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Molecular dynamics —continuum hybrid computations: A tool for studying complex fluid flows
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A generic algorithm is presented for coupling a molecular dynamics (MD) simulation to a continuum-based

computation for a fluid system. The coupling is achieved by constraining the dynamics of fluid rnolecules in

the vicinity of the MD-continuum interface. The validity of the hybrid method is demonstrated for a unidirec-

tional, startup flow of a simple fluid near a solid surface. By vastly extending the length scales accessible in

MD simulations, the method makes possible an efficient study of the macroscopic ramifications of microscopic
interfacial phenomena.

PACS number(s): 02.70.—c, 47.11.+j, 68.45.—v, 83.20.Jp

With the advent of high speed computing, nonequilibrium
molecular dynamics (MD) simulations have proven to be a
valuable tool in the study of fluids. In addition to probing the
constitutive behavior of polymeric and colloidal liquids, they
have also been used to model a variety of complex, micro-
scopic hydrodynamic phenomena [1].Recent applications in-
clude studies of convection, coalescence, spreading and wet-
ting, and instabilities in boundary lubrication. One of the
great strengths of MD is that it does not require phenomeno-
logical input such as boundary conditions (BCs) and consti-
tutive laws. It is also capable of modeling flow in regions
where there are large gradients in velocity and density [1].
Furthermore, MD simulations provide detailed structural in-
formation about the Quid, which can be used to understand
the dynamics of the Aow.

Although extremely useful, MD simulations are computa-
tionally intensive and therefore can only probe phenomena
over relatively short time and length scales. For example,
simulations of hydrodynamic phenomena in a simple liquid
on a length scale of order 15 nm are typically limited to time
scales of order 10 ns when performed on a modern worksta-
tion. Such limitations often make it difficult to compare MD
results with experimental observations. They also make MD
simulations impractical as a tool in engineering design.

In this paper, we describe a computational technique that
extends the length scales accessible in MD simulations of
fluids. The technique involves coupling an MD simulation in
one region to a continuum-based computation in another.
The MD portion of the hybrid computation is utilized in
regions where structural inhomogeneities and other complex
features prevent a simple continuum description of the Quid.
Typically, such regions are localized near interfaces (within
50 A) [1,2]. Outside of this domain, in the smoothly varying
region, a Navier-Stokes description is used. In linking these
two regions, the MD simulation can effectively access arbi-
trarily large length scales typical of macroscopic flows with-
out additional computational effort.

Discrete-continuum computations in and of themselves
are not a new tool in the study of Auids. A common imple-
mentation entails embedding a discrete computation within a
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FIG. 1. Schematic for the region near the MD-continuum inter-
face. Bins used for averaging particle velocities in the overlap re-

gion are delineated by the dashed lines.

continuum model to sample and supply information about
variations in thermodynamic properties. These have been
particularly useful in modeling chemically reactive Aows [3].
In contrast, our hybrid computation involves the explicit dy-
namical coevolution of two spatially distinct domains. A
similar type of computation has been developed to study
shocks in rarified gas Aows. It consists of coupling a direct
simulation Monte Carlo algorithm to a continuum model [4].
As in the algorithm presented here, the discrete model is
utilized in regions where continuum assumptions break
down.

The most important concern in any discrete-continuum
hybrid computation is the continuity of thermodynamic and
transport properties across the interface between the two de-
scriptions. This interface is illustrated in Fig. 1 and is re-
ferred to in this work as the hybrid solution interface or HSI.
In the case of an MD-continuum hybrid computation, the
termination of the spatial extent of the MD induces local
structure in the fluid, particularly at liquid densities [1,2].
Since this structure precludes continuity, we extended the
MD portion of the computation beyond the HSI, introducing
an overlap region. The fluid particles within this region are
represented by the open circles in Fig. 1. Provided this over-
lap is large enough to screen the HSI from the effects of the
termination, the density (and temperature) will be continu-
ous.

For an isothermal Quid, the relevant transport quantities
are mass and momentum Aux. Continuity of mass flux at the
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FIG. 2. Schematic of the Aow geometry used to test the hybrid
algorithm. The dashed line represents the region near the HSI, and

h denotes the distance separating the two planar walls. The dotted
line at zo indicates the spatial extent of the MD computation.

HSI is achieved by supplying the continuum with spatially
and temporally averaged particle velocities. In the context of
Fig. 1, this averaging is carried out over the zeroth bin, and
the resultant average becomes the velocity BC for the con-
tinuum.

In contrast to mass Aux, ensuring the continuity of mo-
mentum Aux at the HSI is a more subtle issue. The difficulty
arises when trying to reconcile the stress supplied by the
continuum within the MD description [1].Unlike in a con-
tinuum model, a local constitutive representation is not as-
surned in the MD. Instead, the state of stress is an explicit
computation of the momentum flux of molecules across a
surface element moving with the local velocity and the
forces acting between molecules on either side of the surface
element I 5].These two contributions make up the kinetic and
virial terms of the microscopic stress tensor, respectively I 6].
In order to impose a continuity of stress at the HSI, we
would therefore need to know a priori over what length and
with what magnitude to apply the necessary corrective
forces. Although feasible, this would introduce a high degree
of subjectiveness into the calculations.

