simulation results shown below represent a laser
with wavelength A, = 1 pm incident on a performed plas-
ma with density N, /N, =0.002. The paraxial parameter
8=0.04, so the plasma wavelength is A,~ =22.4 pm, and
the plasma length scale is 1/ki, =3.6 pm. The propaga-
tion scale used in our general analysis is the Rayleigh
range corresponding to transverse modulations on the
plasma length scale, Lz =kk~ =80 pm [kp

—2= L =22.4
=O(1/8)], which is small compared to the Rayleigh

2range for the initial spot size, L„=mw /A, =1.6 cm. The
incident field is both longitudinally and transversely
Gaussian:

2

with w =Lz =72 pm (kI, w =kI L& =20. 1), and
ao=0. 27 (Io= 1.1X10' W/cm ). The longitudinal
pulse coordinate Z=z —ct measures the distance from
th eak of the nominal (undistorted) pulse, so, for a fixed

0value of Z, the time coordinate Z =ct represents the
propagation distance into the plasma.

We study the development of relativistic self-focusing
and wake-field generation by calculations carried out at
increasing values of the propagation coordinate Z . Fig-
ure 7 shows the results for a propagation distance Z =4
mm (Z /L~ =49.7, Z /L„=0.24). Figure 7(a) shows
the radial dependence of the laser intensity and the elec-
tron density, evaluated at the nominal pulse maximum
(Z =0). Self-focusing is indicated by a slight increase of
the maximum normalized intensity ~al ~

from the in-
cident value of 0.073 to 0.084. Further evidence is given
in Fig. 7(c), which shows the radial variation in the
phase. The change in sign of the curvature of the phase
at the center is characteristic of self-focusing. The
smooth depression in the electron density in Fig. 7(a)
shows the expected expulsion of electrons from the region

Q 1 Q I
I

1 I I I
I

I I I I
I

I I

0.08

0.06

TO h, n/n
(&)

0 4

Q. 1 r r r r

0.08
~ ~ e,

~ ~ ~~ ~
~ ~

~~ ~ ~

~ ~ ~v ~ ~

ct=
0.06

I
~

~

e s, ~ ~
~

I
I

I I I I
I

I I I I
I

I I I I
I

1 I I I

I
I I I I

(b)

10 h, n/n

0.04 ct=4mm 0.04

0.02 -0.8 0.02 -0.8

0.00
0 50 100 150 200

r (pm)

0
-200 -100

Z (pm)

100 200

0.50

ct = 4mm

Q. 5Q i & I &

I
r r~&

I
& r 7 r-1 r m —

i
I

r i i i
I
« i i

I
r « I

I
i I

0.40

0.00 0.30

0.20

-0.50 0.1 0

0.00

-1.00 0 1 Q . i J.~J L~Li 1~i Lr ~.~i L~~~ i i i I ~~ I

50 100
r (pm)

150 200 -400 -200 200 400

~ ~ of 4 mm. (a) Radial variation of intensityintensit hase, and electron density after propagation distance o
Z =0. (b) Lon itudinal variation of intensity and electron densi-(solid line, left scale) and electron density (dotted line, right scale) at Z =0. ongi u ina va

'

ty at r =0. (c) Radial phase variation at Z=O. (d) Longitudinal phase variation at r =



1080 M. D. FEIT, J. C. GARRISON, AND A. M. RUBENCHIK 53

0.1 0
(a)—

10 an/n

0 ~ 1 0 I I I I ! I I I I I I I I ! I I I I ! I I I I ! 1 I I I 1

0.06

0.04

0.08

0.06

0.04

I

I

I

~ ~
I I

~ I I I 4 I~ I I II
I

0.02 0.02

0.00
0 50

Q. 5 ——r-~—T- ~

I ! I I I I

100 1 50 ZOO

r (p,m)

r r V T T
—T T r ~t- r

QQQ I It I I I I I I!
0

Z (pm)
-400 -200

~ 7 I I I I I I t I I I I I !0 I ! I I I I ! I I I

I I I I I I I I I I I I I

200 400

I I I ! I I I I ! I I I I

0.0

-0.5

-1.0 et= 6m

0.4

0.3

0.2

-1.5 0.1

-Z. O

0 50 100
r (p.m)

150 200

0.0
-0. 1

-400 -200 0
Z (p.m)

~LJ J lU Ll Ll LLt JJ lJ I ! I LLlJ l

200 400

FIG. 8. N. Normalized intensity, phase, and electron densit after ro a
Fig. 7.

