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Learning from noisy data: An exactly solvable model
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Exact results are derived for the learning of a linearly separable rule with a single-layer perceptron. We
consider two sources of noise in the training data: the random inversion of the example outputs and weight
noise in the teacher network. In both scenarios, we investigate on-line learning schemes that utilize only the

latest in a sequence of uncorrelated random examples for an update of the student weights. We study Hebbian

learning as well as on-line algorithms that achieve an optimal decrease of the generalization error. The latter
realize an asymptotic decay of the generalization error that coincides, apart from prefactors, with the one found

for off-line schemes.

PACS number(s): 87.10.+e, 05.40.+j, 07.05.Mh

Perhaps the most interesting aspect of feed-forward neural
networks [1]is their ability to learn a rule from examples by
adaptation of the network parameters. Successful learning
enables the student network to generalize, i.e., to assign with
high probability the correct rule output to an arbitrary (novel)
input.

Methods from the statistical mechanics of disordered sys-
tems [2] have been used successfully to study the perfor-
mance of large networks trained with random examples of an
unknown rule. For reviews of this field see, e.g. , [3—5].

A point of particular interest is the training with noisy
data, where some stochastic process corrupts the information
contained in the examples. Usually, the training procedure is
formulated as an optimization process that derives as much
information as possible from a given set of examples. This is
done according to more or less sophisticated iterative learn-
ing schemes that are guided by some objective, for example,
the student's performance on the training set The term .off-
line learning has been coined for such algorithms [1].So far,
most statistical mechanics treatments of off-line training with
noisy examples has been restricted to the replica-symmetric
analysis [2] of perceptron learning [5—7].The importance of
possible corrections due to replica symmetry breaking [2]
has yet to be investigated for these models.

This work revisits the training with noisy data, but in the
framework of on line learnin-g [1]. In this setting, only the
latest in a sequence of examples is used for an update of the
student weights. Examples need not be stored explicitly in a
separate device, since they are not presented repeatedly to
the student. In the following, we perform an exact analysis of
such learning processes.

We will specifically consider the single-layer perceptron
[1]. Such a simple feed-forward neural network realizes a
linearly separable input/output relation of the form

Ss(g)=sgn(hii), with h&=B g. (2)

Thus, the concept is, in principle, learnable for the percep-
tron student. However, we assume in the following that a
sequence of examples ig, S~T) is provided for training,
where the example labels S~~= ~ 1 can differ from S~~ due to
some stochastic process that will be specified later on.

The generic form of on-line perceptron training consid-
ered here is

1J"+' =J"+ f(g~, h~~,—S~z) pS T~, (3)

dr f rf~ (hei —rh J)ST—2—

where the weight function f defines the actual algorithm.
This function depends on quantities available to the student,
such as the example label S~T, the student norm

Q ~=J~ J~, and the normalized local potential
hw —Ju. g //gal

The input vectors are taken to be N-dimensional vectors
of i.i.d. random components g~ with zero mean and unit
variance. At each "time step" p, a new, uncorrelated example
is drawn and used for an update of J~ according to Eq. (3).
On-line learning with a perceptron has recently been studied
in various contexts. See, e.g., [8—12] for a more detailed
description of the analysis.

It is straightforward to obtain recursion equations for the
quantities Q~ and rt" =J" B/gg" . In the limit N +~ these—
overlaps are self-averaging with respect to the randomness in
the training data. The evolution of the order parameters in
"continuous time" n= p, /N is given in terms of first order
differential equations:

where g represents an N-dimensional input vector. Jc R is
the vector of perceptron weights, which are to be adapted in
the training process.

The rule to be learned is defined through a teacher vector
g~R& @2=A.

where ( )~ s denotes the averages over the input distribu-

tion and also over the randomness in the evaluation of ST.
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Given a specific type of noise and the weight function f,
we can work out the corresponding differential equations
analytically. They can be integrated at least numerically and
hence one obtains the evolution of the order parameters with
n, the number of examples used for training. We will con-
sider initial conditions r(0) = Q(0) = 0 exclusively.

