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Nonlinear lower hybrid vortices
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Using a two-Quid description, we derive a set of equations describing the nonlinear interaction of a
lower hybrid pump wave, propagating almost perpendicularly to the external magnetic field, with low
frequency density perturbations associated with a drift wave. In the strongly nonlinear regime, when the
system is dominated by convective vector-product-type nonlinearities on the slow time scale, we find a
stationary, localized dipole vortex solution driven by the lower hybrid ponderomotive force. These types
of vortices can be driven both by a long-wavelength pump, in an oscillating two-stream parametric pro-
cess, and by the modulation of a short-wavelength pump wave. In most cases, all vortex parameters (am-

plitude, radius, and velocity) are determined by the amplitude of the pump.

PACS number(s): 52.35.Mw, 52.35.Qz, 52.35.Hr

I. INTRODUCTION

Plasma heating at the lower hybrid frequency [1] is
connected with a number of undesirable processes occur-
ring when a strong, lower hybrid pump wave interacts
with the background plasma during its propagation to-
wards the resonance layer. An important role is played
by the relatively strong nonlinear effects accompanying
the wave propagation, which can give rise to the emer-
gence of various high- and low-frequency modes and
eventually modify the character of the pump itself. One
of these processes is the parametric decay [2] when the
pump wave energy goes into the parametrically amplified
decay wave. This decay wave does not penetrate success-
fully into the plasma, thus most of the pump energy is de-
posited near the plasma surface and consequently an
anomalous heating of the plasma surface takes place.
Other processes include the filamentation due to the non-
linear interaction with electrostatic ion-cyclotron pertur-
bations [3], decay through induced scattering by particles
(i.e., nonlinear electron and ion Landau damping) [4],
nonlinear excitation of electrostatic and electromagnetic
zero-frequency modes (eddies) [5], oscillating-two-stream
(OTS) instability [6], and interaction with nonresonant
density and temperature perturbations [7].

It has been shown [8,9] that lower hybrid waves, in the
interaction with low-frequency density perturbations, are
modulationally unstable and give rise to Langmuir-type
disklike solitons. These one-dimensional structures are
further unstable to perpendicular perturbations and even-
tually collapse, producing small-scale structures, or cavi-
tons, with the lower hybrid waves trapped inside. This
process is very similar to the Langmuir collapse [8], as
the short-wavelength electromagnetic part of the lower
hybrid spectrum becomes dominant within the collapsing
structure.

In the case of a long-wavelength lower hybrid pump

wave, however, effects associated with its electromagnetic
component may be neglected compared to some non-
linear effects, such as the self-interaction on the low-
frequency scale. These low-frequency terms, arising from
the dominance of the convective nonlinearity uLF. V, are
responsible for the creation of plasma vortices, which are
robust, two-dimensional coherent nonlinear structures
[10,11].

It is known that vortices may arise in processes of self-
organization in laboratory [10] and in astrophysical plas-
mas [12]. Since they can carry plasma particles
effectively, the investigation of vortices may be of great
importance in the problems of plasma fusion [13]. Apart
from the self-organization, vortices can be produced also
by the interaction of a high-frequency pump wave [14] in-
jected into a plasma, with low-frequency density pertur-
bations normally existing in the plasma. In such cases
they appear to be better defined, being determined by the
pump amplitude and its group velocity only.

In our previous work [15] we discussed the parametric
interaction of a spatially nonuniform, lower hybrid pump
with low-frequency density perturbations. Although we
derived a complete set of equations, only the parametric
case was studied, i.e., self-consistent perturbations of the
pump were not included in the analysis. Nonuniformity
of the pump, leading to the formation of vortices, was ex-
pressed through a ponderomotive force term. We obtain
an equation for the low-frequency potential, similar to
the Hasegawa-Mima equation, and found a particular
solution in the form of a double vortex.

