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Soliton pinning by long-range order in aperiodic systems
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We investigate propagation of a kink soliton along inhomogeneous chains with two different constituents,
arranged either periodically, aperiodically, or randomly. For the discrete sine-Gordon equation and the Fi-
bonacci and Thue-Morse chains taken as examples, we have found that the phenomenology of aperiodic
systems is very peculiar: On the one hand, they exhibit soliton pinning as in the random chain, although the

depinning forces are clearly smaller. In addition, solitons are seen to propagate differently in the aperiodic
chains than on periodic chains with large unit cells, given by approximations to the full aperiodic sequence. We
show that most of these phenomena can be understood by means of simple collective coordinate arguments,
with the exception of long-range order effects. In the conclusion we comment on the interesting implications
that our work could bring about in the field of solitons in molecular (e.g., DNA) chains.

PACS number(s): 03.20.+i, 85.25.Cp, 87.15.—v, 61.44.+p

The subtle interplay between nonlinearity and disorder is
being laboriously unveiled throughout the past few years [1].
A rich diversity of phenomena stems from such interaction,
their manifestations being found in a number of systems
ranging from condensed matter physics to biophysics [2].A
number of models have been set forth which capture the
essential ingredients of those systems while enjoying a ca-
nonical, nonspecific view of the problem. Among the most
successful of these models, the sine-Gordon (SG) equation is
particularly remarkable both for its range of applicability and
the possibilities it opens for study either in the continuous or
discrete version. Some of the physical situations well mod-
eled by this equation are, for instance, Josephson junctions
[3], Josephson junction arrays (JJA's) [4,5], or DNA pro-
moter dynamics [6,7]. Recent experiments have pointed out
the relevance of this kind of model in DNA-related mol-
ecules [6,8] as well as in proteins [9].Indeed, solitons are a
quite general phenomenon appearing in organic molecules
[10]. Importantly, many realistic systems like DNA chains
are neither periodic nor random, being inherently close to
quasiperiodic or aperiodic systems, so that the effects of
long-range order may change the dynamics of nonlinear ex-
citations. DNA sequences have been shown to exhibit long-
range correlations in the past few years [11],and hence the
interest of a study of the type we report here.

In this Rapid Communication we concern ourselves with
the problem of the behavior of kink solitons on lattices con-
sisting of two different components, thereby focusing on is-
sues inherently discrete similar to those of DNA or JJA dy-
namics. Our main aim here is to learn about the
phenomenology of soliton propagation as a function of the
order of the underlying lattice We consider three m. ain pos-
sibilities for our binary chain: periodic, aperiodic, and ran-
dom, which represent, respectively, full order, long-range or-
der, and pure disorder. We show in the following that, while

the periodic lattice exhibits basically the same features as the
homogeneous case, the two nonperiodic systems present
characteristics of their own. We further discuss how most of
our results can be understood within the framework of the
collective coordinate technique [12] (see also the review [13]
and references therein). Notwithstanding that analytical in-

sight, we have also found effects that cannot be interpreted in
terms of such a particlelike behavior, and we have been able
to associate those to the long-range order characteristics of
aperiodic chains.

The model we use as our working example is a damped,
dc driven, discrete SG equation given by