'
y a er propagation distance of 6 mm. Same quantities are shown as in

0.1 2

0.1 0

0.08

0.06

0.04

O.OZ
I

Q QQ

0

t
I I I I ) I ~ ~

IO ha/n
(a)

0

ct=smm
— -2

4

! I I I I 3--a. i I I l

50 100 150 200
r (p.m)

1 2 I I I I ! I I I I I I I I I i I0. I

I

ct=
~ ~

ti ~~~ 1

a
li li li tt I

~ It ~,'~ ' ll 'I
~ Itill ~ I ~ I ~ I

~ Il I ll ~ I
II ~» I' ~

' ll
~

~I ~ I I I ~

~ II ~ I I ~ I ~
' 'I

~
I ~ I ~ ~ ~ ~ I I ~

' ~
'~ I ~ ~

~ I ~ I ~

~ I I I~ ~
~ I ~ I It II

I ~ I ~ ~ I ~ I 4
I ~ I I I I I ~ II, I ~ I' 1

~ it ~ Ill I I
I II I I ~ I II I ~

~ I, ~ I,~, II ~ I ~ l ~ I ~

I ~ I I I I I I I
~

~ II ~ I I I ~ I ~
I ~ I II

~ I I ll
I

~ ~ I tl ~ I ll I
I ~ ~ I ltlli I I

~ ~ ~ I ~ I I Ii
I

~ I ~ I ~ I ~ I ~

I lt it ~ I ~ I ~

it it ~ I ~ I ~

I ~
'

~ I ~ I ~

I I'
~ ~

~ I ~ I

~ ~

j
'I ~

I I

n

I I I I I
~ I I II I
I ~ ~ ll

O. l

0.08
q ~

' ~

I
~ tl I I II I I

II I I I I tt ~ III I I I ~

~ ~ I It till
~ I III I ~ ~ I

~ ~ I I I
~ I I I ~ ll ~ ~I II

I I I ~ ~ II I ~ I
II I I ll ll I ~

I

~ ~
II

t

0.06 I I
~ ~

~ I
~ I
~ ~

~ I
II
~I0.04

O.OZ

I I I !0

' ! ' ' ' '
!

' ' ' ' 10 AIl /Il3

8mm (')-
10

, ll ~ it~ ~ ~ ~ ~
'~~ ~

- 1
I I,r ~ ~ ill, ~,

~ I ~ 4 ~i

I ! I I I I ! I I

-400 -200 0 200 400
Z (pm)

0.2 I I

0.0
{c)

, Q ' T T 1 1 T 1 T 1 6 1 1' 1 'I T1. ] 7 1 T"!"T r 1 7
1

TTT 1 7 1 1 &1 t tMT 1

0.8

-0.2 0.6

0.4

-0.6 0.2

-Q. 8 0.0

0 50 100
r (pm)

FIG. 9. Normalized intensity, phase,
Fig. 7.

Q 2 I « I ! I I « I I I I t ! I « I ! !I I I I I I I I I I I I

150 200 -400 -ZOO 0 200 400
Z (p,m)

and electron density after propagation distance of 8 Smm. arne quantities are shown as in
~ ~



53 SHORT PULSE LASER PROPAGATION IN UNDERDENSE PLASMAS 1081

.1 30.
10 An/n

I I
I

I I 6

0.1 2

0.1 1

0.1 0

0.09
0

0.08

07 I I I I « I I I I I I I I I I0.
0 2 4 6 8

ct (mm)

- 4
10

FIG 10. Axial development of normalized intensity (solid
line, left scale) and electron density (dotted line, right scale)
showing self-focusing and the onset of forward Raman scatter-
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of highest intensity. This effect can also be seen in Fig.
7(b), which displays the on-axis intensity and density as a
function of the longitudinal pulse coordinate Z. This plot
also shows the large-amplitude density oscillations behind
the pulse. These are wake-field oscillations at the plasma
wavelength. The small-amplitude density oscillations in
advance of the pulse represent aliasing effects due to the
use of a finite numerical Z window. The amplitude of
these spurious waves is decreased by using a window,
which includes more of the wake region. In these calcu-
lations the presence of the spurious plasma oscillations in
advance of the pulse had no apparent effect on the subse-
quent evolution of the pulse, but such effects are possible

when the plasma is seeded with oscillations [34,39]. The
phenomenon of self-phase modulation is seen in Fig. 7(d)
which shows the on-axis laser phase as a function of Z.