A hypothesis about the existence of self-consistent,
driven lower hybrid drift vortices was put forth, without
proof, in Ref. [7]. In the present paper we solve analyti-
cally a system of equations similar to Eqs. (48) and (49) in
Ref. [7], describing perturbations of the lower hybrid
pump propagating almost perpendicularly to the external
magnetic field lines and interacting with density pertur-
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bations on the drift-wave time scale. In the strongly non-
linear regime, when convective nonlinear terms in the
low-frequency momentum equations are of the same or-
der as the time derivatives, we find a well localized, sta-
tionary, and moving solution in the form of a dipolar vor-
tex, driven by the lower hybrid pump. A11 the vortex pa-
rameters, including its velocity and the core radius, are
completely determined by the pump amplitude, in con-
trast to the case of free vortices [10,12].

where

Te
2 (yn„Vn, „+yn,„Vn„)

enp

+ -[(v„V)v,„+(v,„V)v„],
e

We use also the Poisson equation for the electrostatic po-
tential on the rapid scale

II. BASIC EQUATIONS (6)

We investigate quasi-three-dimensional turbulence of a
homogeneous plasma immersed in the external homo-
geneous magnetic field So=Ape„driven by a lower hy-
brid pump wave propagating almost perpendicularly to
the magnetic field. Two di6'erent regimes will be studied:
the oscillating two-stream case, where the characteristic
scale size of the low-frequency perturbations is much
shorter than the pump wavelength, and the opposite case,
when the conditions for the modulation instability are
fulfilled. The nonlinear interaction of the pump with the
slow scale plasma perturbations leads to the perturbation
of the pump itself. To describe this process, we decom-
pose the field quantities into their high- and low-
frequency components and write two sets of equations for
the slow (drift) scale and the rapid (lower hybrid) scale.

A. Lower hybrid equations

First, we derive the equations describing processes on
the rapid time scale. We assume cold, linear, and unmag-
netized ions and purely electrostatic perturbations, whose
direction of propagation is almost perpendicular to the
magnetic field. On the rapid time scale, the electron
momentum equation has the form

+v„V v,„+(v,„V)v„
Bt

1 1
Er +Ver XBpez+ VP

er

Here subscripts r and s denote rapidly and slowly varying
quantities, respectively, and other notations are standard.
We also assume an adiabatic process on the rapid time
scale, for which we have

1 1nes~ ner—Vp Vn,„— 7n„— 'Pnes
er

where y is the ratio of the specific heats. From Eq. (1)
for the electron motion parallel and perpendicular to the
magnetic field lines, respectively, we obtain

BVerz e Te Oner
Erz + +ENLzBt m, en 0 Bz

Here e is the ion charge and the subscripts e, i stay for
electrons and ions, respectively. Using the continuity
equations for electrons and ions and for ions following
straight line orbits, the Poisson equation (6), describing
the variation of the lower hybrid potential, can be rewrit-
ten in the form

82
2 +CO~I.

B)t

e"0 —~~er e—V — +——V(n v +n v ).es er er es
0 0

Here m; denotes the ion plasma frequency. For almost
perpendicular perturbations 8/Bz «Vi, with co/0, «1,
treating thermal eftects as higher-order corrections in the
nonlinear terms (which is justified [4] if v T2, V,

,V„, d, V 0,, ), d i Eq. (3)—( ), E .
(7) can be rewritten as

2 2 2 2 28 + 2 ~pe cs Vi 8+n), + 1+ P~+~

2

Vi n„e, X Vi@„. (8)

Here subscripts l and
~~

refer to directions perpendicular
and parallel to the magnetic field lines. In the above no-
tations co is the lower hybrid frequency, c, =y T, /m;, and
vT, , vT, are the ion and electron thermal velocity, respec-
tively. The derivative 8/Bt corresponds to the time varia-
tion on the lower hybrid scale. Linearizing Eq. (8), we
obtain the standard dispersion equation for the lower hy-
brid waves

co =0;0,+c, k~ .