1
u 2 (un+1 2u„+u„,)+ V„sinu„+ au =F,

a

where overdot means time derivative, a is the lattice spacing,
and n runs over the lattice sites n = 1, . . . ,N. The coefficient
in front of the on-site potential, V„, is directly related to the
physical properties of the application one is interested in:
Thus, it has to do with local critical currents in Josephson
devices, or with the strength of hydrogen bonds between
complementary bases in DNA models. In the following, we
will allow V„ to take on only two values, V, and Vb. More-
over, by an appropriate rescaling, it is possible to fix
V, =1, and so this will be done hereafter. The spatial ar-
rangement of the two kinds of values will be chosen to be
either periodic, aperiodic, or random. As our aperiodic mod-
els, we pick two standard choices, namely, the Fibonacci and
the Thue-Morse chains. They are generated starting from two
basic units A and B using the following inflation rules:
A~AB, B~A for the Fibonacci chain and A~AB,
B+BA for the Thue-Morse chain. In this way, finite and
self-similar aperiodic chains are obtained by n successive
applications of these rules, with N=F„sites for the Fi-
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bonacci lattice and %=2" sites for the Thue-Morse lattice.
Here F„=F„&+F„2with FO=Fi =1 are the Fibonacci
numbers. The number of A sites in the lattice is —vN in the
Fibonacci case and N/2 in the Thue-Morse case, where
7 = lim„„(F„ i /F„) = (+5 —1)/2 is the inverse golden
mean. Both chains have been used in very many contexts to
model aperiodic ordering which, in spite of previous, more
naive ideas, it is not something intermediate between peri-
odic and random systems (see, e.g. [14], and references
therein).

To characterize the dynamics of kink solitons on these
systems, we have numerically simulated Eq. (1) by means of
a fifth-order adaptive-stepsize Runge-Kutta routine [15]
which has been shown to be an accurate procedure (see [16]
and references therein). In the homogeneous case
(V„=V, = 1), it has long been known [12] that if a soliton
initially at rest evolves according to Eq. (1) with F)0, it
eventually reaches a steady state in which it propagates along
the chain with velocity

I' 4 ) 2 —1/2

U= 1+
i 7rFi

(2)

with the opposite sign if F(0. This result was found by
means of a standard collective coordinate calculation, and
the derivation can be found in [12].As another check of our
simulations, we compared their outcome to this prediction
and found an agreement better than 1% for all studied cases.
We will also make use of this expression, although in a
modified form: If one assumes V„ is constant and given by
the average of V, and Vb weighted by their concentrations,
say V„=V„s=cV,+(1—c)Vb (here cN is the number of A
sites of the chain), and repeats the same calculation in [12],
the predicted final velocity is

( 4 'II 2 ~
—1/2

U= 1+V, g (3)

i.e., the asymptotic velocity is predicted to be smaller
(higher) than that of the homogeneous model when Vb) V,
(Vb~ V.).

The results of our numerical simulations are collected in
Fig. 1, where we present the value of U as a function of the
applied force F for the different orderings considered, al-

ways with Vb=10. The plotted value of v was obtained by
starting the simulation for each F with a kink at rest in the
middle of the chain, as given by the exact continuum solu-
tion of the SG equation, and letting it evolve while monitor-
ing its velocity until it reached a constant value. In all eases
it was verified that the soliton shape remained almost unal-
tered, which is the necessary condition for the concept of
velocity to make sense. The simulation parameters are
a=0.1, which is a prototypical value and whose only effect
is to Ax the force scale, and a =0.1, a value which yields a
discrete chain but still close to the continuum to avoid side
effects induced by pinning due to the effective Peierls-
Nabarro potential [17].In Fig. 1 one easily sees the different
behavior of the different kinds of ordering considered. The
periodic chain with alternating V„and Vb is very accurately
described by our theoretical prediction in Eq. (3) with aver-
age velocity V, g corresponding to a concentration of
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FIG. 1. Steady state velocity versus applied force for chains
with different orderings and Vb= 10. Points correspond to numeri-
cal results, solid lines to the theoretical prediction in Eq. (3) with

V,„g corresponds to c=0.5. (0), periodic chain with N=4182;
( ), Fibonacci chain with N=F&&=4181; (6), Thue-Morse chain
with N=2' =4096. Dashed lines joining symbols are a guide to
the eye. The threshold for random chains is out of the range of the

plot and its value is about F=0.5. Inset: same but for Fibonacci
chains with V, =2, V, =5, and V, =10, from top to bottom.

