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Pattern formation in composite excitable media
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The propagation of periodic reaction-diffusion waves (wave trains) on a composite catalytic surface, whose
subdornains are characterized by different reaction kinetics, is observed experimentally during CO oxidation
and analyzed computationally with a realistic reaction-diffusion model. Complete transmission as well as
partial blocking of plane waves, creation of spirals as well as chemical turbulence due to presence of a domain
boundary with curved waves are found for different parameters.

PACS number(s): 82.40.Ck

Experiments and theoretical investigations on pattern for-
mation and wave propagation in chemical systems are often
motivated by their potential role in the understanding of mor-
phogenesis and functional aspects in biological systems [1].
Although most biological systems are strongly heteroge-
neous, chemical experiments have mainly been conducted in
homogeneous setups. Recently, theoretical [2] and experi-
mental [3] results on the behavior of fronts in heterogeneous
media have been obtained. In excitable media that support
spirals and pulses, several cases where heterogeneities with
different behavior appear on a length scale smaller than or
equal to the spiral wavelength in the medium have been stud-
ied [4]. Here, we would like to address the opposite case:
composite surfaces whose heterogeneities (entire domains)
have a length much larger than the typical spiral wavelength.
As a simple example of such a composite medium we study
theoretically two large rectangular domains with slightly dif-
ferent properties, that possess a common linear interface. We
start in one dimension (1D), when the model geometry con-
sists of two line segments with a point interface, and then
proceed to two dimensions (2D). Both halves of this com-
posite are excitable media and can sustain pulses and wave
trains in 1D as well as rotating spiral waves in 2D [5].It has
been shown recently that a sudden change (e.g., a sharp edge
or narrow slit) in the geometry of a no-flux boundary of an
excitable medium can give rise to a range of phenomena
from wave blocking to spiral creation [6,7]. Here, we deal
with a yet different kind of heterogeneity: the infIuence of
spatial variations of pvoperties of the medium on the propa-
gation of waves (in this case finite step changes in reactiv-
ity). In contrast to the no-flux boundary conditions of the
complex geometry examples mentioned above, the type of
domain boundary we consider does allow for species diffu-
sion across it, and affects the speed and the profile of the
transmitted wave significantly.

An experimental realization of such a system in the con-
text of catalytic surface reactions has recently been con-
structed by the coupling of a pure Pt(110) surface with a
partially (up to 5%) Au-covered Pt(110) surface [8,9]. The
spatiotemporal dynamics of the CO and 0 concentrations on
such a surface have been recorded by means of photoemis-
sion electron microscopy (PEEM) [10]).One observation (cf.
Fig. 15 of Ref. [9]) shows waves arising from the spiral
center and crossing through the boundary, keeping the same

frequency on both sides, while the spatial profile and the
length of the alternating black and white areas (indicating
oxygen- and CO-rich areas on the surfaces) change drasti-
cally; alternatively, in a different experiment, spiral tips form
and remain close to the domain boundary (cf. Fig. 16 in [9]).

To get a more systematic understanding of the dynamics
close to such a boundary, numerical simulations with a sim-
plified model of the CO oxidation on Pt(110) in the excitable
regime [11]have been performed. The model equations read

Bu 1 (—= —u(1-u) u-
Bt

w+ b(x) i
+ V'u,

a

Bw =f(u) —w, (2)

with

0 if u&-,'

f(u) = ' 1 —6.75u(u —1) if ~u~1
1 if u&1.

(3)

Here, u represents the surface coverage and w the surface
structure (degree of 1 X 2-reconstructed surface) [11].Note
that u=0 corresponds to a CO (0) coverage of 0.65 (0.01)
monolayers (ML) and that u= 1 represents 0.2 ML (0.25
ML) for CO (0) on the Pt surface.

The dimensionless time and space units of the scaled Eqs.
(1)—(3) correspond roughly to 2 s and 1 p, m, respectively.
The experimental parameters CO partial pressure pro, oxy-
gen partial pressure po, and the surface temperature T have2'
been mapped into the model parameters a, b, and e [11].
The drop in the oxygen sticking coefficient due to the pres-
ence of the inert gold atoms is stronger than the same effect
for carbon monoxide (for a detailed discussion of the influ-
ence of gold on the reaction kinetics see [9]).This can be
mimicked in the model through a spatial dependency of the
parameter b(x), which essentially expresses the balance be-
tween CO and 0 on the surface: b(0 (b)0) indicates a
dominance of oxygen (carbon monoxide). Here the specific
form
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b(x) = b, if x~L/2

b2 if x)L/2
(a)

(4)
1:1transmission 1:2transmission

has been used, where L denotes the length of the system in
the x direction. The Au atom's influence on the activation
energy for CO diffusion and adsorption will be neglected
here, since the Au coverages of interest are small. In all
images shown below, oxygen- (CO-) rich regions will appear
black (white). Equations (1)—(3) are similar to a generic
model of excitable media, introduced by Barkley [12]; the
following results are therefore expected to hold for a wide
class of coupled excitable media.

