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Generalized entropies in a turbulent dynamo simulation
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A simulation of hydromagnetic turbulence exhibiting dynamo action is employed to estimate the generalized
entropies, Hq, from the distribution of moments of local expansion factors of material line elements. These
generalized entropies can be used to characterize the dynamics of turbulence and of nonlinear dynamo action.
The value of the metric entropy, H&, is comparable to the largest Lyapunov exponent describing the divergence
of trajectories in phase space, which in turn is somewhat larger than the growth rate of the magnetic energy.
The value of the topological entropy, Ho, is similar to the conversion rate of kinetic to magnetic energy, but

larger than the growth rate of the dynamo. This is in agreement with results stating that the growth rate of the

kinematic dynamo is limited by the topological entropy. The dependence of Hq on q leads to a criterion from
which we infer that the degree of intermittency in our particular system is weak.

PACS number(s): 47.27.Eq, 47.52.+j

Metric and topological entropies are important quantities
that characterize the degree of chaos in dynamical systems.
Topological entropy in particular has relevance for dynamo
theory due to its close connection to the stretching of curves
of finite extent [1].Thus magnetic field growth at least at
large magnetic Reynolds numbers can be related to the topo-
logical entropy [2] when well defined. In a dynamo, kinetic
energy is continuously converted into magnetic energy
through field line stretching so the magnetic field can grow
and can be sustained against Ohmic dissipation.

The generalized entropies Hq characterize the dynamical
behavior of the system. They are the counterpart of the gen-
eralized dimensions that characterize spatial properties of a
snapshot in time [3—5]. Generalized entropies have previ-
ously been used in the context of kinematic dynamo theory
[6].The topological entropy Ho is frequently used to char-
acterize the degree of chaos in maps [7].Nevertheless topo-
logical entropy does not seem to be a widely used tool in
turbulence physics. In the present paper we consider data of
a three-dimensional simulation of hydromagnetic convection
exhibiting dynamo action [8]. The generalized dimensions
have previously been estimated [9] for this simulation. Our
aim is to gain more detailed information about the dynamical
characteristics of this simulation in order to obtain a better
understanding of magnetic field amplification and saturation.

In the idealized case without magnetic diffusion, the evo-
lution both of magnetic field lines and of material lines is
described by the Cauchy solution [10]

B,(g, t) =W, ( g, t)B,(x,O),

where W.,—=8$; /Bx, is the displacement gradient matrix and

gx, t) is the position of a particle initially at x= gx, O). For
a short time interval Bt we have

(2)

The finite time displacement gradient matrix along individual
particle trajectories gx, t) can be obtained iteratively from
the matrix of the previous time step by matrix multiplication

(3)

where 8't is now the time step used in this simulation. We
compute W for a large number of trajectories and extract the
three eigenvalues o, where
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o.3~. The expan-

sion factors are the moduli of o.;, which can be computed
directly from the eigenvalues of the matrix WW It turns out
that the expansion rates from ~o.z~ are small compared to
those of ~o.

&~ (see below). Therefore we estimate the gener-
alized entropies from the moments of e—= ~o.

&~ alone, using
[11]

1
Hq(r) = —ln(e q), (4)

where r=t —tp is the time since the initialization of the tra-
jectories on a uniform mesh at t=tp. The angular brackets
denote averages, which are here taken to be over all trajec-
tories. The degree of convergence may be judged from Fig.
1, where we plot the dependence of Hq(r) and r In that plot.
we also include the corresponding results for the other two
eigenvalues. In principle we are interested in the limit
7.—+~, but in practice we are forced to use the last time
available from the data. Thus we set Hq=Hq(r, „) expect-
ing however that this will somewhat overestimate the actual
value. We are of course unable to address questions of infi-
nite time convergence here.
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TABLE I. Comparison of Hp and Hz with the largest Lyapunov

exponent X&, and the growth rate of the dynamo Xd„„. Results are
given both for the saturated phase and the growth phase, as well as
for a frozen velocity field (r=27). Finite time effects may be
judged by comparison with a somewhat longer run (growth~:
i=50; frozen~: r=46). In the last two columns the magnetic field
production rate kt and the normalized variance p, (see below) are
also given.
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FIG. 1. Dependence of H (r) (solid lines) versus r, for four
different values of q (q= —1, 0, 1, and 2). The dotted and dashed
lines give the corresponding results for the other two eigenvalues.
For each eigenvalue the uppermost curve is for q= —1. (When
o 3 is too small, no results are plotted. )

In the case q~1 we expand (e ) = 1+(1—q)(lnE) and
then expand the logarithm in Eq. (4) to obtain H,
=(1/r)(lne). This expression resembles the ordinary
Lyapunov exponent except for the fact that for Lyapunov
exponents, expansion in phase space is considered. The ex-
pansion in phase space was investigated in an earlier paper
[12]using data from the same simulation. Here, instead, the
expansion in real space is the relevant quantity for under-
standing magnetic field amplification. It will turn out, how-
ever, that the two are not very different. Also we note that
H o(1/r)l (ne) is similar to topological entropy, differing
principally in the fact that we did not include the possible
contribution from expanding surface elements. The same is
also true for the metric entropy. In other words, to estimate
the topological and metric entropies we should have included
the expansion rates from

~

o.
2 ~

at those points where
In~tr2~)0. However, as can be seen from Fig. 1, this would
only lead to a minor modification because the second expan-
sion rate is small (the sum of all three expansion rates is
close to zero due to weak compressibility).