In our hybrid scheme, the continuity of stress is achieved
by exploiting the presence of the overlap region. In order that
the state of stress at a point in the MD description be the
same as that of the local continuum, the thermodynamic
properties and the velocity field must be consistent with the
continuum within a radius of a few molecular diameters. As
described above, the overlap region was introduced to ensure
the consistency of the thermodynamic properties in the vi-
cinity of the HSI. To guarantee that the velocity field is also
consistent, the average momentum of the overlap particles is
relaxed to that of the corresponding continuum Auid element
through the application of constraint dynamics. This con-
straint allows the momentum transport across the HSI to be
handled by the interactions of the MD particles themselves
not by an empirical or ad hoc corrective field. Thus, the
overlap particles (though not actually a part of the hybrid
solution) facilitate the recovery of a continuous state of stress
across the HSI.

To demonstrate the validity of our hybrid scheme, we
used it to model the startup flow of an isothermal Newtonian
Auid in a planar Couette cell. This flow provides an excellent
test for the scheme because the stress and velocity fields are
nonlinear in both space and time. Furthermore, the hybrid
solution can be easily compared to full MD and continuum
computations. The geometry of the system is shown in Fig.
2. The walls of the cell were oriented parallel to the xy plane
and separated by distance h. Periodic BCs were imposed in
the x and y directions. The Auid was sheared by translating
the lower wall in the x direction with velocity U (t). The

MD portion of the hybrid computation, including the overlap
region, consisted of the lower wall and the Auid up to zo in
Fig. 2 (—14 molecular diameters). The continuum computa-
tion modeled the Auid from the HSI to the upper wall. To
simplify the analysis, the HSI was oriented parallel to the
walls. This ensured that the time-averaged mass Aux was
tangential to the MD-continuum interface.

In the MD region, the Auid was modeled as an isothermal
ensemble of N& spherical particles. Particles separated by
distance r interacted via a shifted Lennard-Jones (LJ) poten-
tial truncated at r =r, ,

( ) 12 ( ) 6 ( ) 12 ( ) 6

V (r)=4m ~

— — — —— +~—LJ

~~, (

where e and o. are characteristic energy and length scales.
The wall consisted of N atoms forming two (111)planes of
an fcc lattice oriented with the (112) direction along x. The
wall-Auid interaction was also modeled with a truncated LJ
potential [Eq. (1)]with parameters e /, o. /, and r, . Similar
models have been widely used to study Auid Aow in bulk and
interfacial geometries I1,2]. The equations of motion were
integrated using a fifth-order Gear predictor-corrector algo-
rithm with a time step 5 tMD = 0.0057, where
~=(mo. /e) t is the characteristic time of the LJ potential

A constant temperature T was maintained by weakly cou-
pling the y component of the particle velocity to a thermal
reservoir. This coupling was modeled by adding Langevin
noise and frictional terms to the equation of motion I7]. To
terminate the spatial extent of the MD computation and fix
the density p in the vicinity of the HSI, a constant external

field I', ,= —nPp z was applied to the outermost overlap
particles with position z~zp. P is the thermodynamic pres-
sure of the continuum, and o. is a constant of order 1 that
controls the amount of structure induced in the vicinity of
Z{) ~

In the continuum region of the computation, the dynamics
of the fluid was modeled using the Navier-Stokes (NS) equa-
tion with constant viscosity p, and density p. Since the Aow
is unidirectional, the equation of motion becomes

(2)

This equation was integrated using an explicit, finite-
differencing approximation with grid spacing AzNs and time
step htNs~phzNs/2/J. I8]. At the static top wall, a no-slip
Aow BC was used. At the HSI, the Aow boundary condition
was supplied by the MD computation by averaging the x
component of the particle velocities within a bin of width M
centered about the HSI (the zeroth bin in Fig. 1). For the
results presented below, Az=1o..

As discussed above, stress continuity at the HSI was
achieved by constraining the dynamics of the overlap par-
ticles. In the context of Fig. 1, the overlap particles corre-
spond to those in bins labeled greater than 0. For particles in
the jth bin (of width Az), this constraint may be expressed
as
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FIG. 3. Time evolution of (a) fluid velocity v and (b) shear
stress P, in the startup flow problem [12]. Symbols denote MD
results obtained by averaging instantaneous values within bins of
width 2o. over 100~ intervals. Dotted lines denote the correspond-
ing solution of Eq. (2).
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The strength of the constraint g was introduced to control the
rate at which the overlap particle momenta relax to the local
continuum value. As discussed below, an appropriate value
for this parameter must take into account the correlation
times of the particle dynamics.