As representative dynamics we studied the inhuence of
composite "grain" boundaries on traveling pulse trains. In
our simulation setup we imposed a source of oxygen waves
on the left boundary [realized by a Dirichlet boundary con-
dition u(x =0)= w(x = 0) = 1]. The two diffusionally
coupled grains are individually characterized by the exist-
ence of a CO-stable rest state on the left side [medium 1
corresponding to the Au-covered Pt(110) surface with
bi)0], and by an oscillatory or 0-stable state on the right
[medium 2 representing the "pure" Pt(110) surface with
bq(0]. At the rightmost edge we use a zero-fiux-boundary
condition [(Bu/Bx)(x=L) =(Bw/Bx)(x=L) =0]. At fixed
b

&
the source creates a stable wave train in medium 1 with a

constant period ~&. With increasing b&, the period 7.
&

de-
creases. Then the value of b2 is varied at fixed b]. If b2
becomes smaller than b„;,z, waves cease to propagate in
medium 2. For larger b2, we observe two basic types of
behavior. Either every wave of the stable train in medium 1
passes the boundary and adapts to the new conditions (1:1
transmission) or every other wave is blocked (1:2 transmis-
sion) as shown in Fig. 1(a). The first case results in equal
temporal periods of the wave trains on both sides of the
boundary, while in the latter case the period in medium 2 is
twice that of medium 1.

The extent of the effect depends strongly on b& and the
associated period 7&. We plot the regions of different quali-
tative behavior in two-parameter space (~i and the threshold
bz) in Fig. 1(b). The 1:2 transmission is only seen for suffi-
ciently small period (high incident frequency). The blocking
of every other pulse in these cases may be rationalized as
follows: When a pulse enters into medium 2, its speed and
form need to adapt to the new conditions. While the leading
part (front) takes on the new speed, the back is shifted to
achieve the new pulse profile. In our case the dark (oxygen-
rich) part of the wave expands, as manifested in a delay of
the propagation of the wave back. This delay increases the
possibility of an interaction with the subsequent incident
pulse near the boundary (especially in high frequency wave
trains) and may even cause the observed blocking of every
second wave. It is important to note that, in the case of
blocking here, medium 2 supports usually waves with the
period of the incident train, so wave blocking due to a vio-
lation of the dispersion relation of medium 2 can be ruled
out. The observed transformation at the boundary might also
be considered as a response of the boundary to a forcing by
the wave train in medium 1; in fact, similar as well as chaotic
response patterns have been found in experiments with peri-
odically forced cardiac fibers and in corresponding model
calculations (see [13] and references therein).
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In 2D, spiral waves naturally provide a source of wave
trains without the need for a special boundary condition (dif-
ferent from zero-flux-conditions). To achieve a meaningful
comparison with the results in 1D, we produced spiral waves
with spontaneous frequency comparable to the 1D-source
frequency (bi = 0.155 with 7, = 3.95). We also tried a differ-
ent example (bi =0.07 with 7, =4.68) where the spiral fre-
quency was forced to precisely the 1D-source frequency
through the pinning of the spiral to an artificial core [11].
The cuts are visible in Fig. 1(b) as the vertical dashed line
with the arrows. In all cases, the 1:1behavior of the 1D case
reappears in 2D leading to patterns like those in Fig. 2(a).
The 2D behavior corresponding to the 1:2 wave transmis-
sion, however, is far more complex and sensitive: Only when
pulses but no spirals are supported by medium 2 individually,
do we find the 2D analog of the 1:2behavior [Fig. 2(b)]. In
most cases, two further distinct scenarios emerge involving
the "incomplete" blocking of every second wave. The pos-
sible final stages of this process include two or more spirals
located close to the boundary that suppress the original

FIG. 1. One-dimensional simulations of a wave train crossing
the boundary between media with different kinetic properties. (a)
1:1 transmission at conditions a=0.84, a=0.025, b&=0.155, and
b 2