B. Low-frequency response

On the slow scale we use the standard drift scaling,
which corresponds to a slow time variation, compared to
the ion gyrofrequency, and strong nonlinearities:

~Very —Q, e, Xv„q=-
Bt

e ~ XTeE.i+ ~iner+ENLi
me

'
eno

8/Bt-V„V-V, ,V'«Q, - .

We use the momentum equation for plasma components
in the form
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+U, V U, + ((U„V)U„)
Bt

q E +U, xae

where ( ) denotes a time average over the high-
frequency period. For purely potential perturbations on
the slow scale and cold and two-dimensional ions we have

np8

2

(16)

the whole space with the standard requirement that both
the "slow" and "rapid" electric fields and charges vanish
in the infinity. Making use of Eqs. (12), (14), and (15) and
after some algebra, we arrive at

2

Bt
dV (U;, ) +—

1
U;,

= e, XVN,
Bp

1 B 1+ (e XV@)V V@QB Bt

(12)

2. Generalized plasmon number

We multiply Eq. (8) by Vi"8@„*/r)t, find the real part,
and integrate for the whole space. Due to the symmetry
properties of the vector product, the right-hand-side in-
tegrates to zero and we have

Using the quasineutrality condition n;, =n„and Eq. (12),
we readily obtain from the ion continuity

+—(e, XVi@, ) Vi
Bt

2
Pl -2

A;
Vi+, — =0 . (13)

Cp

Q,
fdV 1+

C9

Be,
'

v"+' " +n n lv"+'e I'
Bt e i l r

The validity of the assumption of purely potential pertur-
bations used here can be checked by comparing leading-
order nonpotential and potential terms fz~, ft, in the
general expression for the ponderomotive force I16]. It
can be shown that in the regime studied in this paper we
have

ft, co Bt k, E„

where k„,k, are the intensities of wave vectors on the
rapid and slow scales, respectively, and 6E„ is the pertur-
bation of the pump electric field. In the lower hybrid
case, for small perturbations of the pump, and using con-
ditions (10) on the slow scale, the above ratio is small
enough and the assumption of purely potential perturba-
tions is justified.

In the zero electron mass limit, the parallel electron
momentum equation yields the Boltzmann distribution

+&,'I Viv)(c', I'—
2 2

c BN

Q 0 B
=0.

f«2IV,""P„l'+
Ale e I

Vn+1 ~" Vn+lyg
BrA

C. C.
1 CO Bt (18)

Here n is an arbitrary non-negative integer. The above
expression may be generalized also to negative values of
n, provided that the boundary conditions are such that
the function +, defined by N„=V~

"4, and its derivatives
vanish in the infinity. For a lower hybrid wave with a
slowly varying amplitude @„=P„exp(

idiot),

Eq.—(17)
gives, with the accuracy to second order, the generalized
plasmon number conservation law

Te nes4, +@ —-- -- —=0,
e np

where 4 is the ponderomotive potential

(14)
3. Enstrophy

I ow-frequency ion continuity Eq. (13) conserves the
quantity

4

e, (Vi@„"X V~4„)
Q)8p

(15)
2

Bt f dx dy f Vi~@, —
0,-

nes Te

np8

and the asterisk denotes a complex conjugate term.

C. Integrals of motion

where f is an arbitrary function. Adopting f to be quad-
ratic and subtracting the energy Eq. (16), we obtain the
enstrophy conservation law in the form

Besides the obvious (and some not so obvious) linear
integrals of motion, Eqs. (8), (13), and (14) possess also
the following quadratic conserved quantities.

4 2 2

fdV — 4(V~@, ) + 2(Vi@, ) + Vi@, ViC

1. Energy

We multiply Eqs. (13) and (8) respectively by 4, and
(8/Bt ice)@„*,ca—lculate the real part, and integrate for
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4. Momentum

Multiplying Eq. (8) by VC&„, repeating a similar pro-
cedure as above, and making use of the slow ion continui-
ty and momentum equations, we obtain

—fdVP= fdVn„v;, Xe,
Bt

eBp
(21)

l C, pNpqI'=n„u;, +
m, (n, n, )'"n2,

B4„B+„*
V

Bx; Bx;
C. C.

