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EfFective breather trapping mechanism for DNA transcription
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Collective coordinate and direct numerical integration methods are applied to the analysis of
a one-dimensional DNA model. A modification of the coupling constant in an extended region is
found to be less selective towards the breather it can trap than an isolated impurity. Therefore it
provides a possible physical mechanism for the e8ect of an enzyme on DNA transcription.
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I. INTRODUCTION

The first step of the transcription of deoxyribonucleic
acid (DNA) is a local opening of the double helix that
extends over about 20 base pairs. Such local unwindings
of the helix can be obtained by heating DNA to about
70 C. But in the life of an organism they must occur at
physiological temperature. This is achieved by the ac-
tion of an enzyme [1]. However, one may wonder how
this can be possible since, whatever its origin, the lo-
cal opening requires the breaking of the same number of
hydrogen bonds, hence the same amount of energy, and
the enzyme does not bring in energy. However, under
normal physiological conditions there are thermal Quctu-
ations along the DNA chain. They can be weakly local-
ized by nonlinear effects to generate what biologists call
the "breathing of DNA. " But their intensity is not high
enough to open the double helix over many base pairs. A
possible pathway to the opening would be to collect the
thermal energy that is present along the molecule. This
could be the role of the enzyme. From a physicist's point
of view, the effect of an enzyme can be considered as a
perturbation to the DNA lattice.

Recently Forinash et al. considered the interaction be-
tween a mass impurity on a DNA chain and thermal non-
linear waves described as breathers traveling along the
chain [2]. They found that the impurity is selective to-
ward the breather it can trap. Although this is a first
indication that a defect can contribute to localizing en-

ergy in a nonlinear chain, it does not appear to be a good
model for the action of an enzyme because, with such a
localized defect, only some predefined &equencies of the
thermal Auctuations would contribute to bringing in the
energy. Therefore one may ask whether there exists any
other mechanism more efFicient at trapping energy.

One learns &om biological studies that some proteins

make contact with DNA at multiple sites [3,4]. Moreover
the transcription enzyme actually bends DNA toward it-
self. It has the effect not only of modifying the mass at
some sites but also of modifying the coupling constants
along the strands. The bases that are inside the bend are
brought closer to each other while the ones that are out-
side are moved farther apart. Although the variation of
the distances between neighboring bases may be rather
small, it can have a large effect because the interaction
between bases is due to the overlap of m electrons over
the whole surface of the planar bases. We examine in
this paper whether the interaction of the enzyme with
more than one site might be more efIicient for trapping
breathers than isolated impurities by studying the effect
of an extended modification of the coupling along the
DNA chain.

The effect of bending and twisting to modify the elas-
ticity of DNA has been considered previously by Barkley
and Zimm [5] and by Marko and Siggia [6], but they did
not study the consequences of base pair opening. Salerno
[7] considered the dynamical properties of a DNA pro-
moter that has some similarities to our problem because
we treat here the enzyme as an inhomogeneity due to an
external efFect while he considered inhomogeneities from
the DNA composition itself. However, he was interested
in kinks while we study breathing modes. On a more ab-
stract level we are investigating here a nonlinear model,
with an "extended defect, " and we try to understand
the interplay between nonlinearity and disorder. In the
harmonic case, a one-dimensional chain with isolated de-
fects has been considered before by Montroll and Potts
[8]. However, besides the introduction of nonlinearity,
one should also note that for the type of extended de-
fect that we consider, there is no evanescent local mode
which would couple to a breather as in the case consid-
ered by Forinash et al. , so that the mechanism for energy
localization must be different.
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II. DNA LATTICE MODEL

If one neglects the small longitudinal motion and con-
centrates on the stretching of the base pairs, DNA can
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in which d is the lattice spacing and kl is a space-
dependent coupling constant. We set d equal to unity
in the following calculations.

FIG. l. One-dimensional lattice model of DNA.
III. THE PEB.TUB.BED NONLINEAB.

