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Grain growth from homogeneous initial conditions: Anomalous grain growth
and special scaling states
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We used the large-g Potts model on a two-dimensional lattice to study the evolution of the disordered
cluster developed from a perfect hexagonal lattice with a single defect. The distribution functions were not

stable, while the average area and the number of grains in the cluster grew linearly in time. However, the grains
at the boundary of the cluster formed a well defined region which reached a special scaling state with time
invariant distributions but no scale change, contrary to the result of Levitan [Boris Levitan, Phys. Rev. Lett. 72,
4057 (1994)].The rate of propagation of disorder is the same as the rate of growth of the cluster. Abnormal

grain growth can occur without anisotropy of surface energy. It requires only widely spaced, modest size
differences in an initially homogeneous array of grains.

PACS number(s): 82.70.Rr, 02.50.—r, 05.70.Ln, 81.35.+k

Two-dimensional coarsening occurs in a wide range of
materials. In spite of a few complications, the evolution of
grains is governed by the simple and well understood von
Neumann's law:

da„ = tr(n —6)dt

where ~ is a system-dependent diffusion constant, i.e., the
rate of change of area of a grain a„depends only on its
number of sides n. Therefore grains with more than six sides
expand, while grains with fewer than six sides shrink and
eventually disappear. When a grain disappears, its neighbor-
ing grains may gain or lose sides. In such processes, side
redistributions occur that determine the topological evolution
of the pattern. In particular, experiments have revealed that
the pattern evolves into a scaling state in which the side
distribution functions p(n), and the rescaled size distribution
functions p(a/(a)), where (a) is the mean area, remain con-
stant, while the length scale increases with time [1,2). This
scaling state is universal, since all reasonably homogeneous
initial conditions evolve to it. With both von Neumann's law
and the scaling state assumption, the average area of grains
grows linearly with time [3].

Nevertheless, in many materials coarsening does not
reach a scaling state, e.g., in abnormal grain growth. Abnor-
mal grain growth in metals is believed to occur when surface
energy depends on relative grain orientation, when lattice
anisotropy is strong [4]. At the free surface of a thin film,
normal grain growth stagnates due to the pinning of grain
boundaries by surface grooving. Beyond this stage, a few
(abnormal) grains grow by consuming their neighbors. The
usual explanation is that anisotropic free surface energy var-
ies locally [5].

Corresponding author. Electronic address:

yjiang@lully. phys. nd. edu
~Permanent address: Instituto de Fisica, Universidade Federal do

Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre,
RS, Brazil. Electronic address: jose@if1.if.ufrgs. br

In a recent study of time evolution of two-dimensional
soap froth with a single defect [6], Levitan challenges the
common wisdom that the scaling state dynamics does not
depend on the initial condition. Using a mean-field treat-
ment, Levitan claims that the long-time distribution function
p(n) is different for generic initial conditions or for an initial
hexagonal lattice with only one defect. He also found the
scaling law n, (t) —t [7], where n, is the number of grains in
the cluster. In a comment, Weaire restates the evidence for
scaling in experiment and draws attention to the importance
of p, 2, the second moment of sides distribution, which is not
mentioned in Levitan's work [8]. Sire concentrates on the
discrepancy between the topological model and the numeri-
cal result from simulations of the area model [9].In order to
account for the discrepancy, Sire introduces a model that
gives a scaling law n, (t)-t ln(t ). Unfortunately in this
model, Sire assumes that grains in the disordered cluster are
in the usual scaling state. This assumption is neither trivial
nor obvious. Both comments address the convergence of the
convolution. However, we think this question cannot be an-
swered by any mean-field theory, since the final state consists
of distinct classes with fixed spatial relations.

We evolve a special initial condition: a single big grain
(area greater than the mean area of the hexagons) in a perfect
regular hexagonal lattice. Without a defect, the lattice would
be stable for all time. The defect functions as a seed for the
evolution. Therefore the froth consists of two parts: the
evolving neighborhood of the defect, and the rest of the lat-
tice which does not evolve. As the froth evolves in time, the
boundary of the disordered region propagates outwards. We
would like to find out whether the coarsening reaches a scal-
ing state, its topological distribution, and its growth rate.

We use a large-Q Potts model [10]in our simulation, with
the Potts Hamiltonian:

(2)

where o.;, is the spin value at lattice site (i,j) ranging from
1 to Q (g) 10 000) and (i', j') is the neighbor of (i,j). The
range of the second sum affects the nature of the interaction.
The spins evolve by the Monte Carlo procedure, where a
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spin is chosen at random, and flipped only if the lip lowers
the total pattern energy. This algorithm corresponds to the
zero temperature limit. We run on a 2000X 2000 lattice until
the disordered cluster reaches the boundaries of the lattice.
For our simulation, we choose a fourth nearest neighbor
square lattice (lattice anisotropy r/, = 1.037), which is known
to evolve in a manner very close to ideal grain growth [11].