To establish a base line with which to compare the hybrid
results, we first carried out a full MD simulation of the flow.
This entailed modeling both walls at the atomistic level and
including fluid particles across the entire cell. The cell mea-
sured h = 20.6o. between the walls and 12.5o. by 7.2o. in the
xy plane. The system parameters were Nf = 1440,
N = 144, e =0.6e, o = o, and r, =r, =2 2' [11]. A.

similar system has been studied extensively elsewhere under
both equilibrium and none quilibrium conditions [2]. At
T= I.Ie/k antedip=0 81o, the. fluid is in a well-defined
liquid phase with p, =2.14e~o

To induce shear within the film, the lower wall was
translated in the x direction with velocity v (t)

where NJ is the total number of particles in the jth bin and

p„ is the momentum of the nth particle in the x direction.
M~'~ denotes the mass of the continuum fluid element corre-
sponding to the jth bin, and U ' is its velocity. In this form,
the constraint is nonholonomic. Through an integration with
respect to time, it may be recast as a holonomic constraint
and directly incorporated into Lagrange's equations [9].The
resulting equations of motion for the ith particle of mass m
in the jth bin (j~1) are

FIG. 4. Time evolution of (a) velocity and (b) stress fields in the
startup flow. Symbols and solid lines denote hybrid solution aver-

aged over 1007 intervals. Starred points indicate values at -2o.
into the overlap region. Dotted lines denote the solution of Eq. (2).
The bin-averaged fluid density is shown in (c), where the dotted line
represents the overlap.

=U[1—exp( —t/to)], where U=2o. r ' and to=160r [13].
Note that to was large enough to ensure that the local shear
rate in the fluid was ~0.1~ . The time evolution of the
resulting velocity and stress fields is shown in Fig. 3. The
dotted lines denote profiles obtained by solving Eq. (2) for a
fluid with the same p and p, as the MD and assuming a
no-slip BC at both walls. Representative error bars are
shown in Fig. 3(b) to reflect the fluctuations observed about
this solution for five independent runs [14].The results dem-
onstrate that, despite strong variations in particle density near
the wall, both the velocity and stress fields for the MD simu-
lation are in excellent agreement with the continuum solu-
tion. Due to this agreement, we used the continuum profiles
as the base line with which to evaluate the performance of
the hybrid code.

The solution for the startup flow obtained using the hybrid
code is shown in Fig. 4 [13].As described above, only the
lower portion of the cell was modeled at the particle level.
This included one wall with N = 144 and the adjacent fluid
with Nf = 1008. A density profile averaged over the duration
of the run (400r) is shown in Fig. 4(c). The density oscilla-
tions near the lower wall typify the microscopic structure
observed in fluids at solid interfaces [1,2]. In general, the
magnitude of the oscillations decays with increasing z, and p
approaches its bulk value at -5—6 molecular diameters from
the wall. We located the HSI within this bulk region at
z=0.35h. The dotted line in Fig. 4(c) for z)0.35h denotes
the density distribution for the overlap particles. Note that
the external field I'. .. applied at position z0=0.67h with
n=2 and P =3eo. , induced only small oscillations in the
particle density. This significantly reduced the size of the
overlap needed to provide continuity at the HSI. To obtain
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good results, we find that continuity of density must extend a
few r, into the overlap region [10].

Results for the velocity and stress fields are shown in
Figs. 4(a) and 4(b). Note that the magnitudes of the error
bars are the same as those reported for the full MD simula-
tions [14]. The results were obtained with b,z~s=1.1o.,
b, tzs= b, tMD, and (=0.01. Smaller values of ( provided an
inadequate coupling between the MD and continuum. Larger
values led to excessive damping of particle fluctuations and
caused substantial deviations from the base line solution
[10]. In general, we obtained the best results for couplings
with values of AtMn/( slightly larger than the characteristic
decay time t,„of the particle velocity auto-correlation func-
tion. For a LJ liquid at p = 0.81o. and T= 1.1e/ks,
t„—0.14'.

The excellent agreement within statistical fluctuations be-
tween the hybrid solution and th:. base line for the velocity
and stress fields demonstrates the validity of our hybrid al-
gorithm. This agreement requires the flow solution to be con-
sistent with the continuum only in the vicinity of the HSI.
The starred points in Figs. 4(a) and 4(b) demonstrate that this
condition is met at -2o. into the overlap region. They indi-

cate that continuity across the HSI can be achieved despite
the local distortion of fluid structure and stress in the outer-
most portion of the overlap region. This fact gives tremen-
dous flexibility in modeling the overlap which will prove
useful in adapting the algorithm to flows in more complex
geometries. Of particular interest are interfacial flows, such
as the spreading of a fluid on a solid substrate, where poorly
understood microscopic effects control the macroscopic be-
havior [1,15].

Although we have restricted our discussion to simple flu-

ids, the algorithm may be readily applied to complex liquids.
This stems from the fact that the constraint dynamics used to
couple the discrete and continuum computations in the over-

lap region allow for a consistent stress regardless of the mo-
lecular potential. For example, to model polymer melts, only
those monomers within the overlap region need be con-
strained. The only restriction is that the extent of the overlap
region must reflect the range of the potential.
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