SCHR.GDING EK EQUATIDN

in which o. and D are parameters for the Morse potential
[11],which have dimensions of inverse length and energy
respectively, and n is the site index. Figure I shows the
geometry and the coordinate used. It is convenient for
the analytical calculations to transform these equations
into a dimensionless form by defining the dimensionless
variables

yn = o'+n) (2)

be described by a simple one-dimensional model [9] that
consists of an array of harmonically coupled particles sub-
jected to a Morse potential. Such a model is sufhcient to
provide a good qualitative description of the thermal de-
naturation of the molecule [10]. If one treats a chain with
inhomogeneous coupling, the equations of motion read

0~V„
m —"—K„+g(Y„+g—Y„)+ K„(Y„—Y„' g)BT

—2Da. e "(e " —1) = 0,

Equation (6) can be transformed into a perturbed non-
linear Schrodinger equation by a multiple-scale expansion
[13,14]. Assuming that the amplitude of the thermal os-
cillation is small y = eP, we perform the expansion

P = Ep + &ED + ~ E2 + O(e ),
l9 0e+ e +O{e ),Bt t9tp Btl t9t2

8 + e+ E' + O(E )19x |9xp t9x l ax 2

Moreover, we assume a modulation of the coupling con-
stant of the order of e, i.e. ,

(1o)

Equating like powers of e yields a sequence of equations,
in ascending powers of e,

(3) 82Ep t92Ep—kp 2 +2Ep ——0,

The equations become

B~y
g,

" —k +i{y +i —y )+k (y —y —~)ot2
—2e ""(e ""—1) = 0.

(4)

0 Ey 8 E() ) Bky OFp fB Ey t9 Ep+2
c)tp BtpBtj ) Oxq c)xp ( c)xp OxpOxj )

+21 +~ —-Fp = o (»)
3
2

One notices that the last set of equations contains only
one parameter, the coupling constant. In order to rep-
resent the perturbation due to the enzyme, one could
imagine the local modification of any of the parameters
of Eq. (1), but it is likely that the presence of an enzyme
will a8'ect the coupling constant through the bending of
the molecule. Moreover, previous studies of the role of
disorder on the dynamics of the DNA madel [12] have
shown that the formation of open regions in the model
is much more sensitive to modulations of the coupling
constant than to changes in other parameters. Therefore
we only consider here an extended perturbation of the
coupling constant. An additional possibility for model-
ing the enzyme specificity is, however, examined in the
dlscusslon.

Since we do not know how to solve the discrete case, we
transform the set of equations (5) into the correspond-
ing continuous partial differential equation. In the con-
tinuum limit, with a Taylor expansion in the potential
term, which assumes small amplitude oscillation, Eq. (5)
becomes

c) ( c)y), t' 3, 7,)I"'+2
I y ——y'+ -y'

I

= o, (6)»E ~)

and higher-order equations, in which kp is the unper-
turbed coupling constant. Solving for equations in each
order of e sequentially one obtains

Ep ——u(xg, x2, t„t2)e*~~' "")+ cc.
2 (q o to) + —

(14)
3 2 3'll

2 —4w +4klq + 2

and the dispersion relation w = up+ koan, with up ——2.
From the vanishing of the secular equation at q = 0
one obtains the perturbed nonlinear Schrodinger equa-
tion (NLS) at order e

BD Okl Otl, 19 Q
2z~ + ~ + ki~ 2 +8u~u~ = 0.

Ot, ax, Bx, Ox,

We can further rescale the equation into a standard form:
Defining the dimensionless variables

kl
k(x) = ——1,

ko
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(d

2

2kp
(18)

tive Lagrangian

rl
+OO

2g—y, —2q(g+ —( q —— k~
~

d (28)
3 2

and. the corresponding Hamiltonian
with k being the normalized deviation coupling in the
vicinity of the enzyme, one obtains the perturbed dimen-
sionless NLS

1 „„21 0iu;+ —u--+u~u~'+ — (ku-) =0
2 2 Ox

and. the corresponding I agrangian density

A = —(u*u- —uu* ) —-—(1+k)/u-[ + —
/u/t t 2

In the following section we drop the caret for nomencla-
ture simplicity.

