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Breatherlike impurity modes in discrete nonlinear lattices
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We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing
both diagonal and nondiagonal nonlinear terms. The equation models a linear host lattice doped with nonlinear
impurities. We find different types of impurity states that form itinerant breather states in the vicinity of the
impurities. We analyze the properties of these breathers analytically and numerically.

PACS number(s): 03.40.Kf, 42.65.Pc, 71.10.+x

A rapidly growing number of recent investigations have
been devoted to the combined effects of disorder and nonlin-
earity [1—5]. In infinite nonlinear lattices disorder is the
source of two different types of phenomena. The erst can be
described as nonlinearity-induced symmetry breaking ac-
companied by the formation of an intrinsic local mode [3].
The second is met in cases, when disorder of the Anderson
type is present in the nonlinear lattice [4,5]. In both cases
disorder induces the formation of impurity states and dy-
namical features completely different from the ones in the
corresponding linear lattices [6]. Some of the characteristic
features of the nonlinear modes, such as exponentially local-
ized shape and energies outside the linear lattice band [7—9],
are quite similar to those of the (conventional) linear local-
ized states. Others are completely different, e.g., the appear-
ance of localized states only above a critical value of the
nonlinearity strengths [8,10]. In this paper we shall describe
a completely different type of nonlinear impurity state that is
not characterized through a stationary shape and that
emerges near impurity sites and forms an itinerant breather
state in their vicinity. It is created through nonlinear impuri-
ties in the context of a generalized discrete nonlinear Schro-
dinger equation presenting a generic model of nonlinear lat-
tice systems with disorder.

We are interested in the dynamics of quasiparticles (elec-
trons or excitations) in a one-dimensional tight-binding lin-
ear lattice doped with impurities interacting nonlinearly with
the host lattice. The dynamics is described by the following
discrete nonlinear Schrodinger equation:

d t/1„(t)
( 1 + /J'

I Pn I ~n, t) [Pn+ i (t) + Pn —i ( t) ]

where P„ is a complex amplitude, and p, and y are real
nonlinearity parameters corresponding to the nonlinear
impurity-doped site situated at the site with index l contained
in the set of integers (m). If (m) is extended to cover the
complete lattice, Eq. (1) becomes identical to an equation
introduced by Salerno [11],studied initially by Cai, Bishop,
and Grdnbech-Jensen [12]and further in Refs. [13—15]. One
notable feature of the equation studied by Cai et al. or its

disordered version as given by Eq. (1) is that it interpolates
between the conventional, nonintegrable, discrete nonlinear
Schrodinger equation (DNLS) or discrete self-trapping equa-
tion (DST), (p, = 0) and the completely integrable Ablowitz-
Ladik (AL) equation (y= 0) [11—17].The AL-DNLS equa-
tion (1) can be derived from the Hamiltonian

(2)

with a modified Poisson bracket given by
= ib„(1+p,

l y, l 8„,), l e (m) and (pn=(H, Q„*) [12].The
diagonal DNLS-nonlinearity term modulates the on-site en-
ergies (taken to be equal to zero for simplicity) whereas the
off-diagonal AL-nonlinearity affects the transfer matrix ele-
ments and hence the bandwidth. In addition to the energy H,
the system of equations (1) possesses a further integral given
by

the latter serves as norm taken as N= 1.
In order to investigate the character of localized solutions

of Eq. (1) we first analyze the case of a single AL-impurity
situated at the center site of the linear chain, i.e.,
(m) =(0), where the total excitation energy is assumed to be
localized initially. The initial amplitude is therefore given by
It/10(t=0)I =[exp(p) —1]/p, . We integrate the equations of
motion numerically by using a Runge-Kutta method while
checking the accuracy using the conserved quantities H and
N. Figure 1 shows the typical probability profile

I P„(t)I2 at
different lattice sites around the central site as a function of
time for the parameter choice of p, = 7. %'e observe that part
of the initial amplitude escapes to the linear chain sites with
Inl)1, whereas the remaining amplitude is trapped in the
initially excited central site and the two adjacent ones. For
/ =7 we have lail'+ly-il'+»(I+/ lyol')// =067 The
phenomenon of the amplitude trapping in the vicinity of the
impurity site was already observed in DNLS-like impurities
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FIG. 1. Probability profile of the AL breather with p, =7. The
inset shows the time evolution of the squared central site amplitude
and the out-of-phase oscillation of 2~ P, ~

at the adjacent sites.