It is useful to distinguish two performance measures, the
generalization error e g=(O( —hJSii))~ and the prediction
error e„=(0(—h&ST))~z . The quantity eg is the probabil-

ity for disagreement between the student and the genuine
rule output and the average is only over the input distribu-
tion. In contrast, e~ compares the student output with the
noisy ST for an arbitrary input. For a student with normalized
overlap r with the teacher, the generalization error is given
by eg= (1/7r)arccosr on average over the uniform input dis-
tribution [4]. Obviously, eg is zero for perfect alignment J
~B. The minimal e~, however, will remain nonzero in gen-
eral; of course, it is impossible to predict the randomized
ST without errors. The relation between generalization and
prediction error will depend on the specific noise considered.

A simple choice for the weight function is f= 1, which
corresponds to Hebbian learning [13].We will work out and
solve the differential equations for this algorithm for two
different types of training noise. Various other learning
schemes have been considered in the literature (e.g., [8,10—
12]).Here we will focus on the on-line algorithm of optimal
generalization, which maximizes dr/du and thus the de-
crease of es. Following Kinouchi and Caticha [9] one ob-
tains the optimal weight function

The average is with respect to the distribution

P(hriIh~, ST), the conditional probability of the unknown

hz, given the student local potential and the noisy training
label ST.

To begin with, we will assume that the type and strength
of the noise process are known to the student. This informa-
tion can therefore be used and determines the specific form
of f,z, . Inserting f,z, into (4) and solving the resulting dif-
ferential equations will then yield the optimal on-line learn-
ing curve eg(n) that can be achieved by an algorithm of the
form (3).

Output noise

In this first scenario, the rule outputs are inverted inde-
pendently with a probability X~1/2. Thus, only a fraction
(1—k) of the examples provides correct information about
the rule. This type of noise was considered in [7] in the
framework of off-line learning, and recently in [11,14] for
on-line learning with a perceptron.

In this model, the random inputs enter only through the
local potentials hz and hJ . Their joint distribution is a two-
dimensional Gaussian with zero means, unit variances, and
correlation (hjh~)»= r. In addition, one has to average ex-
plicitly over the randomness in ST.

The prediction error obeys the relation e„=k + (1—2X) e ~ X. As explained above, it is bounded from below
due to the randomness of ST.
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FIG. 1. Learning curves e (u) in the presence of output noise

( ) with k=0.1 and weight noise g, ) with ru=cos(0. 1m). The
dotted lines are for simple Hebbian learning, the solid lines corre-
spond to the respective optimal weight functions (7,9). The symbols
represent the results of simulations for input dimension %= 1000,
averaged over 100 independent runs. Error bars would be smaller
than the symbol size.

For Hebbian learning (f= 1) the differential equations are
analytically solvable and we obtain

I'
7T

eg(n) = —arccos 1+ 2 (6)

The rule is learned perfectly as n~~ and the asymptotic
generalization error decays like n as for noise-free learn-
ing [13] but with a modified prefactor. It diverges for
X~1/2, which corresponds to training labels completely un-
correlated with the rule. Figure 1 shows the learning curve
es(n) for X=0.1 together with the results of numerical
simulations.

For the optimized weight function (5) we obtain

( 1 r2
2

P 21 2
)1 —2Xf.„=~g &1 r'—

2 rrr (
(1—2X)4' h S +k

1 —r2
/

(7)

X2 ~ dx e

(1—2II ) J $27r (1—2X)4(x)+k

as n —+~. As in the noiseless case, the optimal decay of the
generalization error is inversely proportional to the number
of presented examples. This is in contrast to the results of

where 4(x) =[1+erf(x/+2)]/2. Note that in the noiseless
case (k = 0) the optimal weight function reduces to the result
previously obtained in [9].

Inserting f,~, into Eqs. (4) and performing the averages
over hz, hJ, and ST, one obtains decoupled differential
equations for r and Q that can be integrated numerically. The
resulting generalization error is shown in Fig. 1 for X=0.1.
For small values of eg, we analytically obtain the asymptotic
solution
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[11] for the standard perceptron algorithm [1], where the
decay is only proportional to n ' for any nonzero P .