(22)

5. Angular momentum

In the same fashion we obtain also

fdVI' Xr = fdV(n„v;, Xe,Q,. )Xr .
at

(23)

III. SDLUTICBNS

If the low-frequency self-interacting term in Eq. (13)
may be neglected, and using Eqs. (8), (14), and (15), we
obtain an equation describing a lower hybrid potential,
exponentially growing in time in the parametric regime
due to the oscillating two-stream and/or modulational in-
stability. However, the presence of the self-interacting,
convective nonlinear term in Eq. (13) may produce a solu-
tion in the form of a spatially localized double vortex
moving with a constant velocity. This coherent nonlinear
structure will be constructed analytically, solving Eqs.
(8), (13), and (14) and seeking a stationary solution propa-

It is worth noting that expressions of the same form are
applicable for all high-frequency waves coupled with slow
density perturbations and whose dispersion relations are
similar to Eq. (9). Thus, substituting c, —+3v T„

4&~ —e~V 4„~ /m, co „our Eqs. (16), (22), and (23) re-
cover the well known expressions for the energy, momen-
tum, and angular momentum in the Langmuir turbulence
of a two-dimensional, cold ion plasma. Likewise, for
n=0, the leading-order (i.e., the first) term in Eq. (18) re-
covers the Langmuir plasmon number.

The energy conservation Eq. (16) reveals an instability
of the nonlinear modes whose density perturbation is of
the same sign as the ponderomotive potential. That con-
dition is equivalent to the Lighthill criterion for the
modulation and/or oscillating-two-stream instability of
high-frequency waves with positive dispersion, Eq. (9). It
is well known that in the one-dimensional case these
parametric instabilities saturate to a disklike soliton. In
two dimensions these structures are unstable [8,9], but
the additional constraints discussed above (such as the
enstrophy conservation) may lead to the formation of
another type of coherent structures, having the form of
dipole vortices, which are characteristic for the undriven
drift wave turbulence [10]. The existence of such struc-
tures will be studied below.

gating with the velocity U in the direction perpendicular
to the external magnetic field,

8)/Bt = —
v~ 8/By, (24)

A. QTS case

First, we consider the case of a long-wavelength pump,
which in the one-dimensional parametric limit gives rise
to the OTS instability. Using k~O in (25), we can
rewrite the high-frequency Poisson equation as

2i + V~ V fM&„=i(e XEO) V . (26)
CO np

For Boltzmann distributed electrons, Eq. (14), we have

n„= N, + (e, XEO) V(6@„—5C„*)
T coBp

Combining Eqs. (26) and (27) we obtain

1 B cs -4 enes

Bt

2
Q7;

CqCp

(e, XED V') (28)

In the one-dimensional case, when the vector-product-
type nonlinear term in the ion continuity equation
reduces to zero, from Eqs. (13) and (28) we get the equa-
tion for the slowly varying potential 4„

2 +p V~ (p2V ~
—I )@,

gUT, Bt

2Ep m;
P

~ 2 x s
y

where p=c, /0, is the ion inertial length. From Eq. (29)
we readily obtain the usual dispersion equation of the
parametric process

2E m

4 ' ' ' 8',c,' m, 1+p'k,'
where 6co, k, are the frequency and wave number of the
sidebands. This expression is indicating an OTS instabili-
ty Im6co & 0 if the pump amp1itude satisfies the condition

E2 )E2 g2 2(1+ 2k 2) (31)

As discussed above, in a two-dimensional case, vector

assuming a small perturbation of the pump wave, due to
the interaction with low-frequency modes.