IV. ONE-SOLITON COLLECTIVE COOH. I3INATE
ANALY SIS

The collective coordinate method, which is a particle
description of the soliton in contrast to the field descrip-
tion given by the Lagrangian, provides a good way to
study the inhuence of a perturbation on a soliton. The
spirit is the same as using the center of mass to analyze
the behavior of a system of particles.

Without the perturbating term in Eq. (20), one has a
breather solution

+OO

H = —"+('&+ — k~u. ~'dx,
3

which contains no momentum term.
At this point, we must specify an expression for k(x)

to proceed. For algebraic convenience let us choose

k = v.[O(x+ 1) —H(x —l)], (30)

T+ ——tanh(gl + j),
T = tanh(gl —(),
S+ ——sech(gl +. (),
S = sech(gl —(),

(»)
(32)
(33)
(34)

in which 0 is the Heaviside step function and l is the half
length of the defect. This form of k violates Eq. (10);
however, previous works showed that the collective coor-
dinate results are generally robust for the treatment of
dynamics in the presence of perturbation [15]; therefore,
we can expect to get results that are at least qualita-
tively correct in spite of this rather crude approximation.
Moreover, we shall check them against full numerical sim-
ulations in Sec. V.

Introducing the abbreviated notation

u(x, t) = qsech[q(x —u t)]e'" * "'i + c.c. , (22) one obtains

u(x, t) = gsech(gx —() e'~~+~ l, (23)

in which q = g(u2 —2u, u, )/(2PQ), where u is the en-
velope velocity, u, is the carrier velocity, and P = 1/2,
Q = 1 are coefficients of the second space derivative and
the nonlinear terms in Eq. (20), respectively. In view of
this solution, we use an ansatz for the collective coordi-
nate analysis

k~u ~'dx = —(T++ T')q + K(T++ T )('q,

(35)

which characterizes the eKect of the defect and decays
fast towards zero outside of the impurity region and the
equations of motion:

gu.2 —2u.u. ,

u gt,
u~ )

—uut.

(24)

(25)
(26)

(27)

where the parameters g, (, P, ( are functions of t For an.
unperturbed system this implies the following relations
between the parameters:

(T++T )(———(s + s )( g
q2 (2 V. 2 2 2 2

2 2 4 +

(S2T2 + S2T2) 3 (T3 +T3) 2

(S2 T2 S2 T2 )
3 (S2 S2 )(2

(, = (q + (T+ + T )(q, —

gt ——0.

(36)

(37)

(38)

(39)

At t = 0, ( = 0, and P = 0 and there are only two pararn-
eters left, which is consistent with Eq. (22), because the
NLS breather is a two-parameter solution. Even when
the breather is far away from the defect, because the
ansatz extends to inanity and always experiences the
defect, we do not expect these relations to hold for a
perturbed system. Hence, in what follows we examine
the whole four-parameter space for the equations of mo-
tion. Introducing this ansatz into the Lagrangian density
Eq. (21) and integrating over space, one obtains an effec-

As expected, far away from the defect, i.e. , when S and
T vanish, one recovers the usual relations for the NLS
equation because in this case (& ——0 so that ( is a constant
that we can denote by u . Then (q ——(g gives ( = u, qt,
as expected, and Pz ——(g —(2)/2 gives P = —u, u, t if u
is defined by Eq. (24) for q.