c= 0.5, whereas it is seen that neither Fibonacci (with
c= r) nor Thue-Morse chains obey that equation. The first
discrepancy arises as the existence of a threshold force,
F, , below which solitons are pinned and do not move. A
comparison of such F, for the aperiodic chains with two
random chains (not shown in the figure) with the same con-
centration of V, (v=0.618. . . for the Fibonacci case and
0.5 for the Thue-Morse case) leads to the conclusion that the
threshold is about three times higher for the fully disordered
chain than for the corresponding aperiodic one. Above
threshold, the approximation (3) fails also to accurately pre-
dict the value of v, overestimating it appreciably for those
nonperiodic cases. However, the overall behavior of the ran-
dom and the aperiodic chains is different, in the sense that in
the random case, above threshold the U-F curve is nonmo-
notonous and the final velocity depends strongly on the par-
ticular realization of disorder. As for the dependence of the
results on the value of Vb, it can be seen in the inset of Fig.
1 that, while keeping Vb~V, , the higher Vb the larger F,
for Fibonacci lattices. On the other hand, when Vb = 0.1, i.e.,
much smaller than V, , we have found that, contrary to the
naive expectations, there is still a threshold force for the
Fibonacci case, about F,= 10, which we have verified is
not related to Peierls-Nabarro pinning because the periodic
chain shows no pinning for such a value of the force. This is
a striking result that should be compared to the random chain
one, where it is found that F,=0.04

To gain further insight into the pinning phenomenon, we
have compared the results for the full aperiodic chains with
those of periodic chains with a unit cell formed by a shorter
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FIG. 2. Steady state velocity versus applied force for chains
with different orderings. Points correspond to numerical results,
solid lines to the theoretical prediction in Eq. (3) with V,„s corre-
sponding to c= r. ( ), sixth approximation (13 sites); ( 0 ), eighth
approximation (34 sites); (6), ninth approximation (55 sites);
('7), 11th approximation (144 sites); (0), full Fibonacci chain. All
lengths are close to 4180 sites. A soliton at rest spans about 50 sites
for comparison. Dashed lines joining symbols are a guide to the
eye. Labels indicate the order of the approximation to the Fibonacci
chain as we11 as the fu11 aperiodic sequence.

approximation to the corresponding aperiodic sequence.
Thus, for the Fibonacci chain, we have studied periodic
chains with unit cells V, VbV, (the third Fibonacci approxi-
mation), V, VbV, V, Vb (the fourth approximation), and so
forth up to the 11th approximation (144 sites in the unit cell).

The results are shown in Fig. 2. The most remarkable con-
clusion that can be drawn from this plot is that for periodic
chains with unit cells smaller than the soliton size (around 50
sites when at rest), the behavior above threshold is indepen-
dent of the unit cell, and moreover, it is very well described
by the average velocity introduced in Eq. (3). This is very
important, since it implies the existence of influences coming
from the long-range order of the full aperiodic chain which
do not arise in periodic approximations unless the size of the
unit cell is much larger than the soliton width, i.e., unless the
soliton is unable to distinguish the unit cell from the whole
chain. Another remark in order here is that the threshold for
the different periodic approximations depends on the initial
position of the soliton in the chain, changing up to a factor of
2 for different positions, although keeping below that of the
full Fibonacci chain. Results for the Thue-Morse model are
basically the same, although in this case shorter lengths are
needed for the simulation to get close to that of the full
aperiodic chain, and the threshold dependence on the size is
nonmonotonous. We tentatively associate this with the fact
that in the Thue-Morse sequence 8 sites may appear in pairs,
contrary to the Fibonacci sequence, and therefore it is to be
expected that their effect will be stronger on the soliton.