In the following, we will solve Eqs. (8), (13), and (14)
assuming the electric field of the pump in the form

E„—= —VC&„=[Eoe (ik—+V )54„(r, t) ]

X exp[ i—(cot kr —)], (25)

where co, k satisfy the dispersion relation (9).
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nonlinearity may suppress the development of the OTS
instability. We assume a stationary solution, moving
with the velocity vyey, which permits us to integrate the
nonlinear equation Eq. (13) one time, yielding

f (r, g)=gf„=F,(r)cosg

7l =2
( r)ei (2n +1)e+

2

V|4,—0; Ep
=F(@,+Bov x) . (32) We use (33)

Here F is an arbitrary function of the given argument.
The vortex solution is constructed adopting a linear func-
tion F(@,+Bou~x), but allowing for different slopes F in-
side and outside the vortex core. We solve Eqs. (28) and
(32} in the cylindrical coordinates (r, g), expanding all the
field quantities in terms of cylindrical harmonics as

r =(x +y )' tang=-
x

oO=sinO
By Br r Bg' ' B,2 r Br r2Bg' '

In the cylindrical coordinates the second y derivative
B f/By can be written as

B 1
OO

COSn 0 -2 1 a—X V —2(n —1)
3 cos(n —2)g r Br

n —2
2

(34)

Using the above expression, Eq. (32) breaks down to an
infinite sequence of coupled differential equations for the
cylindrical harmonics 4,„,which is very dificult to solve

in the general case. However, in the special case @,3=0,
@,2k =0, the equation for the first cylindrical harmonic

N, &
decouples from the rest:

vy mt Epmi2 2

p Vl+p'V l 2
+F—1+

2 2pc m 2Bpc m

Uy mi
2 Epm,2

+ (F—1)+ F (@„aBoux) =0-,
gcg me 28pcq me

(3&)

where

U Epy + 0

2B0
2 E2
(F —1)+ F

280

In a similar manner we find an equation connecting the
first and the fifth harmonic

V 2+8 +
r r 2

CK, (i~, r), r ) ro

N, &(r, g)=cosgX aBou r+D, J, (kyar)+D2J, (k&r), (37)

r (rp

where J&,E, are a Bessel function of first order and a
modified Bessel function of first order, respectively. The
constants x „k„k2 in (37) are related to the slopes
F,„„F;„through the set of equations

2 2
2 2 1 vym; Eom;

K +K
2 2

+
2 2

—1

p yc, m, 28pc, m,
2

U m;
K)K2 —

4
p pc~ me

T

Vy m) Eom,
k +k = — +F—1+

p yc m 28pc m

(38)

We adopt the vortex core as a circle with the radius ro
and solve Eq. (35) separately in the regions r (ro and
r ) rp, requesting localization of 4, &

for r~ ~. We al-
low the slope F to have different values in these two re-
gions. Obviously, the outside value of F must be equal to
zero in order to have a finite value of N, &

for r —+ ~.
Equation (35) is readily solved in terms of Bessel func-

tions and a well localized vortex solution has the form

1a+ V —4
r 0r r f, =0, (36)

m Uy
E2

kfk2= (F —1)+F24m y 2~2

(39)

where

f, = —cosg
2

Carpi

0,
Epm;1—

2Bpc~ me

2
Ct)p)X(@„—Bov x}—
C

p

From the physical boundary conditions at the edge of the
vortex core, the potential N„,@, and their radial deriva-
tives BC&„/Br, BN, /Br must be continuous at r =ro. Fur-
thermore, in order for the solution Eq. (37) to be valid on
the core edge, we require also the continuity of V iC, .
From these continuity conditions all the constants of in-
tegration C, D&, D2, F, and the vortex parameters rp and
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u, can be determined in terms of the pump amplitude
E,. From Eqs. (37)-(39), in the hmit of a weak pump, we
also find the standard expression of the Hasegawa-Mima
mode, perturbed by the ponderomotive potential.