5=
(b) =

A=2(1+ pA )8, 8= —A, (4)

which admits the following conserved integral (the norm for
the truncated trimer)

I
N=28 + —ln(1+ pA ).

p

In Fig. 2(a) we plot the level curves for N= 1 in the A8-
plane for different p, values. We observe the enhanced "an-

studies for some nonlinearity parameter regimes [5—10].
However, in these nonlinear cases, the impurity state profile
reaches a stationary exponentially localized shape [8]. In
contrast we observe the surprising feature that the trapped
state does not become stationary at all, but is characterized
by an itinerant out-of-phase energy exchange between the
central site and the two neighboring linear sites. Thus the
produced localized impurity state is a long-lived stable
breather [18,19]. Increasing the nonlinearity strength p, re-
sults in higher (initial) central-site amplitudes, shorter tran-
sient times, and faster stable breather formation. We observe
that the AL term suppresses energy transfer from the initially
excited central site to those beyond ~n~~2, an effect that is
progressively enhanced with increasing p, and results in self-
trapping of the excitation energy in the trimer segment,
n= —I,O, I. Thus, for large p, values the central dynamical
trimer segment effectively decouples from the rest of the
chain. We mention that the breatherlike impurity state can
also be formed by initial energy depositing in the linear part
of the chain.

To gain more insight into the dynamics of the breather, we
isolate the central three sites and study the resulting AL tri-
mer. We make the ansatz $0(t)=A(t) and P ~(t)=~iB(t)
with real amplitudes A and B. Its specific form is motivated
by the fact that in the chain for a real initial condition
Pn(0), the solution alternates between purely real and imagi-
nary amplitudes at different sites. After some straightforward
algebra we obtain the integrable system of equations

harmonic" deformation of these curves with increasing p, .
The breather period for the energy exchange on the trimer
sites is readily obtained as

Tty 2
J —~N/2

(exp[@,(N —28 )]—1)
(6)

Figure 2(b) shows the frequency of the energy exchange
cu,„=27r/T, „as a function of the nonlinearity strength p, (full
line). The triangles correspond to the breather frequency ob-
tained from numerical results for the infinite chain. We note
that although the trimer result underestimates the actual fre-
quency of the breather oscillation in the chain, it gives the
correct slope as a function of p, .

When two or more AL nonlinear impurities separated by a
distance of at least three sites are placed in the lattice, a
formation of a corresponding number of breather impurity

FIG. 2. (a) The level curves of N= 1 in the A Bphase -plane of
an AL trimer determined by the equations in (4). We show the level
curves of the norm N for different p, values. Dashed-dotted line:
p, =2; Long-dashed line: p, =4; short-dashed line: p, =6; full line:
p=g. (b) Oscillation frequency of the (genuine) AL trimer as a
function of p calculated through Eq. (6). The triangles correspond
to the resonant oscillation frequency of the breathing mode in the
lattice and are obtained numerically. The dashed lines represent the
application of the expression of Eq. (6) for N=N(p), where
N(p, ) has been numerically determined from the complete chain
simulations. The agreement with the exact numerical result has
been improved. Note that the true breather disappears when its fre-
quency becomes identical to the upper band edge frequency.



R4630 AND GABRIELHENNIQ, RASMUSSEN, TSIRONIS, 52

goo -.

400 '-. —6
0 20 40 60

2.
o

(II p„
lIIII IIII~Itl~fpnpIlp&AIIqI A(III I(II' II

0
—4

50

]00

Ol

et0
0

0

—2, . . . -. . . . . l l l' l'& l'l I t l t t&1&;
'1 ''t

j~ jt I~ ll lllt lt. S, &. & ~
' ', '

~
' ' 't ', I

0 0 0.5
t

go-
yo

AL im uritiesrofile for the case of two AL '
p

'te between the two impu
t'o of ALb th o d

laced in the center site e
of the

et s ows the time evo u io
f th breathe wherp'

after a short transien p

oga
t eriod the regime o e

= I/I (t) 1t ts SU-ched. ~Due to the symmetrycillation is reache . u
ficient to show only the amplitude 5 t

a lattice of breath-~ a result we can form a
ndis created in the vicini y o

't I F' 3 ho h fo-
'ke im urity states un e

two sites aroun it. In
er themation of two such breather i e im

ositin all the entire excitation ene gy
the distance etween

po g
in the linear site bisecting

-DNLS '

