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We find that the probability distribution for the largest intervals p(l) exhibits universal properties for
different systems including random walk and random cutting models. In particular, p(l) has an infinite set of
singularities at l = I/k with /r =2,3, . . . , which become weaker and weaker as k~~; additionally, p(l) has an
essential singularity at l =0. These properties are also found in many dimensional situations.

PACS number(s): 05.40.+j

Systems with complex landscapes are of great current in-
terest in a variety of fields ranging from optimization to evo-
lution

I 1].The phase space in such systems is usually broken
into many valleys. The multivalley structure determines
many peculiar properties as it was first realized for spin
glasses I2]. The large valleys fluctuate from sample to
sample and lead to anomalous long-time behavior, ergodicity
breaking, etc. Large valley distribution and other extremal
characteristics therefore play a significant role in various
problems, such as the search for ground states of randomly
charged polymers [3].

To study extremal properties of random systems, we con-
sider two very simple geometrical models. The first model
arose as a byproduct of our previous work I 4] which studied
the kinetics of annihilation of charged particles in a one-
dimensional (1D) two-component plasma with a truly 1D
Coulomb interaction and neutrality condition. This system is
decoupled into a succession of uncharged chains which
evolve independently [4]. The long-time behavior is there-
fore determined by long chains, in particular the time of
complete annihilation is directly related to the longest un-

charged chain. Thus we run into a problem of the longest
uncharged chain distribution which exhibits a surprisingly
rich behavior. Although some of the features are model de-
pendent, the basic properties of the longest interval distribu-
tion function, such as the existence of an infinite countable
set of singularities (discontinuities of proper derivatives) and

their locations, seem universal. At the least we will demon-
strate that similar features arise in another very different
model coming from fragmentation processes I5,6], namely,
the random cutting model. We therefore anticipate that our
qualitative conclusions should provide an insight into the
probability distribution of the largest valley in disordered
systems and systems with a complex landscape.

In the first problem, we consider sequences of 2% charges

Q, , Q, = ~1, with XQ, —=0 to satisfy the neutrality condi-
tion. It is clear that such a sequence can be visualized as a
random walk (RW) starting at the origin at time t= 0, jump-
ing a step up at t=j if Q&=1 and a step down if Q = —1,
and returning back to the origin at t = 2N (Fig. 1).A RW can
return to the origin few more times, and we ask for the prob-
ability distribution of the longest time interval, 2L, between
successive departures and arrivals (see Fig. 1).

A typical number of returns scales as +N, and so does a
typical time interval. However, the longest time interval

2L

FIG. 1. A typical random walk with 2%= 100 and 2L =46.
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scales as N rather than +N. To demonstrate this and other
peculiar properties of the longest time interval let us calcu-
late the total number T&(L) of RWs with the longest time
2L. If 2L~N, a time interval of length 2L is always the
longest one and therefore T~(L) is easily computed:

2.0

N —L

T~(L) = g RxFIR~
K=O

(1)
p(~) t.o—

Here, Rx= (2K)!/K! K! gives the total number of "head"
RWs of length 2K from the origin (t,x)= (0,0) to the begin-
ning of the longest interval (2K,O), FI = 2(2L —2)!/

(L —1)!L! gives the total number of RWs starting at

(2K,O) and then first returning to x=O at t=2K+2L, and

RN z L gives the total number of "tail" RWs of length
2N 2K—2—L [7]. Computing the sum in Eq. (1) yields
T&(L) =FL2 and thus the longest interval probability
&z(L) =T~(L)/R~ is equal to FL2 /R~ for 2L «N. In
the continuum limit N~~ it is convenient to use the prob-
ability density p(l)= NP~(L),—where I=L/N is the scaled
length. Our previous result can then be rewritten as

1
p(l) =

3&@, for ~ l ~ 1. (2)

When 2L &N, we should modify Eq. (1) to guarantee that
the head and tail regions do not contain intervals of length
&2L. In the continuum limit, the probability distribution

p(l) obeys the integral relation:

( ~ ~f(l,x) 1 f(l, l I —x)—
3/2 dx.

g~x 2I g~(1 I x)--p(I) =
Jo

Here x=K/N and 1 ——I —x are the scaled lengths of the head
and tail regions and f(l,x) and f(l, l I —x) are th—e prob-
abilities that the longest intervals in the head and tail regions
are smaller than l. For example,

l'x ( g~ dg
f(l,x) =1— p — —=—1—

ix) x p( r/) d r/,
3 l/x

(4)

( (3I—13
p(l) =

3&z m —sin ' —2
1 —2I

(5)I j

for —,
' -(- -,'.