At an early stage of our investigations we integrated the
particle trajectories using a frozen velocity field, that is, a
velocity field taken from a snapshot in time of the dynamo
simulation in the saturation phase. The generalized entropies
for the frozen velocity field are surprisingly similar to those
for the evolving field, which was obtained by restarting the
simulation from the snapshot mentioned above. For cross-
reference with other work analyzing the same data
[8,9,12,13], we mention that the time of the snapshot is 779
time units, where time is measured in units of free fall times.
One turnover time is about 20 time units. The resolution is
63X 63X 63 mesh points, and this is also the number of tra-
jectories used to estimate Hq. In our simulation the deep
layers beneath the convection zone proper are included. In
those layers the system is stable to convection and motion
only results from fluid elements that shoot over into the con-
vectively stable layer. In the analysis presented below we
restrict ourselves to -the convection zone proper to avoid the
large number of trajectories with almost no expansion of line
elements, which would significantly distort the results.

growth~

frozen~

0.13
0.13

0.09
0.09

0.05 0.134 0.047
0.049

In order to investigate the effects of magnetic field satu-
ration on the dynamics we also present results where we
restarted with a fresh seed magnetic field. This case is re-
ferred to as the growth phase of the dynamo. Unless stated
otherwise, the results presented below refer to the growth
phase obtained in this way. We should note that during the
growth phase of the dynamo the magnetic field is still weak
and does not significantly affect the velocity field. In that
sense we are still in a (statistically) stationary regime as far
as the expansion rates of line elements are concerned.

In Table I we compare the Ho and H& with other typical
inverse time scales in the problem (all in units of inverse free
fall times). Evidently, Ho is the largest of the various rates
given in the table. Furthermore, H& is comparable with the
largest Lyapunov exponent that was obtained earlier [12]by
computing the rate of divergence between two slightly per-
turbed trajectories in phase space. The magnetic field instan-
taneous production rate in the direction of stretching [13],
k( )= (B,"B,"'

s;~)/(B ), is comparable to Ho. Here, s;; is
the rate of strain matrix and B'" is the magnetic field vector
in the direction of the largest eigenvector of s;j, i.e., in the
direction of stretching.

We remark again that Ho is closely related to the stretch-
ing rate of curves of finite extent which is in turn closely
related to the topological entropy [if the intermediate expan-
sion rate (1/r)ln~oz~-0 as expected, then the two are ap-
proximately equal]. Even for the saturated case, the value of
Ho is larger than the dynamo growth rate X. d~„during the
earlier growth phase prior to saturation. Table I also shows
that between the saturated and the growth phases of the dy-
namo the difference in Ho is small. This suggests that expo-
nential line stretching is still present during the saturated
stage and is not quenched to any significant degree. In fact,
the main dynamo saturation mechanism is apparently Joule
dissipation adjusting itself to balance the magnetic field
growth, i.e., the work done against the Lorentz force [8].
This is also supported by the fact that the production term in
the direction of stretching, X~ ~, is clearly larger than the
growth rate and in fact is comparable to Ho.

We should point about that the apparent similarity in the
values of H& and the phase space Lyapunov exponent k&

may be coincidental. The L z norm of the difference between
two trajectories in phase space, which was used to compute
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FIG. 2. Generalized entropies Hq and their
spectrum h(y) for the growth phase (r=50).
Some values of q (equally spaced between
—2.5 to 2.5) are indicated in the plot of h(y).
The dashed curve in the H plot is the tangent at
g= 1.

cf
h(y) =qy —+q (5)

X &, could be considered as being similar to the average ex-
pansion rate ~eg o ine ef 1'ne elements. In that sense, the definition
of )}.t appears to be more similar to H o=(1/r)l n( )ethan to
H =t(1/r)(l n)e. Note, however, that the expansion rates in
phase space include not only Geld line stretching but also
expansion rates of other quantities, including fiuid density,
temperature, and velocity. Furthermore, when measuring t e

t
'

hase space the effects of dissipation are
automatically included, whereas the expansion of line ele-
ments (computed from the Cauchy solution) excludes dissi-
pation effects. Therefore we expect Ho to be an upper bound
to X.&, as is indeed the case here.