In the presence of the defect, the set of nonlinear dif-
ferential equations for the collective variables cannot be
integrated analytically. It is, however, much simpler than
the full set of discrete equations since it contains only
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k = r[0(x+ t) —20(z) + 8(x —t)j (41)

for which the coupling is first increased by r and then de-
creased by the same amount if K ) 0. It can be viewed as
a step approximation of one period of a sinusoidal modu-
lation. In general, one finds nothing essentially new with
this perturbation because it is only a superposition of two
step defects. However, this perturbation is asymmetric
in space. By changing the sign of r we can reverse the
orientation of the perturbation with respect to an incom-
ing breather. If v & 0, a breather starting &om the left
side of the defect encounters first the region where the
coupling constant is decreased. Table I summarizes the
behavior of breathers with various amplitudes and the
two possible signs of r and (. For negative r and positive
(, the breather is reflected for intermediate g while for
large enough g it is trapped. If one switches to positive
K, there is still a range of g values that produce re8ec-
tion, but for large g the breather passes through. If the
breather starts &om the side where the coupling constant
is decreased the trapping can still exist even if the initial

Fig. 2(c); reflection occurs beyond q = 0.25. For smaller

g, breathers pass through the defect, indicating that the
broader breathers are less inQuenced by the presence of
defects, just as a large-wheel bike will not be stopped by
a pebble or a ditch. In Fig. 2(c) the breather has ac-
tually penetrated into the defect before being reQected.
When the breather is trapped it oscillates between two
positions, which may not be the defect boundary, as
shown in Fig. 2(d). For values of q close to the threshold
between trapping and nontrapping, the breather slowly
turns around at the boundaries as in Fig. 2(e).

A necessary condition for a moving breather to be
trapped in the above defect is K & 0. This statement
can be proved through the following argument: a neces-
sary condition for trapping is (, = 0 more than twice,
which, according to Eq. (38), is equivalent to

cosh g = 1 —cosh (gl) —r sinh(gl) cosh(gt). (40)

Since cosh ) 1, ko ) 0, and g ) 0, K, has to be less
than zero. We have therefore showed that trapping oc-
curs only if the perturbed coupling constant is less than
the unperturbed one, which is consistent with our simu-
lations, although it has been proven only in the collective
coordinate approach.

Since Eq. (40) contains only (, q, K, and 1, if the char-
acters of the defect, i.e. , the length l and the strength v,
have been fixed for a given system and the initial position
of the breather is chosen, the only factor that character-
izes trapping is the breather amplitude. The initial value
of P seems to have no consequence on the results. In gen-
eral, if one finds that a breather passes through a defect
for r ( 0 as in Fig. 2(a), one can obtain trapping by
increasing its amplitude.

Because of the helicoidal structure of DNA, a given
strand is alternatively inside and outside the bend so that
it experiences a periodical modulation of its elasticity by
an attached enzyme. We examined the consequence of
such a modification by considering the coupling constant
modulation

TABLE I. Behavior of a breather determined by the collec-
tive coordinate method with initial values P = —0.4, ( = —13
and a two-step defect with length l = 10. The table lists the
outcome of the interaction of the breather with the defect for
different values of g and two different signs for K.

0.2

Outcome of the
interaction

passed
re8ected
trapped

K = —0.4
& 0.5

0.6 —1.1) 1.2

Outcome of the
interaction

passed
rejected
passed

e =0.4
& 0.5

0.6 —1.4) 1.5

—0.2 reBected
trapped

& 1.1) 1.2
reQected all values

position of the breather is far away from the defect, but
the pass-through region disappears as expected. These
results show that it is the first encounter that determines
the trapping. However, for this case of a composite defect
the collective coordinate calculation can, in some cases,
lead to qualitatively wrong results. The full numerical
calculation shown in Fig. 4(a) indicate that the breather
can be trapped even if it were coming &om the higher
side of the defect. This points out the limit of the col-
lective coordinate method for successive perturbations of
the breather. The first interaction of the breather with a
perturbation appears to be qualitatively well described.
But then the perturbed breather is not accurately de-
scribed by the ansatz. Thus, when it encounters a second
perturbation (here the second step in coupling constant),
the collective coordinate description fails to describe the
interaction.

