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Stochastic resonance (SR) is a phenomenon wherein the response of a nonlinear system to a weak periodic
input signal is optimized by the presence of a particular level of noise. Here we present a method and theory
for characterizing SR-type behavior in excitable systems with aperiodic inputs. These developments demon-

strate that noise can serve to enhance the response of a nonlinear system to a weak input signal, regardless of
whether the signal is periodic or aperiodic.

PACS number(s): 05 40.+j, 87.22.Jb

Stochastic resonance (SR) is a phenomenon wherein the
response of a nonlinear system to a weak periodic input sig-
nal is optimized by the presence of a particular level of noise
[1].SR was originally proposed as a possible explanation for
the observed periodicities in global climate dynamics [2].
Since then, SR has been examined experimentally in several
systems, including an electronic Schmitt trigger [3], a bidi-
rectional ring laser [4], a magnetoelastic ribbon [5], and sen-
sory neurons [6,7]. Moreover, theories of SR have been de-
veloped for multistable [8,9], monostable [10], and excitable
[11]systems. All of the aforementioned work, however, has
been limited to the treatment of systems with periodic inputs.
This focus has served to limit the applicability of SR to
practical situations, given that real-world external signals are
often not periodic. Here we present a method and theory for
characterizing SR-type behavior in excitable systems with
aperiodic inputs. For this general type of behavior, we coin
the term aperiodic stochastic resonance (ASR).

Wiesenfeld et al. [11]developed a theory of SR for excit-
able systems by considering a simple system made up of
three major components: a threshold (or potential barrier), a
subthreshold periodic signal (i.e., one which is insufficient
for the system's state point to cross or surmount the barrier),
and zero-mean Gaussian white noise. In particular, they stud-
ied the FitzHugh-Nagumo (FHN) neuronal model, which is a
two-dimensional limit-cycle oscillator. The FHN model has
been utilized in a number of physiologically motivated SR
investigations [11—13] because its dynamics provide a
simple representation of the firing dynamics of sensory neu-
rons.

Here we also consider the FHN model, with the exception
that we study its dynamics under the inhuence of a sub-
threshold aperiodic signal, as opposed to a periodic one. In
particular, we consider the following system:

ev = v (v —a ) (1—v) —w+A+ S(t) + g(t),

w=U —w —b,

where v(t) is a fast (voltage) variable, w(t) is a slow (re-
covery) variable, A is a constant (tonic) activation signal,
e=0.005, a=0.5, b=0.15, g(t) is Gaussian white noise
with zero mean and autocorrelation (g(t)g(s)) =2Db'(t
—s), the brackets ( ) denote an ensemble average, and 5(t)

Co ——S(t)R(t) (2)

where 5(t) is the aperiodic (zero-mean) input signal, R(t) is
the mean firing rate signal constructed from the output of the
FHN model [17], and the overbar denotes an average over
time. This measure is based on the assumption that informa-
tion is transmitted by the system (e.g., a sensory neuron) via
temporal changes in its firing rate [18].We also consider the
normalized power norm Ci given by

Co
Cq=

[S (t)] [(R(t)—R (t) ) ]

is an aperiodic signal. [Without loss of generality, S(t) is
taken to have zero mean. ] For ASR, the exact form of S(t) is
unimportant, provided its variations occur on a time scale
which is slower than the characteristic time(s) of the system
under study. For a subthreshold activation signal A, the FHN
model has deterministically resettable dynamics, i.e., after
the barrier threshold has been crossed [e.g. , due to the effects
of the time-varying inputs of Eqs. (1)], the system's state
point is returned deterministically (within some refractory
period) to its starting point (i.e., a stable fixed point).

In general, the phenomenon of SR indicates that the Aow
of information through a system (i.e., the coherence between
the input stimulus and the system response) is optimized by
the presence of a particular level of noise [1,12,14). In line
with this operational definition, SR in excitable systems has
been characterized by examining (a) the output signal-to-
noise ratio (SNR), which is computed from the power spec-
trum and defined as the. ratio of the strength of the signal
peak (i.e., its area) to the mean amplitude of the background
noise at the input signal frequency [7,11,12], and/or (b) the
modes in the interspike interval histograms [15] located at
integer multiples of the input signal period [6,7,13].Both of
these methods assess the coherence of the response of the
system (i.e., its spiking activity) with the input signal fre-
quency. Thus, these techniques are clearly inappropriate for
systems with aperiodic inputs.

We propose an SR measure —the power norm —which is
appropriate for characterizing ASR. For the above FHN
model, we define the power norm Co [16] as
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For e(&1, U is a fast variable and w is a slow variable.
Therefore, the escape from the fixed point is "quasi"-one-
dimensional along U. The problem thus can be recast as an
escape from a one-dimensional double well. Assuming
iv-0 and w-v=vi, Eqs. (5) reduce to

ev ——V'(v)+ g(t) (7)

where

2 4

V(v) =Cv ——+ —,
8 4'

C=U —A~+ y .

