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M~in1um-entropy principle and neural networks that learn to construct approwirIlate
wave functions
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By recourse to a maximum-entropy-based method for the training of perceptrons, we show that
an appropriately prepared network is able to construct approximate ground state wave functions of
good quality with the sole knowledge of a few expectation values, even if nothing is known concerning
the interaction potential.
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I. INTRODUCTION

The last years have witnessed a surge of applications of
neural networks to scientific problems. Neural networks
have exhibited remarkable properties for data process-
ing, having found use in a wide variety of environments
such as identification. and classification of physical ob-
jects, time series, and image reconstruction.

Most network designs involve neural network multi-
layer, exclusively feedforward networks of analog units.
In this architecture, values of an appropiate set of vari-
ables are encoded in the input pattern as the state of
the input-layer units and these patterns are analyzed by
one or more hidden layers [1—5]. The ensuing pattern of
output activities gives, in appropriately encoded form,
the results of the network's classification process, its ver-
sion of the completed image, or its computed values or
assignments for contingent physical quantities. Given a
representative set of examples, together with an effective
learning rule, such systems can indeed capture the essen-
tial physical relationships and correlations that govern
the pertinent class of input-output associations, as ev-
idenced both by accurate performance on the training
examples and by reliable generalizations or predictions
for novel input patterns. The trained networks are able
to predict, i.e. , to produce outputs corresponding to new
inputs (that are not included in the training set) on the
basis of an adequately selected working hypothesis. This
hypothesis is, of course, represented by a set of synaptic
weights TV, that, when appropriately implemented, yields
good results for the examples of the training set. Much
efFort has consequently been devoted to the task of devel-
oping suitable training algorithms that are able to adjust
the synaptic weights so as to enable the network to infer
the correct answer when presented with a new input. Of
course, one wishes for algorithms that accomplish such
a goal within a reasonable (CPU) time and with a not
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too large number of examples. The most popular learn-
ing methods involve minimization of an energy (or cost)
function that depends upon the set of training patterns.
Diverse approaches to this end include simmulated an-
nealing [6], genetic algorithms [7], and gradient methods
[1,8,9]. A cost function is minimized by recourse to an
algorithm that incorporates a degree of randomness, as
represented by a "temperature" or by "mutations. "

In the present effort we shall focus our attention upon
the selection of the working hypothesis (WH). We wish
here to show that by recourse to an adequate WH, a neu-
ral network can learn to construct rather good approxi-
mate ground-state wave functions (GSWF) on the basis
of the knowledge of just a few expectation values, even if
one knows nothing concerning the interaction potential.
To this end, a recently devised information theory (IT)
approach is utilized [10] that provides us with the func-
tional form, which is of a typical aspect characteristic of
Jaynes' IT approach [10]. A number of parameters are to
be determined on the basis of the available informational
output, by solving a complicated set of coupled partial
differential equations [10].

It would certainly be highly desirable to be in a posi-
tion of entirely bypassing the orthodox, cumbersome, and
somewhat tedious process of determining these parame-
ters. This motivates us to try to ascertain whether a bet-
ter way can be found. by recourse to the networks learn-
ing abilities, which should enable them to gather ("cap-
ture"), from a set of suitable examples, the essentials of
the system's characteristic correlations. The concomitant
procedure would be in better agreement with the spirit
of any IT approach than the conventional route, which
passes through a system of partial differential equations,
as only the input informational supply zoould be utilized.

To this end, we shall employ, in turbo widely differ
ent senses, Jaynes' maximum-entropy principle (ME)
[11—15]: (1) so as to optimize the WH in the learning
process, on the one hand, and (2) in order to build up
approximate GSWF, on the basis of a limited amount of
information on the other one. In what follows we briefly
describe, separately, these two ingredients. None of them
is new. What we claim is that the juxtaposition of them
yields an original recipe for devising networks that are
able to build up approximate GSWF.