V. DIRECT NUMERICAL SIMULATIONS

Since the last example has shown that the collective co-
ordinates cannot provide a full description of the breather
dynamics, it is necessary to check them against full nu-
merical simulations of Eqs. (5). Using the breather so-
lution given by Eq. (22) as an initial condition and pe-
riodic boundary conditions, we integrate Eqs. (5) with a
fourth-order lunge-Kutta scheme and a time step cho-
sen to provide a conservation of energy to an accuracy
better than 10 over a full simulation. The calculations
have been tested on diferent system sizes to make sure
that the results are not modified by boundary effects.
The ansatz (22) is not an exact solution of the full set
of equations because the transformation to the NLS form
involved several approximations; however, except for very
discrete cases or large amplitude breathers, it provides a
rather good solution far away from the defect. As long
as the breather is far away from the defect, one generally
notices only a small decay of the initial energy peak due
to radiation.

Full numerical calculations have the advantage of al-
lowing radiation and breaking of a breather. Further-
more, although the collective coordinate method starts
from the perturbed NLS, which requires small u and
u and hence small amplitude, the full numerical calcu-
lations do not have this restriction. In what follows we
show both the energy distribution and the breather arn-
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FIG. 3. Halftone plots of the energy distribution of
breather evolutions (left) and the corresponding amplitudes
(right) from direct numerical integration of Eq. (5). In each
6gure the top inset shows the variation of the coupling con-
stant used for the calculation, while the right insets show'

snapshots of the breather energy or amplitude distributions.
Defect positions are shown in the plot's axis. (a) K = 0.44
outside the defect, K = 0.22 for the defect. A(0) = 210,
u = 0.13, u, = —0.1. (b) K = 1.04 outside the defect,
K = 0.52 for the defect. A (0) = 210, u, = 0.13, u, = —O.l.-

plitude. The energy distribution is more relevant to the
opening of the DNA chain while the breather amplitude
allows a comparison with the results of the collective co-
ordinate calculations.

Figure 3(a) is a typical case for trapping at an equiv-
alent amplitude g = 0.19. The correspondence is made
from Eqs. (24) and (26). The threshold for trapping pre-
dicted by collective coordinate is higher (g = 1.01 for
a breather initially at x = 12 when both systems have
the same dimensionless coupling constant). As noticed
earlier, it is not surprising to find such a discrepancy be-
cause we have used a sharp perturbation that violates
the condition (10). However, the full simulations confirm
the qualitative predictions of the collective coordinate
calculations: small amplitude breathers are transmitted,
while larger ones are trapped. Figure 3(b) shows that
the energy distribution around the breather gets sharper
in the region of the defect. Therefore a negative pertur-
bation, which tends to trap breathers, is also favorable
for base-pair openings since it concentrates the energy of
the incoming breathers in a narrow domain. This sharp-
ening of the breather shape occurs when the breather is
inside the perturbation domain, whether or not it will
stay trapped. One can also And, on the contrary, that
if a breather meets a positive perturbation, its energy
distribution broadens. This behavior is similar to that
of a vortex in shallow water: the vortex becomes wider
when it is in shallower water and thinner in deeper wa-
ter [16]. In the amplitude plot of Fig. 3(b), when the
breather reaches the boundary of the defect, one can see
two small rejected waves. They were not included in the
collective coordinate analysis and their presence explains
part of the quantitative discrepancy between the analyt-
ical approach and the full simulations. Sometimes one
can also notice that the breather changes its oscillation
frequency after the collision with the defect.

The results of the full numerical simulations show that,
although the collective coordinate analysis is able to pre-
dict qualitatively the main features, in particular the ex-
istence of a threshold for trapping when the breather am-
plitudes increases, it is quantitatively wrong. The same
conclusion had been found for an isolated impurity [2].
There are several reasons for that. First, we do not know
an appropriate ansatz for the original equations of mo-
tion (1) and we start from a perturbed NLS Lagrangian
that is already approximate. Then we use an ansatz that
is localized in space and does not allow for the breaking
of the breather or the emission of reflected waves. Fi-
nally, the calculation assumes a smooth evolution of the
coupling constant while we later use a sharp variation to
make the analytical calculation possible. In spite of all
their weaknesses, the collective coordinate calculations
are, however, useful in gaining insight into the behavior
of the breather in the presence of the defect or even draw-
ing general conclusions about the kind of defects that can
trap energy as explained above.