The prefactor in (8) diverges for X~1/2, reflecting the
fact that the rule cannot be learned in this limit. In the noise-
less case, we find eg=0.88/a for large n in accordance with
the results of [9].

Note that the asymptotic decay of the generalization error
(8) differs from the replica-symmetric result for off-line
Bayes optimal learning [7] by exactly a factor of 2 (and thus

by a factor Q2 from the off-line Gibbs procedure considered
in [5,7]).This interesting relation was found in [9] for noise-
free training, where the replica-symmetric result is believed
to be exact. Apparently it persists for the learning from cor-
rupted data.

Weight noise

In the second scenario, the actual weights used to evaluate
the training output S~z are subject to random fluctuations. We

take S~T=sgn(B/' P'), where B/' is a normalized random
vector with B~ B=co~ 1. The noise is assumed to be isotro-
pic, i.e., independent and identically distributed in all com-
ponents Bj.. So far, weight noise has been investigated only
in the context of off-line learning (e.g. , [5,6]).

Note that this scenario is identical to introducing an
equivalent noise in the inputs used for the evaluation of
ST, but with B unchanged. Furthermore, the effect will be
the same if this noise is imposed on the student input vectors
in (3), with ST being the true rule output for the true g.

The average over this type of noise can be performed by
introducing the additional Gaussian variable hei= B g with
zero mean, unit variance, and correlations (hiihJ)&=air,
(h~hii)&= co. All averages in Eq. (4) reduce to integrals over
the corresponding three-dimensional density P(hj, hei, hz)
with ST=sgn(hz).

Note that the relation between generalization and predic-
tion error is now e~ = (1/m) arccos[cocos(me~)], implying that

e~ is bounded from below by (1/7r)arccosco.
For Hebbian learning (f= 1) the result coincides with Eq.

(6) replacing X with (1—c0)/2. The corresponding eg(u) in
Fig. 1 can therefore be interpreted as the learning curve for
Hebbian learning with weight noise parameter co=1 —2X.
Note, however, that the respective prediction errors are not
identical.

It is more instructive to compare the models for the same
asymptotic value of e, i.e., for X = (1/m) arccosai. Then, the
expected number of corrupted outputs ST is the same in both
scenarios. Yet, weight noise will produce a label ST= —Sz
with a probability that depends on the value of hz . Mainly
examples with g close to the decision boundary hz=0 will
be affected, whereas the output noise was defined to be in-
dependent of hz. It is straightforward to show that at the
same rate of inverted outputs, the Hebbian generalization
error for output noise is always larger than in the presence of
weight noise (cf. Fig. 1).

Proceeding as before, one obtains the optimal weight
function (5)

1 co2r'
p 2 2AJ

2

Q co(1 t' ) I 2 1 co t'

(9)2 „q1 „„(
h~ST

1

d'or

Again, it is assumed that the actual noise parameter cu is
known to the student and the optimal weight function re-
duces to the result of [9] for the noiseless case co= 0.

By solving the corresponding differential equations (4)
numerically, one obtains the generalization error eg(u) A. n
asymptotic solution for small eg yields for n —+~ the analytic
result

(1 2)i/4

(ai7r) /

X
dx

j'

exp 2 x2

2 co

4(x)
—1/2

As for output noise, this result differs only by a prefactor
from the one obtained for an off-line Gibbs algorithm with a
properly defined training energy [5].

The generalization error decreases substantially slower in
the case of noisy teacher weights than for random inversion
of the output labels. Figure 1 depicts the numerically ob-
tained solution of the generalization error for
ru=cos(0. 1vr). This value of co leads to an asymptotic pre-
diction error e =0.1 and therefore allows for a direct com-P
parison with the results obtained for output noise with
li. = e = 0.1 (cf. Fig. 1). For small n the generalization error
decreases considerably faster in the case of weight noise than
for output noise, and for large n only the decay is slower
according to the different power law.

