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Competing patterns in the Faraday experiment
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Competition between subharmonically generated equilateral triangles and regular hexagons is observed in

the Faraday experiment with viscous fluids subjected to a sinusoidal forcing. For kinematic viscosities around

17 cm /s, all spatially regular patterns —stripes, squares, hexagons, and triangles can be parametrically excited
in the same fiuid depending on the forcing amplitude and frequency. Close to this value of viscosity, hexagonal
and square patterns coexist showing a bicritical point.

PACS number(s): 47.35.+i, 47.20.Ky, 61.43.—j

The generation of standing waves on a free surface of a
horizontal layer of fluid subjected to vertical oscillation,
known since the observations of Faraday [1], provides the

simplest experimental model of parametric excitation in spa-
tially extended dissipative systems. It is also an equally in-

teresting system to study pattern forming instabilities with
only two control parameters —the oscillation amplitude and
the frequency of vibration. Recent studies on viscous fluids

[2,3] have opened up a rich field for investigating pattern
selection in dissipative systems. These experiments involve
two-frequency forcing [2,3] and show a variety of patterns:
stripes, squares, hexagons, triangles, and twelvefold quasi-
crystalline structure [2], depending upon the forcing ampli-
tude, and the ratio of and the phase between the imposed
frequencies. However, in the original version of the Faraday
experiment, i.e., with sinusoidal forcing, stripes [2,4] in high
viscosity fluids and squares [5] in low viscosity fluids are the

only regular patterns observed. The linear stability analysis

[6] for a thin layer of viscous fiuid shows that the selection
of the critical wave number is strongly influenced by the
presence of large dissipation in the Faraday experiments. We
report on competing hexagonal and triangular patterns and
the observation of a bicritical point, where fourfold and six-
fold patterns coexist, in the Faraday experiment with a single
frequency sinusoidal forcing. We clearly demonstrate the im-
portance of the role of viscosity on pattern selection by
Fauve et al. [7] in a liquid-vapor system.

Experiments reported here are performed using an elec-
tromagnetic shaker (VS3202, IMV Japan), which provides a
clean vertical vibration over a wide range of frequencies (5—
5000 Hz). The shaker is mounted on a pneumatic suspension
base for vibration isolation. The horizontal component of the
acceleration is less than 1.3% of the vertical component over
the frequency range (20—200 Hz) used in this experiment.
The shaker is excited at a frequency of to/2m using a power
amplifier (VA-ST-0.3, IMV Japan) which is in turn fed with a

pure sinusoidal oscillator (distortion (—55 dBc) from a
function generator (HP 3314A) with a frequency accuracy of
better than ~ 0.6% and an amplitude accuracy of ~ 1%.Ac-
celeration is measured using a light weight piezoelectric ac-
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celerometer (B&K 4374) and a charge amplifier (BAK
2635). The charge amplifier output is Fourier transformed on
a spectrum analyzer (HP 3582A) to obtain the acceleration
amplitude a, at the excitation frequency.

We have used cylindrical containers of circular cross sec-
tion (diameter 81—143 mm, depths 1.5—6.0 mm) and a
square container (140 mm side, 4 mm depth). Precise mea-
surement have been made on fluids in an 81 mm diameter
circular cross section and square containers made out of
plexiglass. The brimful technique [8] has been used in all the
measurements to minimize the meniscus effects. Experi-
ments on various mixtures of glycerol and water with mass
fractions of glycerol in the range 65%—87 % have been per-
formed at a temperature of 29.0~ 0.5 C. We use a relatively
thin layer of fiuid to suppress the large wavelength (k~0)
perturbations. The containers are covered with a transparent
plastic sheet to minimize evaporation of water and contami-
nation of the surface. The patterns are observed with a stro-
boscope (GR 1538A) set at frequencies ta/27m, where n is
an integer. For fluids with kinematic viscosity p= 17' 10
cm /sec the selection of patterns is quite interesting. In less
viscous fluids we observe only squares and lines are ob-
served in fluids with much higher viscosity. We report in this
paper our observations for v=17+.0.2X10 cm /sec.