These results can, in principle, be generalized for any
1/(k+1)~1~1/k but even for k=3 the outcome is rather
cumbersome. Let us just stress the most important feature:

when x) l while for x~ 1 we have f(l,x) = 1. Besides the —f
subfactors, the first and the last factors inside the integral in

Eq. (3) are just the continuum representation of R& and

L, respectively.
Notice that f(l,x) depends on the the tail of the probabil-

ity distribution p(r/) for r/~l/x~l/(1 —I). In particular,
when I~ ~, the f subfactors are trivial, f(l,x)
=f(l, 1 —I —x) = 1 and Eq. (3) reduces to Eq. (2). Similarly,
in the interval —,

' ~l~ —,
' we readily compute the f subfactors

from the knowledge of the probability distribution in the
preceding interval, Eq. (2). After elementary computations
we find

0.0
0.0 0.5 1.0

FIG. 2. Continuous probability p(l) for the RW problem. Nu-

merical simulations of 10 different configurations of length
2N= 1000 are shown. Values of p(l) are given by Eq. (2) for
l~1/2 and Eq. (5) for I/3~i&1/2. This distribution attains its
maximum at 0.32... .

Even the first singularity at l = —, is hardly visible (see Fig. 2).
However, numerical differentiation of the data allows us to
detect it.

Our numerical results also indicate that the probability
density has an essential singularity p(l)-exp( —const/l)
when 1~0. To explain this behavior heuristically we note
that if the longest time interval between the successive re-
turns of a RW to the origin is 2L, this RW typically stays
within a region (—QL, QL). The probability of that can be
estimated by solving the diffusion equation in a cage with
adsorbing boundary conditions. In a cage of size B this sur-
vival probability behaves as exp( —t/B ). In our case
t=N, B~-L, and thus p(l)-exp( —const/I). When L=1,
we have an exact expression, T~(L =1)=2, Therefore,
p(l = 1/N) =NT~(1)/R~= 7r ~ —I ~ exp[ —ln(2)/I].

Notice that a closely related problem has been recently
investigated [3]. In that model, the maximal-length chains
were different from ours (just uncharged, not necessarily
starting at the origin, and making arbitrary number of returns
to the starting point). Numerical simulations [3] demonstrate
a singularity at I=-,' that is even more sharp than ours. The
next singularity at I=-,' has not been notified. However, all
the singularities do exist and are located at the very same

Since the expressions for the probability distribution function
p(l) are different in different regions 1/(k+ 1)~ I~ 1/k, sin-
gularities are expected at l=1/k. These singularities, how-
ever, become weaker as k increases. We define by
p„„g(l,k) the leading order term by which the expansion of
p(l) from the right and the left of l=1/k differ from each
other. By expanding expressions (2) and (5) near I=

~ one

finds that p„„g(I,2) —!l—-,
' ~ . Similarly, by expanding (5)

and p(l) in the next region 4~l~-,' near I= -,
' one gets

p„„g(l,3)-!l—
~

. The nature of the singularities then be-
comes clear,

3{k—1)/2

p„„g(l,k)- I ——
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places, l=1/k, as in our model. The singularities just be-
come weaker and weaker [p„„s(l,k)-~l —(I/k)~ ' seems
possible] and hence are hardly visible for k) 3.

We now turn to the random cutting model which is de-
fined as follows. We start by cutting the unit interval (the
cutting probability is assumed to be uniform). Two intervals
are formed, left and right, and in the next stage we cut the
right one only. The cutting process is then continued with the
right interval from the preceding stage. We again wish to
determine the probability density p(l) for the longest inter-
val which is formed in the cutting process.

When l)-, , the probability density satisfies an integral
equation

p(/) =1+ p
Jp 1 x l1 xj

dx. (7)

Indeed, we can get the desired interval of length I at the first
stage of the process (since l)-,' we never get a piece of
length I or larger at any further stage). This gives the first
constant contribution to the right-hand side of Eq. (7). A
complimentary possibility means that at the first stage we cut
at some point x with x~1 —I. The probability density to get
the desired interval of length l from remaining interval of
length 1 —x is given by [1/(1 —x)]p(l/(1 —x)), where the
prefactor provides a proper normalization.

In general, the governing integral equation becomes

dx t'i f I ~ dx
+ s ' . (8)Ji ~1 —l/ 1 —l go (1—x] 1 —x

I'1

p(y)dy+
J p(i

dz
p(z) —.

Differentiating Eq. (9) we finally reduce it to the difference-
differential equation:

d 1 / I ~ p(l)
dl l(1 —I) I, 1 —I )

When l)," we have dp/dl= —p/l with the boundary
condition p(1) = 1. This is readily solved to find

1
p(l) = —, for l) -,'.

The last integral term is built as previously up to a small
correction —the upper limit is now l to guarantee that the
first cutting gives the interval x less than I. The two first
terms again describe the situation when we get the l-length
interval at the first stage and guarantee that in the following
cutting of the remaining interval of length 1 —I we never get
an interval of length I or larger. For l) —,', Eq. (8) is identical
to Eq. (7) if we agree to put p(x) —=0 for x) 1.