~ ~ ~ ~

rities we now turn to
DNLS impurities in a

1f-t d d
e note that pure
rovide a stationary se-in po
r ~3.2 [8,10 an

'
1 [78j. An

'
state is well fitted yb an exponentia

' What will be the result of
1 lf-t d b th-

to be answere: W at wi
tween the dynamica s

1AL' '
d hg ppo d b nondiagona

in mode origina ingpp g

d dAs b
? InFi. 4thepro ai
f =7 and @=0. is epip-

t showing the time evseen from the inse, s
i hboring ones (pert-

'l1 i . B o d)o o o p
to its pure AL counterpart (y=O see tg.

for the combined AL-DNLS PFIG. 4 Amplitude profi o
l

'
n of the natural=0.5. The time evo utioParameters are p=7 a y= .

ell as that of its neigh-ral site amplitude as wel arithm of the centra
-

th self-trapping of the
og

es res ente in e inset illustrateboring ones p
l DNLS site.excitation energy aat the centra

im urit there is no complete energy ex-
dt d'central site an i s a

'

f-tra '-g h --y11 't d o 1

thIndeed, wit increasi
d o do

'
t db thbecomes more an moretransfer dynamics bec

h h the out-of-phase os-
f h'h

sense that alt oug
ined the amount o ene

'
scillations are sustaine,

hereas the maximasite increases, wp y
P 3'acent sites diminis .

y gy transfer in lattice sites a a
pplf-tra ed mo e is

~ ~

impurity si e't ite whose amplitude per orms s

fThe existence of different types o impu
s that disorder in non inear

f h llnt h sical be aviors r
enuine breathing modes in theear one . g

d b t}1of which is induce y
h 1 h. The formation o

0

single impurity site.
erties of electrons inon the ropagation proper

'
profound e ects

uasi-one- imensiostrongly interacting q — o

orted by the Deutsche Forschungsge-Th' work was suppo
Sonderforschungsbereic

and (K. .R. gra e( )
urnan Capital ansupport from um

Union and the warmERBCHRXCT93033 1 of the European
of Crete, Greece.hospitality o ef th Research Center of re e,

on
'

ty, d b A.R. Bishop, D.K.l] onlinearity, edite y
Campbell, an . nd S. Pnevmatikos (Springer- er ag,

n
'

ty,
'

d b F. Ab'dullaev, A.R.onlinearity, edite yI:] o ',
4

. Homma, J. Phys. Soc. Jpn.I3] S. Takeno and S. Homma, . y .

keno, Phys. Rev. Lett.62, 835 (1993); . . iA.J. Sievers and S. Takeno, y . ~ tt.
J. Phys. Soc. Jpn. 60,' S. Takeno and K. Hori, J. ys.

(1992)' S R B' kh( ); no ibid. 6i, 2821
and A.J. Sievers, Phys. Rev. B

1990; K.W. S d dk, PJ.B. Page, ibid 41, 7835 (1990; K. . . an

an . . ', ' 6161 (1992).and K.E. Schmidt, ibid 46, .



52 BREATHERLIKE IMPURITY MODES IN DISCRETE . . . R4631

[4] D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993).
[5] M. I. Molina and G. P. Tsironis, Phys. Rev. Lett. 73, 464

(1994).
[6] E.N. Economou, Green's Functions in Quantum Physics,

Springer Series in Solid State Sciences Vol. 7 (Springer-Verlag,
Berlin, 1979).

[7] M.I. Molina and G.P. Tsironis, Phys. Rev. B 47, 15 330 (1993).
[8] D. Chen, M. Molina and G.P. Tsironis, J. Phys. Cond. Matter 5,

8689 (1993).
[9] G.P. Tsironis, M.I. Molina, and D. Hennig, Phys. Rev. E 50,

2365 (1994).
[10]D. Dunlap, V.M. Kenkre, and P. Reineker, Phys. Rev. B 47,

14 842 (1993).

[11]M. Salerno, Phys. Rev. A 46, 6856 (1992).
[12] D. Cai, A.R. Bishop, and N. Grdnbech-Jensen, Phys. Rev. Lett.

72, 591 (1994).
[13]D. Cai, A.R. Bishop, N. Grdnbech-Jensen, and M. Salerno,

Phys. Rev. Lett. 74, 1186 (1995).
[14] Yu.S. Kivshar and M. Salerno, Phys. Rev. E 49, 3543 (1994).
[15]D. Hennig, N.G. Sun, H. Gabriel, and G.P. Tsironis, Phys. Rev.

E 52, 255 (1995).
[16]M.J. Ablowitz and J.F. Ladik, J. Math. Phys. 17, 1011 (1976).
[17]J.C. Eilbeck, P.S. Lomdahl, and A.C. Scott, Physica 16, 318

(1985).
[18] S. Aubry, Physica D71, 196 (1994).
[19]R.S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994).