Figure 8 shows the situation after propagation through
Z =6 mm (Z /Lz =74.51, Z /L„=0.36). In Fig. 8(a)
the on-axis intensity has again increased, and the radial
density profile shows the first evidence of transverse plas-
ma oscillations. Increased focusing is also shown by the
steepening of the radial phase profile in Fig. 8(c). The in-
creasing importance of the wake field is demonstrated by
the fourfold increase in the oscillation amplitudes as seen
in Fig. 8(b), and the ripples on the phase shown in Fig.
8(d).

By the time the propagation distance of Z =8 mm
(Z /Lz =99.3, Z /L =0.48) is reached, the laser pulse
itself has been significantly affected, as shown in Fig. 9.
The large transverse density oscillations seen in Fig. 9(a)
have a pronounced effect on the transverse profile of the
pulse; self-focusing is strongly modified so that the inten-
sity maximum moves off-axis. This behavior has also
been seen in simulations of Esarey, Krall, and Sprangle
[40]. The amplitude of the wake-field oscillations, shown
in Fig. 9(b), has increased fiftyfold from Fig. 8 and this
has brought about deep modulations in the longitudinal
pulse profile. This represents scattering of light from the
plasma oscillations, usually called forward Raman
scattering [9,24,28]. The same efFect is represented in the
strong modulation of the phase seen in Fig. 9(d). These
effects can also be due to a distinct process known as
self-modulation [40].

Another view of the buildup of plasma oscillations is
shown in Fig. 10, which plots the central values of inten-
sity and density versus propagation distance. Self-
focusing continues until the amplitude of the density os-
cillations, which are strongest on-axis, is large enough to

0
lI!Il

II ~~
itII'PI

FIG. 11. Spectral density after 8 mm of
propagation. Ten orders of magnitude are
shown to clearly identify the angular broaden-
ing due to self-focusing and spectral broaden-
ing due to Raman scattering.

0.5
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cause significant light scattering.
If the propagation distance Z =8 mm taken to be the

end of the plasma, then the field radiated to infinity will
be determined by the Fourier transform, aL(qi, q, ), of
aL (ri, z —Z, Z ) with respect to ri and z. Since aL is the
envelope field, the variable q, is proportional to the shift,
hen, of the carrier frequency. Figure 11 shows the spec-
tral power, ~dL (qi, q, ) ~, at the end of the plasma as a
function of b,co and the difFraction angle g=qi/k. Two
features are clearly evident. The first is the appearance of
large angles (large qi) at b,co=0. This is a signature of
self-focusing. The second feature is the generation of side
bands at the Stokes and anti-Stokes frequencies for for-
ward Rarnan scattering. The intensity of these side bands
is exaggerated in the plot since it shows the logarithm of
the spectral power. Note particularly the asymmetry be-
tween the Stokes and anti-Stokes spectra. These results
suggest that angular dependence of scattered spectral
power might be a useful diagnostic tool when strong
wave fields are generated.

VIII. SIMPLIFIED MODELS FOR STRONG FIELDS

The weak-field limit discussed in Secs. VI and VII is
not the only situation in which the general equations can
be simplified. A simplified version of (5.1)—5.10) can be
derived for fields of any strength provided the pulse
length is very large. For short pulses the QSA equations
(5.11)—(5.16) can be simplified in the case of quasiplanar
pulses.