The number of available constants of integration is not
sufhcient to satisfy all the continuity conditions for the
first and second radial derivatives of the fifth, Eq. (36),
and higher odd-numbered cylindrical harmonics and,
consequently, they will not be smooth functions at r =ro.
However, they produce only a small perturbation of the
leading-order solution Eq. (37) and the efFects of these
discontinuities are expected to be negligible. It has been
shown [ll] that free dipole vortices associated with non-
linear drift waves are stable to small initial perturbations
M&(r ), which contain only the second and higher cylin-
drical harmonics. Similar behavior is expected also for
dIiven dipole vortices, while the investigation of their
structural stability [i.e., stability in the presence of small
perturbations M&(t, r )] would require extensive numeri-
cal calculations, which are beyond the scope of this pa-
pcI'.

is about 4 kV/m. In larger machines the OTS thresholds
are higher: E, -20 kV/m for the work of Liu and Tri-
pathi [18] (8-30 kG and T, —1.5 keV) and E, -40
kV/m for the work of Weiland [19] (8=-27 kG and
T, =8.6 keV). The corresponding modulational instabili-
ty thresholds are higher by the factor k/6k. Although in
realistic plasma heating experiments the thresholds are
likely to be higher than our ideal plasma estimates, due to
collisional effects, etc. , power requirements for the OTS
instability can be met with the existing rf sources.

In a two-dimensional case, we seek a traveling double
vortex solution using the same procedure as for the QTS
case in Sec. III A. The dipole vortex whose first cylindri-
ca1 harmonic is decoupled from the higher harmonics,
similarly to Eq. (35), is described by the equation

[(1—a, )p V +(P, +F —1 a,F)p—V' +l3, (F —1)]

X N —— 8Ux =—0sl F 1
0 g1

8. Modulation instability case

Now we study the case of a short-wavelength pump.
Using Eq. (25) with k »7 I, analogously to Eq. (26) we
have

2

+~~ p + p 2 I 2$+
Bt

m; (U —u)
f9)

Q Pl,~

(45)

Obviously, localized solutions exist only if in the outer re-
gion r &rowe have F=O.

Equation (44) has the following solution in the form of
a dipole vortex:

= —i(e, XEO) V'- (40) C, IC, (l, r)+ C2K I (l2r),

where u is the group velocity of the pump wave

Bco k csk
Q =

Bk k

It shonld be noted that here the nonlinear coupling is
much weaker, -(k V~) ', than in the case of a long-
wavelength pump. As before, in the one-dimensional
case we obtain the dispersion relation for the modulation-
al instability

(5co—5k u)

C, ,(r, 6)=cos8 X ~ — —8ot~~r +D3J I (~ir)0 y

+B~JI(Air), r &ro,

I2 + I2 I2I2-PI 1 — PI

p (a, —1) p (ai —1)

+Ar2 y AIX2 o

pi+ F —1 —a,F pi(F —1)

p (1—a, ) p (1 —a, )

(46)

4k 4g 2EO ml 6k 1

80c, ~, k 1+p 6k

Using Eqs. (45), (47), and (48), we can draw the following
conclusions.

where 5k is the wave number of the envelope. Obviously,
the threshold for the modulational instability is much
higher than that for the OTS:

1~e kEo&E = —— 8 c (1+ 6k ) .0 c 2 ~k 2 Ocs P (43)

From Eqs. (31) and (43) we can calculate the thresholds
for QTS and modulational instability for typical plasma
parameters in toroidal machines. Thus, for the work of
Porkolab et al. [17] (8= 17 kG and T, =200 eV), thresh-
old lower hybrid electric Geld E, for the OTS instability

(a) There are no localized solutions if a, & 1 and pi & 1,
i.e., for a very strong pump and the vortex propagation
close to the group velocity.

(b) Localized solutions described by one modified
Bessel function in the external region C2 =0 exist for ar-
bitrary vortex speed if the pump is not too strong

(c) Localized sollltloIls described by two Iilodlf led
Bessel function in the external region exist if e, & 1 and

P, & l.