1063-651X/96/53(1)/1021(7)/$06. 00 53 1021 1996 The American Physical Society



1022 L. DIAMBRA AND A. PLASTINO 53

The paper is organized as follows: the optimal WH is
discussed in Sec. II and applied in Sec. IV in order to
build up, on the basis of scarce information, approximate
GSWF. The underlying ME quantal approach employed
to this end is described in Sec. III. Section V discusses
and summarizes the present results.

II. OPTIMIZING THE WORKING HYPOTHESIS

A. The general idea

This is to be accomplished according to Ockham's ra-
zor, i.e., with the minimum number of assumptions com-
patible with the available input. Our essential tools are
those of the IT approach to statistical mechanics, as em-
bedded in the ME Principle [11—15]. A learning protocol
can be developed in this fashion that will be applied to
the simplest layered network: the perceptron.

Consider a network with K input units (, connected to
an output unit ( whose state is determined according to
( = g (h), where g (x) is the transfer function of the out-
put neuron, which is assumed invertible, and h = ( W
is the membrane potential. For each set of weights W
the student perceptron (SP) maps ( on (. We train the
SP with a set of P inputs (", with p = 1, ..., P and the
corresponding appropriate outputs (o ((), as provided by
a teacher perceptron (TP) with weights W'o. Of course,
the SP and the TP share an identical arquitecture. It is
obvious that

where Po (W') is an appropriately chosen a priori distri-
bution [11—13]. This entropy is to be maximized, subject
to the constraints (1). Our centra/ idea is that of rein-
terpreting these equations in a rather particular fashion,
i.e. , we recast them as follows:

(5)

S' = — P(W) ln
( [ + nP (W)
( P(W) )

+ (i") AWP)W))dW,

(6)

where a and A are Lagrange multipliers associated, re-
spectively, to the normalization condition (2) and to the
constraints (1). Variation of S' with respect to P (W)
immediately gives

P (W) = exp [
—(1 + n)] exp (—I' . W) Po (W), (7)

where I' = ((") A. As in statistical mechanics, one con-
veniently defines the partition function Z

Z = dW exp (—I' W') Po.

where explicit account is taken of the fact that we are
assumed to be dealing with many sets of weights, each
one being realized with a given probability.

As customary [12], one is then led to freely maximizing
the quantity

where (& is an "input-patterns" matrix and g (go ) is a
vector of components g

i (goi), g
i ((o2), ..., g ((o )

given by the output patterns, which constitute our avail-
able information.

Our /eit-motiv is that of introducing an IT algorithm
in order to determine the weights VV on the basis of an
incomplete information supply [in the present situation,
ran((~) & %, in general]. To this end we take advantage
of the ME pseudoinverse technique recently reported by
Baker-Jarvis [16]. In order to infer weights consistent
with Eq. (1) we shall assume that each set of v)eights
W is realized v)ith probability P(W) (our essential IT
ingredient). In other words, we introduce a (normalized)
probability distribution over the possible sets W. Of
course,

A choice is now to be made concerning the a pri-
on probability distribution Po [11—13]. Here we se-
lect a Gaussian PD, i.e., choose it to be proportional to
exp (

—2', ), with a (formally) &ee parameter a. The
results, however, do not depend upon the value of a.

It is now an easy matter to explicitly evaluate the par-
tition function. We And

so that with (3) and the distribution (7) one has, for the
(W, ), the convenient expression

(W, ) = —2a I', .

(2) Notice that the definition of F and the constraints
(1) allow one to express the (W;) in the fashion

where dW = dWidW2 . dW~. Expectation values (W, )
are defined in the fashion

(W) = f P(lV)WdW,

and a relative entropy is, in the usual way [ll—13], asso-
ciated to the probability distribution, namely,

S= — PW ln dW,(P(W) l

where 'PI[("] = (()') [("((")] is the Moore Penrose-
pseudoinverse [17]. The most probable configuration of
weights [compatible with the constraints (1)] is thus given
in terms of a pseudoinverse matrix (that of (~). This
resembles (but is in fact distinct Rom) the Personnaz-
Guyon-Dreyfus [18,19] projection rule for memorizing
(without errors) correlated patterns in the Hopfield
model. Notice that with the choice (ll) the training er-
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ror vanishes. Additionally, the set of "inverse" examples

(—(",—(0((")) possesses an associated distribution iden-
tical to that given by (7). Consequently, —go((+) is that
output produced by the network for the input —(~.