We now turn our attention to the entropy spectrum
h(y). Analogously to the f(u) singularity spectrum for frac-
tal dimensions [14],we compute h(y) via a Legendre trans-
formation,

te the probability density function p(y), wherepue
=(I/r)1ne is now defined locally along each trajectory.

order to compute h(y) directly we have to consider the re-
lationship between p(y) and H~. In general, the average
over different trajectories in Eq. (4) can be replaced by an
integral weighted with p(y), so

1 1
H = —ln e't' ~i'rp(y)dy.

1 —q r J
(6)

(7)

where P( r) is a normalization factor such that

f (y)dy=1. Since y —h(y) is never positive, p(y) has a
sharp maximum in the limit of large values of v.. This allows
us to use the saddle point method for large r to obtain

The Legendre transformation used to obtain Eq. (5) assumes
that p(y) is of the form

e 0" =( —1)H . [We follow here the notation of
h . ForYoshida and So [5].] In Fig. 2 we plot Hq and (y). or

q = 1, h(y) has the tangent h(y) = y, and for q =0, h(y) is
maximal. It is possible to interpret h(y) as the topological
entropy of the set of trajectories associated with a given
value of y [5,15].The fractal dimension of this set of points
is equal to h(y)/y [15].

In the analogous case of fractal dimensions one can alter-
natively compute the f(n) singularity spectrum directly us-

ing the histogram of probabilities [16].This method can a so
be used to estimate the entropy function from the histogram
of local expansion rates [4]. In the present case we can com-

showing that with Eq. (7), h(y) is indeed the Legendre trans-
formation of }I}' —= (q —1)H~. We also see from Eq. (7) thatq

h(y) can be estimated from p(y) via

1
h(r) = r+ —In[p(r)/4(r)],

where /= max(p). In Fig. 3 we compare h(y) as obtained
via the two different methods. It can be seen that there is
good agreement between the two methods. Also consistent
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FIG. 3. Left panel: Comparison of h(y) as
obtained via H (dotted line) with h(y) as ob-
tained directly from p(y) (solid line). the dashed
line refers to the result for a Gaussian distribution
of y. The diagonal h= y (dashed-dotted line) is
shown for comparison. Right panel: Comparison
of the actual histogram p( y) (solid line) with the
histogram implied by Eq. (7) (dotted line), and
with the Gaussian distribution of y, see Eq. (7).
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with earlier results [17],we note that the indirect method via
the moments is more stable than the histogram method for
obtaining the f(ct) spectrum. However, for negative values
of q the data are more noisy. In the right-hand panel of Fig.
3 we compare the actual histogram with Eq. (7). Again, the
agreement is good.

These results are for the growth phase of the dynamo with

7,„=50. For the saturated phase we only have v. ,„=27.
This is rather short, and results in poor convergence of the

h(y) curve, especially for negative values of q. We also
should point out that if we had included the deep layers
beneath the convection zone proper in our analysis, our his-
togram would have had a second hump near y= 0 due to the
extended regions in the ftow where the dynamics is very
mild. The analysis presented above (using the saddle point
method) would not be valid for such peculiar distribution
functions. In that case there should be poor agreement be-
tween the histogram and indirect methods for computing
h( y).

The two numbers Hp and H& can be used to characterize
the dynamics of the system. We find that in our case the
value of H& is typically 30% smaller than Hp. On the other
hand, very different values of Hp and H& would indicate that
the dynamics of the system are highly nonuniform, i.e., in-
termittent. This can be formulated more quantitatively using
the slope of Hq near q= 1; see the dashed line in Fig. 2. If
Hq was strictly linear, then

H = k ——,
'

p, (q- 1)

(the factor is chosen to be consistent with Crisanti et al.
[181); this would correspond to a purely Gaussian distribu-
tion p(y) with

p(y)e(PK) /(2o)/ $22
where )i. =(y) and p, = rcr with o =(7 ) —k . Of course,
this is a reasonable fit only in the narrow interval
—0.5(q&2.5, as is shown by the dashed curves in Fig. 3. In
that figure we have also plotted the h(y) curve implied by
Eq. (9), i.e.,

Using Eq. (10) in Eq. (4) it can be shown that X. =Ht is equal
to the average value (y), and that ~p, =dH&/dq~q=t is equal
to r times the variance ((y—k) ). In Table I the values of
p, and X=H& are given for various cases. The fact that the
ratio p, /)i is less than unity indicates [18] that our system is
only weakly intermittent.

In conclusion, we have presented a feasible method of
estimating generalized entropies using the displacement gra-
dient matrix. The generalized entropies are used to charac-
terize the nature of dynamo action from a given How field,
both during as well as before the saturation phase. The
h(7) curve can be estimated both directly from the histo-
gram of local expansion rates as well as indirectly via the
spectrum of generalized entropies. We suggest that estimat-
ing generalized entropies could be a fruitful diagnostic tool
in turbulence research.
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