Similarly to the long-wavelength pump case, in case (b)
all parameters of the double vortex are determined by the
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pump amplitude Eo. In case (c) we have one constant of
integration more, so that one of the vortex parameters U

or ro is free, which is similar to the problem treated in
Ref. [14].

The solution (46) can be visualized as a localized densi-
ty perturbation, in which high-frequency short-
wavelength oscillations are trapped. Its dipole structure
emerges as the result of the dominance of the F X8 con-
vective nonlinearity on the slow time scale.

IV. CONCLUSION

In this paper we have studied the interaction of a lower
hybrid pump wave, propagating almost perpendicularly
to the external magnetic field, with small, low-frequency
density perturbations. In the strongly nonlinear regime
studied here, low-frequency, convective vector-product-
type nonlinear terms cause also a modification of the
pump. Consequently, apart from the equations describ-
ing perturbations on the slow time scale, we also had to
solve the equation describing the pump variation, which
is, in principle, very difticult to do in the general case.
We proceeded by expanding all the quantities in cylindri-
cal harmonics and decoupling the first harmonic from the
rest. In this way, for the erst harmonic we found a local-
ized solution in the form of a stationary, dipole vortex
moving with a constant velocity.

Small corrections due to the fifth and higher odd-
numbered cylindrical harmonics, which are not smooth
functions at r = ro, may be considered as perturbations of
the leading-order solution. As shown elsewhere [11],
drift-wave dipole vortices in undriven systems are stable
to small initial perturbations 5@(r), which contain only
the second and higher cylindrical harmonics. Thus these
higher harmonics' discontinuities are not expected to be
responsible for any qualitative change of the simple di-
pole solution Eqs. (37) and (46).

The solutions presented here are a nonlinear mode
driven by the ponderomotive force, which in the limit of
a weak pump becomes identical to the Hasegawa-Mima
solution. In the OTS case the vortex is fully determined
by the pump wave amplitude. In the modulation case,
under certain conditions, it is also determined by the
pump only. However, in the case of a very strong pump

and of the vortex speed being significantly difFerent from
the pump group velocity, one of the vortex parameters
still remains free.

As shown in Ref. [18], for the case studied here, the
OTS instability is experimentally relevant for typical con-
ditions in a tokamak. As a consequence, in tokamaks,
the emergence of plasma dipole vortices whose radius is
smaller than the pump wavelength is expected. Con-
versely, the modulation instability is not of such impor-
tance and its growth rate is rather small, even in the re-
gime co/k, ur, ) 1 (which is not included in our analysis).
Consequently, we expect that coherent vortices found
here may represent a final stage in the development of the
oscillating two-stream instability and that they can have
a large inhuence on the particle transport in magnetically
confined fusion plasmas.

Robustness of drift-wave vortices (in undriven systems)
is a well established fact (see, e.g, Ref. [11]and references
therein). As a consequence, strong drift-wave turbulence
may be described as an ensemble of coherent vortices and
weakly correlated wavelike fluctuations, which permits a
relatively simple analytic calculation of the correspond-
ing transport coefficients [13]. Emergence of drift-wave
vortices in parametrically driven systems (either by an
upper [14] or lower hybrid pump) thus provides a chan-
nel for the anomalous transport. Due to the coherence
and good localization of plasma vortices, each of them
can be regarded as independent from the others. The
mutual interaction during collisions between vortices
gives rise to strong, very short lived, localized, random
electric fields, which are expected to be responsible for
the anomalous transport [13]. The study of such impor-
tant phenomena as the long-time-scale stability of isolat-
ed dipole vortices in driven systems or the evolution of a
turbulent ensemble ("gas") of vortices, interacting with
both the pump and individual particles, would require ex-
tensive numerical calculations, which are beyond the
scope of the present paper.
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