(R(t)) ~exp( —Uo/T), (10)

where T=D/e and the barrier height Uo(t) = V(v2)
—V(v, ). To determine the barrier height, we need the loca-
tion of v 2. (The location of v, was determined above. ) To do
so, we solve for V'(v) =0. Again we expand around v and
solve to first order in y. This yields vi=v —y (as ex-
pected) and v 2

= v + y. It then can be shown that

Uo= +3y . For [S (t)]'~ (&B,

This is a double-well barrier-escape problem, where C con-
trols the "tilt" of the potential well V(v) [8].

In the double-well regime, V'(v) has three roots v, ,
v 2 v3 ~ By analogy, the particle (i.e., the state point) is
caught in well vi (i.e., the stable fixed point). It needs to
surmount vz to get to v 3 (i.e., in order for the system to fire).
Once at v 3, it returns to U & through the w degree of freedom
and gets caught in the well again. Using Kramers's formula
[20], the ensemble-averaged rate of escape from v i is given
by

N'= [R(t) -R(t))'.

Substituting Eq. (15) into Eq. (16) yields

(16)

N'=(R(t))' —(R(t))'+ y'(t). (17)

(Note that the averaging operations commute. )
Consider the situation where S(t) has Gaussian statistics.

Then by using Eq. (12) and applying Wick's theorem, it can
be shown that

(R(t)) = exp[0" +6 S (t) ],

(R(t)) =exp[8+2h S (t)],

(18)

(19)

where 0= —2+3B e/D and b, =3+3B e/D. Equation (17)
thus becomes

N =exp[0'+26 S (t)]—e px[O' +5 S (t))+ cr(D). (20)

results have a "dip" just after the maximum that is not ac-
counted for by the theory. This is likely to be due to "return
hopping" where the particle once in well U3 hops back to
well U& instead of proceeding to U& through the w degree of
freedom. This will be investigated in a future study. )

The calculation of Ci requires R (t) in the normalization
factor of Eq. (3). For this, we use the ansatz that R(t) will be
given by

R(t) = (R(t))+ q(t),

where (R(t)) is proportional to Kramers's escape rate [given
by Eq. (12)] and rg(t) is a stochastic component which arises

from the input noise. We assume rg(t) = 0 and

g (t)= o(D)—is. a monotonically increasing function of D.
[The stochastic component rg(t) does not affect the compu-
tation of (Co).] Consider the normalization factor

y' = [B—S(t)]'-B'—3B'S(t). The normalized power norm is constructed as11

Equation (10) then takes the form

(R(t)) ~exp( —+3[B 3B S(t)]e/D t—(12)
Co (Co)

N[S2(t) ]i&2 N[S2(t )] i&2
(21)

This rate formula matches the form proposed in Ref. [11]for
computing the SNR for SR in excitable systems.

The aperiodic signal S(t) is not altered by the noise so the
ensemble-averaged power norm in Eq. (2) is

where N is given by Eq. (20). For S(t) obeying Gaussian
statistics, (Co) can be computed explicitly from Eq. (12)
using Wick's theorem to obtain

(Co) = (S(t)R(t)) =S(t)(R(t)). (13) (Co) = b, exp
r —+3B p 27B e. S (t))

+ 2 S (t). (22)

By substituting Eq. (12) into Eq. (13) and expanding to first

order in 3 +3B eS(t) /D, we obtain

I /

(Co) ~ —expD (14)

From Eq. (14), it can be seen that the maximum value of
(Co) should occur at D= +3B e Acurve based on. Eq. (14)
is shown in Fig. 1(a), where only the amplitude has been
adjusted to fit the data. The theory matches the data, predict-
ing the location of the maximum. The theory also fit the
numerical results for other barrier heights. (The numerical

[Note that the numerator of the prefactor 5 was omitted in

Eq. (14).] Equation (22) is then used in Eq. (21) to obtain a
formula for (Ci). Assuming o(D) to be quadratic in D, .the
prediction for (Ci) matched the numerical results, as shown
in Fig. 1(b). It should be noted that (Ci) is only weakly
sensitive to the form of o(D). .

This work clearly shows that SR-type behavior is not lim-
ited to systems with periodic inputs. Thus, in general, noise
can serve to enhance the response of a nonlinear system to a
weak input signal, regardless of whether the signal is peri-
odic or aperiodic. These developments open up a number of
potential applications. For instance, this work suggests that it
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may be possible to introduce noise artificially into sensory
neurons in order to improve their abilities to detect arbitrary
subthreshold signals. With "smart" transducers, it may be
possible to modulate the input noise intensity systematically
as a function of the changing nature of the signal to be de-
tected. For this sort of application, we note that the proposed
power-norm measures can also be used to characterize SR in

systems with periodic inputs, provided the period of the in-

put signal is slower than the characteristic time(s) of the

system under study.
The techniques and theory of ASR are not limited in their

applications to biological systems. For instance, as noted in
Refs. [11,12], a number of physical systems, such as sub-
threshold Josephson junctions and semiconductor lasers, can
also be represented as excitable systems with deterministi-
cally resettable dynamics. It is also important to point out
that the methods and theory presented above can be extended
to other general classes of systems, such as double-well sys-
tems and integrate-and-fire neuronal models. This will be
addressed in a future paper.
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