B. The specific implementation

For our present purposes we shall construct the mem-
brane potential following the work of Matus and Perez
[20]. This involves recourse to membrane potentials with
a high-order dependence on the firing rates. The mem-
brane potential depends upon the state of the input layer
neurons h = h ((i, (2, ... , (iv), and the functional depen-
dence being arbitrary, we expand h as a power series ( any
fixed value (,. can be chosen for the zeroth-order term)

(12)

so that, after conveniently rearranging things, we get an
ordinary looking expansion of the kind

where 0 is the threshold defined by 0 = h +

simplicity, we restrict our analysis to the first terms in
the expansion (13), this approxiination being, in general,
good enough in many cases [20].

In order to determine the weights by recourse to
the method described above, we define a vector b
whose components are (1) the ((;), (2) the second-
order terms ((, , (;(i), and (3) the third-order terms

($;,(;(~,(;(~.(i,). The matrix of the P inputs (" is as-
sociated, via the matrix b~, with the corresponding out-
puts gP&. This allows the input patterns to "capture" the
essential correlations of the system in a rather natural
fashion. With the weights top, QJzj, and to, jA, we build
up that particular vector YV that verifies the relation
g i ((g) = h~ W. The ME algorithm prescribes that the
most probable configuration of weights, compatible with
the relevant constraints, is given by W = 'P [b"]g i ((g).
The most probable configuration of weights [compatible
with the constraints (1)] is thus given in terms of a pseu-
doinverse matrix (that of h").

The above results are immediately generalized to net-
works with several output neurons. The appropriate map
is given by (~. = g (( W'. ) and the weights become

(14)

which is the ME recipe for the quantal learning process
to be here described.

III. MAXIMUM-ENTROPY APPROXIMATE
WAVE FUNCTIONS

Our aim now is to apply the above described metodol-
ogy in order to infer, on the basis of some appropri-
ate information, probability distributions associated with
quantum GSWF [10], iohen nothing i8 knouin concerning
the interaction potentiaL In the present, introductory in-
stance, we shall concentrate our e6'orts upon the simplest
situation: the one-dimensional case.

For the convenience of the reader we proceed now to
give a brief recapitulation of the quantal ME approach of
Canosa, Plastino, and Rossignoli [21] (the second ingre-
dient anticipated in the Introduction). The possibility
of employing just a reduced set of (relevant) expectation
values in order to describe the most salient features of
a physicaw eystem is, of course, the raison d' etre of sta-
tistical mechanics. In more recent developments based
upon IT, the pertinent statistical operator is built up by
recourse to Jaynes' ME [12—15]. However, if one wishes
to apply a similar treatment in order to describe pure
states one is immediately confronted with a quite serious
difBculty: for these states the von Neumann-Shannon en-
tropy identically vanishes.

The way to go if one wishes to perform "statistical
inferences" on a WF was reported in [21]. In later works,
several applications have been successfully implemented
in several fields [10,21—29].

A theoretical construct, the so-called "quantal" en-
tropy Sg is introduced [10,21], which is defined by

The probabilistic distribution is, however, that associ-
ated with the squared modulus of the pertinent WF [10].
The a priori distribution is here the uniform one [10,21]
and becomes just a normalization constant. Sg is, of
course, basis dependent and not invariant with respect to
an unitary transformation that changes the basis. The
basis to be utilized is determined by the nature of the
expectation values (EV) to be given as the "information
supply"

It is assumed that these EV refer to commuting opera-
tors, so that one employs just that basis that diagonalizes
them. Maximization of Sg, subject to the constraints
posed by the input information confronts one with an
extremalization problem identical to that faced originally
by Jaynes [see Eq. (6)], and one ends up with a set of
equations formally identical to the ME ones. The mod-
ulus squared of the WF is of the familiar exponential
aspect
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g (x) = Q(z) exp —— A" + Q A'x'
2

(17)

where the I.agrange multipliers are to be obtained by
solving the set of coupled equations

and Q(x) is a suitable polynomial [10]. For ground-state
wave functions (no nodes) one immediately gets from (17)
the WF itself [21]. For excited states, somewhat more
elaborate considerations apply [28], which will not inter-
est us here.