Changing variables inside the integrals, y=x/(1 —I) in
the former and z = I/(1 —x) in the latter, simplifies Eq. (8) to

p(l) = —+ —ln, for —,
' (l(-,'.

l I 11—I(' (12)

It is possible to derive recursively exact expressions for the
probability density in consecutive regions 1/(k+ 1)(I
(1/k. The main conclusion remains the same: There are
singularities at l=(1/k) which become weaker and weaker
as k increases. More precisely,

1 k —1

p„„s(l,k) —l —— (13)

Consider now the small-I behavior. Our simulation results
indicate an essential singularity at 1=0. Let us try the same
type of singularity, p(l)-exp( —a/I), as in the first problem.
Substituting it into Eq. (10) gives different power law pre-
factors, I on the left-hand side and I on the right-hand
side. This defect can be readily removed by replacing the
constant a by a slowly varying function of I. An asymptotic
analysis yields

( In(1/I) + In[in(1/I) ]+
p(l) —exp

l
(14)

pp(A) = dxdy 8(xy —A) = —ln(A).
Jo Jo

The probability density satisfies an integral equation

Another way to understand the small-l behavior is to con-
sider a discretized version of the model, where the interval
may be cut only at the points k/N, k=1, . . . ,N. Then

p(l = 1/N) = 1/(N I)!=exp[ ——(1/l) ln(1/I) ]. Our simula-
tional results agree well with the asymptotic prediction of
Eq. (14).

The singularities seem to be a generic feature of the ran-
dom cutting model and the like. It may be difficult to prove
generally, but we believe that the mere existence of singu-
larities and their location are robust to small changes in the
model rules. In particular, if one considers the not necessarily
uniform cutting probability, p(x) W const, one finds that the
present approach still applies and only quantitative changes
appear, e.g., integral equations will contain the cutting prob-
ability p(x). To verify the robustness of generic properties
we consider a d-dimensional random cutting model. For ex-
ample, in two dimensions the model is defined as follows.
We start with a unit square, pick an arbitrary internal point
and cut the square along the two lines going through this
point in x and y directions. We then continue the cutting
process with only one of four rectangles, say with the north-
east one. We wish to determine the probability density p(A)
for the rectangle of the largest area A that arises in the cut-
ting process.

Note first that for the uniform cutting probability
p(x,y) = 1 the area distribution function is not uniform even
in the one-cut process. Instead, it is given by

If —,
' ~ l( 2, the variable I/(1 —I) belongs to the region [-,',1].

Thus p(l/1 —l) =(1—I/I), and Eq. (10) becomes a simple
differential equation which is solved to find

f i f 1

p(A) =3po(A)+ dxdy8(xy —A) —pl —,
Jo so ixyj'

(16)
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FIG. 3. Probability distribution p(l) for the cutting process in
d= 1,2,3. Numerical simulations of 10 processes are shown.

where t9 is the step function and the factor 3 in the first term
accounts for three rectangles which are kept unchanged in
the following cutting process. Equation (16) is derived in the
same way as Eq. (7) in the corresponding 1D version and
valid for A~-„again like in the 1D situation. Changing
variables from (x,y) to (u=xy, u=x/y), performing the v

integration, twice differentiating the remaining integrals, and
solving the resulting differential equation, we find an exact
solution,

3 (1 1
p(A)= ———A, for A~ —.

2LA ]' 2' (17)

This result perfectly agrees with simulations (Fig. 3).
Simulations in two dimensions also clearly indicate sin-

gularities at A = —,
' and 4. However, we still expect the sin-

gularities at all inverse integers, A = 1/k. The qualitative ori-
gin of singularities is the same as previously. If in the cutting
process a sufficiently large rectangle, namely a rectangle of
area A ~ —,', is formed, it is always the largest. For the largest
rectangle of a smaller area A~ 2 we should additionally
guarantee that other rectangles are smaller than A and hence
the probability distribution function p(A) is described by
different expressions for A ~ -,

' and A & . When we pass

through other critical points A = 1/k, other possibilities arise
and hence the probability distribution function changes
again. Geometry comes into play and changes the strength of
singularities, but neither their existence nor location. Indeed,
in 2D one can form two rectangles of the are" A = —,

' or four
rectangles of the area A= 4 just in one cut. However, one
cannot form three rectangles of the area A = —,

' after one cut-
one needs an additional cut. Note that a singularity which
arises at the later stage of the cutting process is weaker—
mathematically it appears by "integrating" the previous sin-

gularity. In one dimension the strengths of singularities were
consecutive, see Eqs. (6) and (13), since they appear on the
consecutive stages of the cutting process. In 2D both singu-
larities at A = —,

' and 4 arise after the first stage and thence
identical [simulations indicate that p„„s(A,2)-iA —

2i and

p„„s(A,4) —iA —
4 i]. The singularity at A = —,

' appears later

and should be weaker. Unfortunately, we could not find its
strength neither theoretically nor numerically.

We believe that the largest volume distribution shows the
same properties in all dimensions. We have verified this in
three dimensions. The singularities become weaker as the
dimension grows but we have certainly detected a few of
them.

In summary, we have demonstrated surprisingly peculiar
properties of the longest-intervals probability distribution.
We have found an infinite set of singularities at the inverse
integer values of the the longest interval I= (1/k). Singulari-
ties become weaker and weaker as k increases. Additionally,
we have found an essential singularity at I = 0. We have con-
firmed the existence of these singularities for several models.
For the random cutting model, these results are valid in ar-

bitrary dimension. We expect these singularities to appear in
other apparently unrelated problems.

Note added. After this work was completed, we learned
that the 1D cutting process had been studied previously by
Derrida and Flyvbjerg [8].
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