Another point of interest is the trapping of several
breathers in the defect region, which could really en-
hance the energy density locally and cause local open-
ings in DNA. We show in Fig. 4 examples of trapping for
two kinds of coupling constant shapes: Fig. 4(a) shows
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an example when the breather comes from the higher
side of a two-step defect but is trapped. However, un-
less favorable conditions occur, we seldom find that two
breathers can be trapped inside the same perturbation.
When the second breather gets trapped it often kicks out
the first breather that was trapped before, as shown in
Fig. 4(b). In other cases we noticed that when a first
breather is trapped in the defect, a second breather that
would have been trapped if it were alone is, on the con-
trary, reBected. Therefore, if one studies only the posi-
tions of the breathers during their first interactions with
the extended defect, it seems that the defect will never
collect more than the energy of one breather. This is
in fact not true, but the complete phenomena require
a more detailed analysis. It is interesting to study the
evolution of the energy in the region of the defect ver-
sus time. An example is shown in Fig. 5. In this case
the first breather that interacts with the defect has an
amplitude g = 0.2, which is above the trapping thresh-
old and the second one has an amplitude g = 0.1, below
the threshold. As expected, the first breather is trapped
and oscillates around the defect. The second one passes
through the defect region that contains the first breather.
However, if one looks at the energy density on the three-
dirnensional plot of Fig. 5(a), one can notice a significant
increase of energy density after the interaction of the sec-
ond breather with the defect. The reason is that the sec-

ond breather is only partly transmitted. A large part of
its energy is given to the trapped breather, i.e. , it stays
in the defect region. The same phenomenon occurs again
when the second breather collides a second time with the
trapped breather. Due to this complex process, the time
evolution of the energy inside the defect region [Fig. 5(c)]
is a complicated curve, but it is important to notice that
it tends to grow and never falls again to a small value,
indicating that the multiple collision process does cause
a concentration of energy in the defect region. The ori-
gin of this localization of energy does not lie in breather
trapping but in breather interactions in the presence of
a perturbation and therefore it is not included in the
collective coordinate description of Sec. IV. The result
is reminiscent of a mechanism described recently for en-
ergy localization due to discreteness eBects in nonlinear
lattices [17]. In both cases the collisions of breathers,
perturbed either by a defect or by discreteness, cause en-
ergy transfers that, on average, favor the large excitation
at the expense of the small one. We have checked that
the mechanism is not restricted to a particular case. Fig-
ure 6 shows another example in which three breathers
with the same initial amplitude g = 0.2 were sent to the
defect. Although the details of the process are diferent,
they lead to the same final result: breather interactions
in the presence of the defect tend to favor the formation
of a large amplitude breather that concentrates a large
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part of the energy of the three incoming breathers and
is finally trapped at the defect site. Hence the energy in
the defect region settles to a high value. Tests have been
performed with various breather amplitudes, leading to
the same general result.

VI. CONCLUSION

Using a simple DNA model, we have modeled the ef-
fect of a transcription enzyme by an extended modi6ca-
tion of the coupling constant along the strands. The re-
sults show that such a perturbation is more efFicient than

an isolated impurity for trapping breathers, in particular
because trapping can occur provided that the amplitude
of the incoming breather exceeds a threshold instead of
requiring breathers with a well defined &equency. This
conclusion can be derived &om collective coordinate cal-
culations as well as &om numerical integration of the full
set of equations of motion, although the collective co-
ordinate method overestimates the trapping threshold.
One cannot expect quantitative results &om the collec-
tive coordinate analysis because we have violated at least
one basic assumption, Eq. (10), to allow the analytical
calculations, but it gives insight into the physics and in
particular a necessary condition for breather trappinging)
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which is con6rmed by the full simulations. We have also
shown that energy exchanges between a first breather,
already trapped, and other incoming breathers can lead
to a concentration of energy in the region of the defect.