We wish here to avoid facing the system (18) by re-
course to suitable trained networks. In building up ap-
proximate WF with them, of course, the I agrange multi-
pliers turn out to be essential ingredients in the training
process.

The approach we have just outlined has proved to be
quite useful in describing both the ground states and ex-
cited states a variety of many-body systems, for an unre-
stricted range of coupling constants [10,21—29]. In partic-
ular, it has been shown to provide one with many-body
wave functions that are of a better quality, in several
different environments, than the Hartree-Fock [23], the
BCS [24], or the random-phase-approximation ones [26].
This "quantal" ME approach is thus a very reliable one,
appropriate for training neural networks.

IV. SIMPLE APPLICATI(3NS

As a erst application we consider two di8'erent one-
dimension. al problems, namely, the anharmonic oscilla-
tor [V (x) = nx + Px + px ] and the Morse potential

(V (z) = A [1 —exp (—x)] ). The corresponding Hamil-
tonian can be generally written as

number the input expectation values. The parameters A

are to be evaluated ("learned" ) by our network and Ao is
a normalization constant.

The performance of our algorithm has been studied
in the case of networks with (a) linear transfer func-
tions g (x) = x and (b) membrane potentials h char-
acterized by a high-order (second and third) dependence
upon the firing rates. The training set is given by pairs
(input, output). The output content is that of the vec-
tors A„= 1A„', / = 1, ... , 4j, where p = 1, ... , P is the
example label (we deal with P examples). Within a pre-
determined interval (see Table I), we randomly choose
(with uniform probability) the A' and to each vector A

we associate a GSWF of the form (20). The input is pre-
pared in the following fashion. To first order in the cou-
plings, it is given simply by the moments of the t SWI"

associated with the appropriate set

(z'„) = g„*(z) z'g„(z) dx,

To second order we add products of these moments
as well, of the form: ( 1(x'), (x')(x )j, 1&'j ), and, «
third order, we also incorporate "threefold" products of
the type: f ((x'), (x') (x ), (x') (x ) (x'")j, (A' j f, with

p = 1, . . . , P.
In order to evaluate the performance of our algorithm,

the generalization error Eg is defined in terms of some de-
viation measure e between the desired outputs A, t and
the actual outputs A corresponding to the given inputs
(x ). Of course, changes in the A' affect the GSWF, for
different t, in distinct ways (with diverse "intensities").
In studying the concolnitant errors we must therefore ap-
propriately weigh the distinct contributions. VVe do this
weighing with reference to the expectation values asso-
ciated to the A and define the "distance" with respect
to the desired output (the deviation measure referred to
above) as

H= +V ~. (22)

Our aim is to approximately reconstruct the ground-
state GSWF of (19) with the sole knowledge of a few
expectation values ((x ), t = 1, ... , I j. The ME prescrip-
tion is [10]

where Qo(x) is an appropriate polynomial and I is the

The generalization error is the average of the distance
(22) over new examples (not belonging to the training
set) Eg = (e). In this paper the average is evaluated over
30 new examples. It is seen in Fig. 1 that, as higher-
order couplings are added, E significantly diminishes
(up to a factor 10). Eg becomes smaller and smaller
as the number of examples augments, until a saturation
plateau is reached (which is different for each type of
network). The associated, "critical" number of examples
P,»t is larger the higher the coupling order, although

Multiplier s

&min.

&maw

TABLE I. Range of possible A' values, employed in

A A

-1.500 -0.700
1.500 0.700

order to train the

-0.500
0.350

neural network.

0.300
1.100
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