Our experiments differ from those on low viscosity fluids

[5]due to relatively large dissipation chosen and from that of
Miiller [3] in terms of the forcing function which has impor-
tant consequences for the symmetries of the nonlinear stabil-
ity problem. In general, in a spatially extended system, the
surface deformation ((r, t) just above the instability onset
a, may be expressed as

lN

f(r, t) = g A, (T)exp(i kjr)+ c.c. f(t)e' '+
( /=i r

where k, andAJ are the horizontal wave vector and the corn-
plex amplitude, respectively, of the jth standing wave, i n is
the Floquet exponent, and T is a slow time scale of O(1/e)
where e—=a/a, —1.The threshold a, is, in general, a compli-
cated function k, co, v, fluid depth h, and other fluid param-
eters [6]. For given fiuid parameters, a, increases with in-

creasing v and/or increasing to. The time-periodic function

g(t) has a period 2m/to.
As the effect of external forcing is equivalent to gravity

modulation, we have an instance of parametric forcing in our
experiment. For sinusoidal forcing fi given by
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FIG. 1. Photographs of subharmonically gen-
erated nonlinear patterns in a circular container
(81 mm diameter) oscillating at 40 Hz: (a) hexa-
gons (4& = 0); (b) equilateral triangles
(4=7r/2); (c) hexagons (4&=7r) with reversed
fiuid flow directions; (d) stripes (at 180 Hz and
much above the onset). The strobe light illumina-

tion is at near-grazing angle, and the camera is
axis symmetric with the oscillation. The white
patches are rejections from curved Auid surfaces.
Fluid parameters: h = 2 mm and
v= 17.0~ 0.2X 10 cm /s.

e

(c)

f&(t) =a cos(cot), (2)

we have f,(t+ m/cu) = —f&(t). The most efficiently ampli-
fied response then pulsates at frequency co/2 as first noticed
by Faraday [1].The Floquet multiplier A=e ' t" for this
case is —1. It follows that the invariance t +t+2rr/c—o is
broken at the instability onset. For a nonzero solution
g(r, t) this implies that g(r, t+2m/cu)= —g(r, t) is also a
solution. Consequently, the evolution equation for the ampli-
tude A~ should be invariant under the transformation
AJ~ —AJ . For two-frequency drive as used in Refs. [2] and

[3] the forcing function fz is of the type

fz(t) = a[cos8 cos(pest)+ sink cos(qrut+ P)] (3)

with a cos8(a sin8) as the amplitude at frequency
pro(qco), the forcing still has a period 2m/ru. In Eq. (3)
above, p and q are integers. The phase can be varied in the
range [0,2m/p] since there exists an integer m such that the
transformation P~ @+2m/p, t ~ t+ 2m 7r/pro keeps the
forcing function fz(t) invariant. Now, fz (t+7rco)=fz if
both p and q are even and fz(t+7r/co)= —fz(t) if both p
and q are odd. However, for p and q of different parity this
transformation is not valid and the response is amplified
most efficiently at frequency co. The corresponding Floquet
multiplier A is then +1. The invariance A~~ —Aj is no
longer valid and the evolution equation for the amplitude

AJ may involve quadratic (i.e., even order) nonlinearities.
Consequently, harmonically oscillating patterns are gener-
ated through backward bifurcation. If the coefficients of the
resulting quadratic terms in the amplitude equation vanish,
the resulting pattern could be subharmonic.

In our case with a sinusoidal forcing given by f, , we see
only subharmonically generated patterns as expected and the

bifurcation is forward. In contrast to the earlier observations
[3], where sixfold and threefold patterns Quctuate "indiffer-
ently, " we see periodic behavior. In addition, depending on
the forcing frequency and the amplitude, we observe in one
single fluid all the regular patterns that can be realized in a
spatially extended system. The observed patterns tile the free
surface completely and are independent of the geometry.