One may wonder whether the results obtained above
for speci6c perturbations are extendable to more realis-
tic cases. Although it is difBcult to give general answers
to this question, one can gain insight through numeri-
cal simulations of the full system. In real DNA one has
D = 0.03 eV, n = 4.45 A. ~, kq ——0.08 eV/A. , rn = 300
a.m. u. for adenine-thymine base pairs, while for guanine-
cytosine pairs we have D = 0.035 eV and k1 ——0.104 [10].
This is equivalent to k = 0.13—0.15. In this range of cou-

pling, large amplitude breathers are trapped by discrete-
ness [18]. The collective coordinate calculations suggest
that the low amplitude breathers, which can move, will
not be trapped by the 20 base-pair defect. Simulations
show that it is not necessarily so. For instance, a 20 base-
pair defect with K = 0.12 in a chain with K = 0.15
can trap breathers of various amplitudes. The energy
exchange mechanism in the presence of the defect, dis-
cussed above, interferes with discreteness effects that can
have a similar influence to localize energy [17]. Therefore,
although we have exhibited a mechanism that is active
in a wider frequency range than an isolated defect, the
calculations performed on a simple model are not sufB-
cient to draw a conclusion about the validity of its use in
describing the effect of an enzyme on DNA transcription.
It may, however, deserve attention because of its greater
eKciency compared to the case of a point defect that was
considered previously.

In this work we have modeled the role of the en-
zyme by modulating only the coupling constant along the
strands. As mentioned in the Introduction, other possi-
bilities could be considered, particularly if one attempts
to take into account the enzyme specificity, which sug-
gests that the enzyme could have a role other than merely
locally bending the molecule. As a first step in this di-
rection, we have considered a local change of the Morse
potential in addition to the effect of the bending. Figure
7 shows the result of a numerical simulation where all
the conditions are the same as for Fig. 6, except that,
in addition to changing the coupling constant inside the
defect to model the bending, we have also multiplied the
denaturation energy of the base pairs [parameter D of
Eq. (1)] by a factor of 0.8. This means that we also as-
sume that the enzyme can have some chemical effect on
the reduction of the base-pairing interaction. A compar-
ison of Figs. 7 and 6(b) shows that this modification has
a rather drastic effect on the results. It is easy to un-
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0.8 in this region to model some enzyme specific action.
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derstand qualitatively why, because locally the vibrating
frequency of base pairs has been reduced. As we con-
sider low energy breathers, which are the most likely to
be excited at physiological temperatures, their frequency,
situated below the base-pair linear frequency of the un-
perturbed region because of the soft nonlinearity of the
Morse potential, is, however, very close to the bottom of
the phonon band of the unperturbed part of the molecule.
As the enzyme lowers the frequencies of the phonon band
in the defect region, the breather frequency is now in
resonance with some modes of the phonon band of the
defect. Therefore, when the breather is trapped at the
defect site by the bending, it is trapped in a region where
it resonates with phonons. As a result, it loses energy by
radiation but, as the emitted modes have a frequency be-
low the lowest frequency of the unperturbed lattice, the
vibrations are trapped in the defect region. One observes
that the trapped breather spreads out its energy inside
the defect region. When a second breather comes to this
excited defect it is no longer repelled by a highly localized
breather as in Fig. 6. Thus it is more likely to penetrate
into the defect region too. This makes the energy lo-

calization efFect more eKcient and instead of the large
oscillations that mere observed in Fig. 6(b), Fig. 7 shoms
that the energy in the defect region now grows steadily,
each new breather having a high probability of adding
its contribution. Although it is still preliminary, this ex-
ample shows that, if one combines the bending efFect of
the enzyme with some model for its specific action on
the promoter site, one can perhaps provide a mechanism
with which to achieve the local opening of the double
helix, which is required for DNA transcription.
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