For pulse lengths that are very large compared to the
plasma wavelength it is reasonable to average the full
equations over the plasma-scale variables g and r. If we
make the additional assumption that averages of prod-
ucts; e.g., g, p, all factorize, then the averaging procedure
is formally equivalent to assuming a solution that is in-
dependent of g and r. This assumption produces
significant simplifications. The wave equation (5.5) for
the wake vector potential a reduces to

Vqa=qp . (8.1)

Since (8.1), (5.1), and (5.4) are homogeneous in p and a,
the condition a=p=0 is consistent with the equations.
It should be noted, however, that this condition is not im-
posed by the Auid equations, so its use implicitly involves
the assumption that there are no instabilities in the full
equations, which could asymptotically lead to nonvanish-
ing average values for a and p. The averaged form of the
force equation (5.8) is the condition for equilibrium be-
tween the electrostatic and ponderomotive forces, and in-
tegration yields P=y —1. The proper electron density
can then be expressed in terms of y by solving Poisson's
equation (5.6) for g. With all these simplifications in
force the general equations are reduced to

n;+Vqy
(P'i+2iBr)aL = aL

y
(8.2)

with y=+1+ —,'az az. This model has been used by
several authors to study laser-induced cavitation [6,9,41]..

In a future publication we will present a generalization of

this model that includes ion motion.
We next consider a pulse with transverse width much

larger than the pulse length or the plasma wavelength.
In this situation the transverse derivatives in the QSA
equations are small compared to the g derivatives, which
refer to the plasma wavelength scale. In this limit all
transverse derivatives are set to zero in (5.12)—(5.16).
When this is combined with the boundary condition that
all variables approach the quiescent-Auid values for large
positive g, we find the following results: (5.12) shows that
a, =0, which in turn implies that the wake potential and
the electrostatic potential coincide, g=P —a, =P. (5.13)
yields pi=0, and (5.16) shows that ai=pi=O. Substitut-
ing these results into (5.11), (5.18), (5.19), and (5.23) final-
ly yields [9]

ni.
(Vi+2iBr )aL — —

aL, ,I+/ (8.3)

n,. 1+—,'aL, -aL,

(1+/) 2
(8.4)

IX. SUMMARY AND CONCLUSIONS

In this paper we have carried out a multiple-time-
scales perturbative analysis of the coupled system consist-
ing of Maxwell s equations and the relativistic Quid equa-
tions for the plasma electrons. The expansion parameter
O=QND/N, is the characteristic diffraction angle for
paraxial propagation, and it also defines the separation
between the plasma and propagation time scales. One re-

,sult of this analysis is the existence of an initial layer
(temporal boundary layer) in which the fiuid variables
evolve from their initial quiescent values to the quasistat-
ic limit in which the Quid is stationary in the frame mov-
ing with the pulse. The thickness of the initial layer is
determined by the pulse length, so it can be a significant
.feature, as we shall see below. We have also shown that
the quasistatic limit su6'ers from plane-wave instabilities
that give rise to numerical difficulties, even for finite
duration pulses. By combining the multiple-scale and in-
stability analyses, we have constructed an improved qua-
sistatic approximation that gives superior results in simu-
lations. This scheme has a Hamiltonian structure that
can also be used to constrain the behavior of the solu-
tions.

In the weakly relativistic limit (laser intensity I (10'
W/cm ) we have obtained exact planar solutions and car-
ried out simulations for cylindrically symmetric 3D
pulses in order to illustrate these features. The planar
solutions show that the quasistatic limit is attained after
several pulse durations. The simulations exhibit relativis-
tic self-focusing and the growth of wake-field oscillations.
Transverse plasma oscillations are seen to eventually
cause deep modulations in the laser pulse itself; this leads
to modifications in self-focusing.

The most important experiments described by this
model are related to laser wake-field acceleration or the
fast igniter concept. The basic idea of the laser wake-field
accelerator is that the electrons are trapped by the wake
field and accelerated to the group velocity
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Us=c(1 —co[, /co ), with energy E/mc =2N, /N, . Thus
increasing the electron energy requires using low density
plasmas. Since the optimum pulse length satisfies
L~=0(A,&) o- I/QN„ the required pulse length grows
with energy. This implies that the transient effects illus-
trated in Secs. VI and VII should be taken into account,
since the thickness of the initial layer is several times the
pulse duration. In the fast igniter experiments the plas-
ma density is higher, but there is no necessary relation
between the pulse duration and the density, so pulses can
be either short, k~L =O(1), or long, kt, L ))1. Also
the total propagation distance can be comparable to the
initial layer or much larger. In the first case, considera-
tion of initial transients will be essential. In the second

case, the quasistatic approximation will be satisfied for
most of the propagation length, and the improved QSA
can be used to suppress the instabilities described in Sec.
V B.
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