For a fixed external frequency co the free surface of the
fluid is destabilized as the forcing amplitude is raised above
a threshold value a, . The resulting standing waves form
different periodic spatiotemporal patterns depending upon
the values of co, a, and v. Figures 1(a)—1(c) show competi-
tion between sixfold and threefold patterns in the circular
container vibrating at 40 Hz in a strobe light at half the
frequency. These patterns are the nonlinear superpositions of
three standing waves of different phases. Figure 1(a) shows a
sixfold pattern. The fluid rises on vertices and the center of a
regular hexagon. As the cycle progresses, the fluid rises,
along the lines joining the vertices and the center which form
the equilateral triangles. However, the fluid falls only in three
alternate triangles [slightly convex in Fig. 1(b)] and rises in
the other three [slightly concave in Fig. 1(b)].The Quid flow
in this figure thus shows a threefold pattern. Next, the fluid
begins to rise along the sides of regular hexagons [Fig. 1(c)]
constructed by joining the centers of all the triangles of Fig.
1(b), and falls at the centers of newly formed hexagons, i.e.,
at the vertices of triangles of Fig. 1(b). Thus the regular
hexagons of Fig. 1(a) and Fig. 1(c) have Quid flow in oppo-
site phases. These patterns are subharmonically generated
slightly above the instability onset and alternate periodically
over a time scale that is long compared to the period of
imposed vibration. The continuous transitions from hexagons
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to equilateral triangles and back take place through various
threefold symmetric structures known as triangular patterns
[9].At high frequencies ((120 Hz) squares are generated at
the instability onset. At much higher frequencies (=180 Hz),
raising the forcing amplitude much above the onset value

FIG. 2. Bifurcation diagram of various structures in a square cell
(140 mm, h=3.6 mm). The tlat surface (F) is destabilized for
accelerations above a, (the lowest curve). At 20 Hz, the patterns at
the primary instability are alternating hexagons and triangles (H/
T). For 30~ co/2vr~120 the patterns at the onset are squares (S).
The small shaded area is the bicritical region where stable 0/T as
well as S coexist. In the region (H/T~S) the structures periodi-
cally alternate between hexagons, triangles, and squares. Square
patterns with hexagonal or triangular defects (both time indepen-
dent and dependent) are observed in region D. The dashed line (not
measured) represents the expected boundary between H/T and D
The inset shows the dispersion relation at the onset.

results in appearance of stripes [see Fig. 1(d)]. We observe
similar behavior in the container with a square cross section.

Figure 2 gives the bifurcation diagram in the parameter
space (a, ru) as measured in the square cell. At low frequen-
cies (=20 Hz), the patterns observed at the instability onset
are periodically alternating hexagons (H) and equilateral tri-
angles (T). For frequencies 20 and 30 Hz, alternating hexa-
gons and triangles coexist with square pattern. At higher fre-
quencies ()30 Hz) the pattern at the onset is square. In the
frequency range (30—60 Hz), when the forcing amplitude a
is raised much above the threshold value a, , the fourfold
patterns bifurcate to periodically alternating threefold and
sixfold patterns (see area H/T+ S in Fig. 2). In the area
denoted D the appearance of various patterns is chaotic. Fig-
ure 3 shows the typical photographs in the square cell. Figure
3(a) shows rhombic structure with angles 2m/6 and 2m/3.
This is one of the various possible patterns due to the non-
linear combination of three standing waves with a neutral
phason mode. Figure 3(b) shows a slight distortion of a regu-
lar hexagonal lattice while Fig. 3(c) shows a square lattice.
Figure 3(d) shows a photograph in which hexagonal and
square patterns coexist giving rise to a bicritical point
slightly above onset. We have observed coexisting square
and hexagonal patterns at different relative positions in the
same container in different runs. We thus believe that this
effect may not be due to inhomogeneity in the forcing.

The periodic behavior of subharmonically generated hex-
agonal and triangular states can be understood in the frame-
work of amplitude equations. Hexagonal and triangular pat-
terns are closely related because both require three wave
vectors of same length. We consider the N= 3 case in Eq. (1)
of complex amplitudes with wave vectors of equal length
(~kt~=k, ) and k, +k2+k3=0. Using symmetry arguments
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FIG. 3. Typical patterns in the square cell (di-
ameter = 140 mm; h=2. 6 mm): (a) rhombic
structure (angles 2m/6 and 2m/3) at 20 Hz; (b)
hexagons at 30 Hz; (c) squares at 80 Hz; (d) bi-
critical point —existence of squares and hexagons
or triangles at 40 Hz.
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8~4 = 0. (5)

the relevant part of the evolution equation in amplitudes [10]
up to fifth order can be written as

BrAt= eAt —(PtAiAt*+ PzA~ *+P3AQ„*)Ai
—YAt*A* A„* —O(5). . . , (4)

where O(5) refers to other fifth order terms that are compat-
ible with the symmetries. Equations for A and A„canbe
obtained by cyclic permutation of (l,m, n). The invariance
of the patterns under space refiection (r~ —r) requires that
all the coefficients in Eq. (4) should be real.