In agreement with Levitan [6], we define the disordered
cluster to consist of all grains with at least one nonhexagonal
neighbor, yielding a large grain in the center and a boundary
of grains around it. Figure 1 shows snapshots of the evolu-
tion. The time unit used is the Monte Carlo step (MCS),
defined as No attempts to flip the spins, where No
(4 X 10 ) is the number of lattice spin sites in the pattern. As
we can see from the figures, the center grain grows much
faster than the grains at its boundary, whose average area
randomly fluctuates around a value (a') =(0.88~0.08)ao,
where ao is the initial area of the hexagons. The grains out-
side the cluster remain unchanged. The disordered cluster
maintains a bilayer of grains around the large grain; that is,
the large grain grows at the same rate as disorder propagates
outward in the pattern. The diameter of the cluster grows
linearly in time, while the area of the cluster grows quadrati-
cally. This result is trivial if we consider a big grain growing
without affecting neighboring unevolving small grains. Its
number of sides (number of neighbors) is proportional to its
perimeter, i.e., n-d, with d being the diameter of the big
grain, so the normal velocity of the propagating front is con-
stant. Using von Neumann's law, we have
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Equation (3) gives a-t and d t Also-, th. e diameter and
the total area of the cluster are chiefly determined by the
large center grain. Therefore we observe similar behavior for
the growth of the cluster (Fig. 2).

The number of the grains in the cluster grows linearly
(Fig. 2). This result is again trivial, although not obvious,
since the total number of grains in the cluster n, n(the-
number of neighbors of the center grain), n, t, the sa-me as
in Levitan's simulation. The average area of the grains in the
cluster, as we predict ((a) = (a/n)-t /t-t), grows linearly,
accidentally mimicking a normal scaling state, whereas the
average area of the grains in the cluster boundary is constant.

The tail of the topological distribution function, p(n), ex-
tends towards larger and larger values of n, corresponding to
the large center grain. The peak stays at n=6 due to our
definition of the cluster. The second moment of the topologi-
cal distribution, dominated by the large grain, grows linearly
[Fig. 3(b)], consistent with the data of Aboav [12], for the
transient behavior of samples which are initially almost hex-
agonal. If we exclude the large grain in the center, the rest of
the cluster presents a p, 2 fluctuating around a constant value
of about 0.7 [Fig. 3(b)] and the topological distribution is
constant [Fig. 3(a)]. Thus, self-similarity is preserved in the
boundary of the cluster, yielding a special scaling state,
though not in the way claimed by Levitan. In neither case do
we ever reach a normal scaling state. The mean-field theory
fails because in this pattern, the large grain, the boundary
grains, and the remaining hexagonal grains form three dis-
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FIG. 1. Snapshots of time evolution of an initially hexagonal
pattern with a single defect: (a) 0 MCS, (b) 5000 MCS, (c) 10 000
MCS.

tinct classes with fixed spatial relations: exactly- opposite to
the homogeneous mean-field assumption.

Theoretical work has attempted to show that the scaling
state is reached for all initial conditions at long times, and to
derive the distribution functions. Since no exact solutions are
available for physically relevant dynamics, mean-field ap-
proximations were used. Some of these studies revealed the
existence of an entire family of stable scaling solutions, rais-
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FIG. 2. Evolution of the disordered cluster: Total area of the
cluster (CI) grows quadratically and the number of grains in the
cluster (*) grows linearly.
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ing some intriguing questions about the mechanism by which
one particular solution is universally selected [13—17].

The transition time to a scaling state strongly depends on
the randomness of the initial conditions [18]. To quickly
reach the scaling regime in computer simulations requires a
sufficiently random initial lattice of grains. If we begin with
a very regular array with a few widely spaced defects, we
would thus see the rapid growth of a few grains, as in abnor-
mal grain growth.

In the evolution of a single defect in an isotropic hexago-
nal lattice, the large grain (from the defect) grows at the
same rate as disorder propagates outward. The statistics of
the disordered cluster shows that the topological distribution
diverges in time, while the average area of the grains in the
cluster grows linearly, a result supported by Aboav's data and
previous simulations. However, excluding the large center
grain, side and area distributions are steady for the boundary
of the cluster. Thus, at the boundary of the large grain, we
And a special scaling state, composed of different grains at
different times. It has a constant average area (a ')
= (0.88~ 0.08)ao, and nontrivial distributions with

p,&=0.71 0.17, i.e., time invariant statistics but no scale
change. The mean-field theory of Levitan fails. The result
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FIG. 3. Topological distributions: (a) Topological distribution,

p(n), excluding the large center grain, averaged over six different
times between 6000 MCS and 10 600 MCS. Error bars are standard
deviation of the mean. (b) The second moment of p(n) of the clus-
ter (gs2, bullets) and the boundary (p, 2, circles).

also shows that abnormal grain growth could occur in mate-
rials provided their crystallites are highly uniform and or-
dered, without any anisotropy or fluctuations of surface en-
ergy.
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