= —0.10; 1:2 transmission at a = 0.84, e = 0.025, b, =0.155, and
b2= —0.12. The length of the system is 100 space units, the period
of the wave trains in the left half 3.95 time units for both images.
All units are dimensionless. (b) Existence region for the two differ-
ent types of behavior; plotted is ~& against b2. Note that a period of
3.8 time units corresponds to b&=0.21, whereas a period of 5.4
time units stems from b& = 0.00. The vertical dashed lines with the
arrows show the cuts, which have been investigated in two dimen-
sions.
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FIG. 2. Examples for possible end state of an initial spiral that
sends waves towards a boundary. The parameters a = 0.89,
e= 0.025, and b, = 0.155 are the same in all cases. (a) 1:1transmis-
sion (b2= —0.10); (b) 1:2 transmission (b2= —0.28); (c) new spi-
rals close to the boundary suppress the original spiral
(b2= —0.12); (d) chemical turbulence in medium 2 (right) forced

by the spiral to the left in medium 1 (b2= —0.195).The size of all

pictures is 100 space units X 100 space units; (e) regions of behav-
ior in dependence on the magnitude of the step change
Ab= b, —b2, the letters refer to (a)—(d) as possible end states. For
A&)0.45 waves cease to propagate in medium 2.

source in the left half [Fig. 2(c)] and a state of wave disorder
in the right half [Fig. 2(d)]. Figure 2(e) summarizes the find-

ings and shows the intervals of different dynamics as a func-
tion of the property step change Ab =b& —b2. The experi-
mental examples (Figs. 15 and 16 of Ref. [9], respectively)
cited above may be representative of two of the scenarios
[1:1transmission in Fig. 2(a) and creation of spiral boundary
spirals in Fig. 2(c)] found in the simulations.

Examples of the dynamics leading to creation of new spi-
rals (turbulence) in medium 2 are shown in Figs. 3(a) [3(b)].
In both cases blocking of the wave leads to the formation of
open ends that evolve into spiral waves (visible in frame 2 of
Fig. 3(a) [in frame 3 of Fig. 3(b)]). If the spontaneous spiral
period in medium 2 is smaller than that in medium

(rs ( rs ), the new spirals generated from the curling of the

open ends eventually suppress the original spiral and a pat-
tern governed by two [frame 10 of Fig. 3(a)] or more spirals
close to the boundary is observed. Note that the original
spiral in Fig. 3(a) moves to the left side and out of bounds as
the waves from the higher frequency spirals at the boundary
reach its core [frames 8 and 9 in Fig. 3(a)]. This is in accor-
dance with results on competing wave sources in the
Belousov-Zhabotinsky reaction [14]. In the second case,

FIG. 3. Temporal evolution of (a) the state in Fig. 2(c) (the time
differences between the frames 1 to 5 is 1.34 time units and be-
tween frames 5 to 10 it is 80.2 time units) and (b) the state in Fig.
2(d) (the time differences between the frames 1 to 5 is 1.74 time
units and between frames 5 to 10 it is 80.2 time units). The spiral
period in medium 1, 7&, is 3.95 time units, in medium 2 its value1'

amounts to 3.30 time units in (a) and 4.41 time units in (b).
2

when the spontaneous spiral period in medium 2 is bigger
than that in medium 1 (rs ~rs ), the new spirals created

2 1

near the boundary never become stable: they are periodically
forced by waves arriving at the boundary from the original
spiral source. In addition, there is extensive wave interaction
in medium 2 after the breakup at the boundary leading to a
complicated "turbulent" pattern. The result in this case is an
overall spatiotemporally chaotic state in medium 2 [frame 10
in Fig. 3(b)] that shows typical features of defect mediated
turbulence [15],such as the spontaneous creation and mutual
annihilation of spiral pairs. This turbulent state is of course
different from intrinsic turbulence arising, for example, from
spiral breakup in a homogeneous domain, observed in Eqs.
(1)—(3) for much bigger values of e [16].

Overall, the paradigm of a simple straight boundary be-
tween grains reveals a great wealth of interesting dynamic
phenomena. The spatial change in medium properties acts as
a perturbation on the waves, which must adapt its speed and
form to the new medium. The two main A.ndings from this
work for a linear "grain boundary" are (a) the possible
blocking of plane waves and (b) the creation of spirals close
to the boundary, which partially obstructs curved wave
propagation through it. Depending on the frequency of these
new spirals, they may suppress the original spiral or organize
in a turbulent state which is in essence periodically forced by
the waves entering the new medium. More results can be
expected from composites with more complicated geom-
etries (e.g. , periodic media), gradual boundaries, or grains
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with strongly varying diffusion coefficients. The study of
systems of composite nature should extend the insights in the
role of reaction-diffusion waves in biological systems and
the understanding of the kinetics of composite catalytic sur-
faces.
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