The linear growth rate t depends on viscosity v and other
fluid parameters through a, . However, its value can be set
externally by fixing the relative distance from the instability
onset. The pattern selection is decided by the coefficients
P; of the nonlinear terms in Eq. (4). In the absence of the
quintic term (i.e., 7 =0), hexagonal and triangular structures
are degenerate. This degeneracy is lifted if y is nonzero. The
coefficients p; and 7 are, in general, functions of P, ta, a
and other fiuid parameters. In the above model, P; should be
positive in order to have saturation of growing amplitudes,
while y may have either sign. The homogeneity and isotropy
of the fluid imply Pi=Pz=P3. Although the form of the
amplitude equation, Eq. (4), is dictated by the symmetry of
the problem, the nonlinear coefficients e, P;, and y are de-
cided mainly by i, a, and co. Thus Eq. (4) holds for less
viscous fluids as well as highly viscous fluids but the pre-
dicted patterns may not be stable in all fluids. We see hex-
agonal and triangular patterns at the onset for intermediate
range of viscosities for frequencies between 20 and 30 Hz.
For relatively higher frequencies (30( /ca2 r 7(60 Hz) these
patterns are observed at much above onset (Fig. 3). One then
needs to consider other possible amplitude equations.

The magnitude of all the amplitudes At in Eq. (4) must be
equal for regular patterns. The complex amplitude AI, there-
fore, may be expressed as At=R exp(iPt) for regular pat-
terns. The third term on the right hand side couples phases
with real amplitude R. Vwo of these phases are related by the
symmetry of the regular pattern in the horizontal plane. The
remaining one is a marginal mode, also known as the phason
mode, and can be parametrized by tIi= Pt+ Pz+ P3. Con-
sidering Eq. (4) only up to third order, the equation for this
phason is simply

The phase 4 can take any value. Therefore, all the possible
states are degenerate. The degeneracy is lifted by the relevant
quintic term (y40) of the amplitude equation, and the re-
sulting phase evolves as

Br4& = 3 yR sin(24') . (6)

The equilibrium points of Eq. (6) yield tlat= st/2, where s is
an integer. The regular patterns [9] due to three standing
waves may be most generally expressed as

((r, t) =((t)exp(int)[cos(ki r+ Pt)+cos(kz r+ tI5z)

+ cos(k3 r+ $3)]R/3, (7)
where the three wave vectors are defined as kz=k, e,
kz= —(e„—+3eY)k, /2, and k3= —(e + Qje&)k, /2. If 8 is
the angle between the direction of k& and position vector r,
Eq. (7) remains invariant under the transformation
8~ 8+ m/3 when P; are even multiples of m/2. Similarly, it
is invariant under the transformation 8~ 8+2m/3, if P; are
odd multiples of m/2. That is, for even s, the resulting pat-
terns are sixfold (hexagonal H), and for odd s the patterns
are threefold (equilateral triangles T).

Stability analysis of these two fixed points using Eq. (6)
shows that the state H(T) is weakly stable if y is negative
(positive) and the growth rate of phase perturbation is pro-
portional to R . This implies that the system would settle in
one of the 0 or T states after a long time. However, the
lateral walls which break the symmetries of an infinite plane
may cause both the states to become weakly unstable. This
may be the reason for the observed periodic behavior.

In this paper, we have reported a periodic competition
between subharmonically generated hexagons and equilateral
triangles in a viscous fluid. The phason mode 4 changes
periodically leading to competing sixfold and threefold pat-
terns. In a fluid with kinematic viscosity 17~0.2X10
cm /sec hexagons and squares coexist at the onset leading to
the possibility of a bicritical point in the Faraday experiment.
In this range of viscosity, all possible regular patterns can be
generated subharmonically in a single fluid by varying the
amplitude and the frequency of the external forcing.
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