The existence of a threshold force is clearly the main
failure of the collective coordinate theory for both the aperi-
odic and the random chains and, therefore, we undertook the
task of finding a better analytical description. To this end, we
followed the same approach of the work by Salerno and
Kivshar [7], where they introduced an effective potential to
account for their results on DNA promoter dynamics. The
basic idea is similar to that of the collective coordinate tech-
nique, but they improve it by including the spatial ordering
of the chain. We skip the details here, as the interested reader
may find them in Refs. [6,7], and quote only the final result:
The effective potential seen by a soliton, initially at rest at a
lattice site no, is given by

(0)g (V,„s+V )[sech (z ) —sech (z~ ~)]—2F[tan '(e'~) —tan '(e'~ )]
m

W(n, no) =
2+ sech (z )

(4)

with z~—=a V,„(m—sn) and z =a V,'„(m —sno), and the
sums run over the whole lattice. Finally, to include soliton
width effects, the potential in Eq. (4) is averaged in the in-
terval of the lattice spanned by the soliton. We have to stress
that this approach only applies to the early stages of the
problem, when the kink is at rest or beginning to move at a
very slow speed. This is so because in deriving Eq. (4) the
dissipative term is not included. Therefore, this approach
should be useful in predicting the threshold force although it
certainly does not apply to the dynamics above threshold. As
can be seen from Fig. 3, the agreement is very good for the
Fibonacci chain, and the same can be said about the Thue-
Morse chain and the random case (not shown; in addition,
the random case depends strongly on the realization consid-

ered, which was to be expected in view of the simulations).
For comparison, notice that the potential minimum is always
absent in periodic lattices (see the inset of Fig. 3), in agree-
ment with our numerical simulations where pinning is not
observed in those lattices. In computing the average value of
W(n, no) we have used a soliton width of 40 sites, which is
of course quite arbitrary. We have checked that variations of
~ 10 sites are not crucial for our results, which remain semi-
quantitatively correct. Indeed, due to this freedom in the
election of the soliton width, we have not pursued a better
agreement, because it would be difficult to justify the choice
of that value aside from the fact that it fitted the numerical
simulations.
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FIG. 3. Effective potentials for a kink soliton initially at rest in
the center of a Fibonacci chain for forces F=0.05 (solid line),
F=0.1 (dashed line), and F=0.2 (dot-dashed line). Inset: Same,
but for the periodic chain.

In conclusion, we have studied soliton propagation along
binary lattices with different orderings. We have found that
whereas solitons can propagate for any force on periodic
systems, nonperiodic ones exhibit a threshold value, i.e.,
forces larger than a value F, are needed in order to start
propagation. We have been able to analytically explain that,
as well as to characterize the differences that, in turn, sepa-
rate the phenomenology of random and aperiodic chains. We
have also found that long-range order effects arise when soli-
tons are propagating along the chain, which show up in a

decreasing of the steady state velocity with respect to the
theoretical expectations for the periodic chains. Our findings
are of relevance in a large number of contexts (see, e.g. , the
book by Davydov [10]). In particular, these results can be
useful in the context of Josephson devices, as they can be the
basis for the design of new devices with specific properties
(the value F, corresponds to a critical current for the device
to start conducing). Most importantly, Josephson systems
built much in the same way as those in [5] should behave as
we have reported, thus providing another check of our results
as well as a source of potential new applications. On the
other hand, our findings can also be relevant to DNA. pro-
moter dynamics (or other soliton phenomena in molecular
systems). Indeed, our results show that the long-range corre-
lation present in DNA [11]due to the information it encodes
makes soliton propagation easier than if it were purely ran-
dom, in fact allowing their traveling along the chain at lower
velocities. This would not be possible if the structure of the
molecule would be random in view of our results.

It is clear that these results just opened the door to the

problem of soliton propagation in aperiodic systems. As we
have mentioned along the paper, there are a number of un-
solved questions, like an analytical explanation of the soliton
velocity in aperiodic chains, or how periodic approximations
converge to the full aperiodic system. Besides that, the study
of other aperiodic models would be helpful in order to clarify
the generic properties exhibited by this kind of model. Work
along these lines is in progress.
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