This behavior can be understood as follows: For weight
noise, only those input vectors are corrupted that are close to
the decision boundary of the noiseless rule vector B. There-
fore, the effect of the noise is not very pronounced for small
u, where the student's decision boundary is still far away
from that of the teacher. In contrast, output noise inverts all
inputs with the same probability, regardless of their overlap
with student or teacher. Hence, learning in the case of output
noise leads to a larger eg in the beginning compared to
weight noise.

Realization of the optimal generalization

The optimal weight functions (7,9) depend on both
r =cos(7rez) and the noise parameters X or a~, respectively,
which will not be accessible to the student network in gen-
eral. Nevertheless, by construction of f,~„ there is no algo-
rithm of the form (3) that could yield a smaller value of the
generalization error for a given n.

In the following, we briefly show how to make the weight
function independent of the inaccessible quantities without
changing the asymptotic behavior of the generalization error.
Here we restrict ourselves to the case of output noise, but the
proposed scheme also applies to the weight noise scenario
[16].

In order to circumvent the dependence of f,~, on r, we
investigate the dynamics of Q using the weight function

f,~, . By choosing the initial condition gg(0)=r(0) one
guarantees /Q(n) —= r(a) as already observed in [15].
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Therefore, the solution for eg(cr) does not change if r is

replaced by v Q in (7). However, Q is the norm of the weight
vector J and, of course, available to the student network.

The other peculiarity of the optimal weight function is its
explicit dependence on the probability X. . One could try to
replace k with a constant estimate A in Eq. (7).The resulting
weight function, however, does not allow for a perfect gen-
eralization for all A [16]. There exists a critical value

A, (X) such that egal/tr for A)A, , but eg remains finite
for A ~A,(X. Of course, only for the choice A = k does the
generalization error decrease optimally as in (8).

For an unknown noise parameter X, we therefore suggest
an on-line adaptation of the parameter A. To this end we
define a simple dynamics for A such that it tends to X as-
ymptotically as desired. As one specific example, we change
A by (1—A)/2N every time the student disagrees with the
noisy output of the teacher. In the case of agreement, A is
changed by —A/2N:

1At"+'=A~+ [(1—A~)O( h~~S~T) ——A~O(AS))].
(11)

In the limit of large N this leads to the differential equation
d A/d cr = (e~ —A)/2. Now the system is described by a set of
three coupled differential equations for the dynamical vari-
ables r, Q, and A. By construction A approaches k and the
resulting generalization error asymptotically becomes identi-
cal to the optimal solution. Therefore, the weight function (7)
with the replacements r~~Q and X.~A from Eq. (11) pro-
vides an algorithm that realizes the optimal 1/u decrease of
the generalization error without requiring knowledge of eg or
the noise parameter k.

Finally, we illustrate the ability of this on-line algorithm
to adapt to a changing noise level X; see Fig. 2. The student
network rapidly adapts to the noise and the generalization
error decays proportionally to I/cr. The dynamics of A can
be further improved by replacing (11) with a schedule that
approaches the asymptotic value X even faster [16].
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FIG. 2. Learning with variable output noise parameter J (dot-
ted). Shown is the learning curve eg ( ) and the evolution of A

(6) according to (11) with A(0) =0. The dashed line depicts the
optimal eg as obtained for a constant noise level X.=0.05 for corn-
parison. Simulations as in Fig. l.

In summary, we have shown that for on-line learning from
noisy training data, the optimal learning curves can be cal-
culated exactly. For output noise, the asymptotic decay of the
generalization error differs from the result for noiseless train-
ing only by a prefactor. Only for weight noise, the generali-
zation error is considerably worse. Since the optimal weight
functions require knowledge about the noise, we have pro-
posed to introduce a dynamical quantity that adapts to the
teacher's noise level.

Obviously, the two types of corrupted data require rather
different learning strategies. A more complete discussion of
the weight functions (7,9) will be published in [16], together
with the analysis of other training schemes.
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