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We describe a method for determining the stability of a system consisting of several highly relativistic
bunches of charged particles circulating in a storage ring. The particles interact with magnets designed to guide
the beam as well as with electromagnetic fields induced by the particles themselves. Previous calculations
considered multibunch modes with one type of internal motion; our method includes coupling between these
modes. We also include effects of feedback systems designed to correct these dipole motions. We include an

example from a real storage ring design.

PACS number(s): 29.27.Bd, 29.20.Dh 02.60.Nm

We consider a storage ring in which there are several
bunches of charged particles circulating at a frequency wy.
The charged particles are confined so as to keep them
bunched and moving near an ideal orbit. The charges also
induce electromagnetic fields (wakefields) which can then
act back on the charges, potentially causing the beam to be
unstable. These instabilities can often be corrected by mak-
ing a feedback system which senses the dipole moment of
the beam at a given position and acts back on the beam at a
different position.

Previous work has considered several aspects of this ef-
fect. We will confine our description to work considering the
force due to transverse wakefields. Authors have considered
how the various eigenmodes involving transverse and longi-
tudinal motion in a single bunch can couple together and
create instability (transverse mode coupling) [1-6]. Authors
have also shown how to calculate multibunch eigenfrequen-
cies where the bunches are considered to be point particles
[7] or where internal degrees of freedom are included but are
not considered to be coupled [8,9].

Here, we show how to compute eigenfrequencies, and
thus determine the stability, for modes of multiple bunches
where the internal degrees of freedom are considered and
allowed to couple. The technique we use here is a straight-
forward extension of the formalism of Wang [8]. The single-
bunch case for this has been worked out by Ruth [3,4].

We will describe the force that a single particle feels by a
Hamiltonian [10]. The Hamiltonian is written with s, the
position along an ideal orbit through the ring, as the indepen-
dent variable. Because of the bunched nature of the beam,
the Hamiltonian may be written as a sum of the Hamilto-
nians H, that describe each bunch. Each bunch Hamiltonian
will be the sum of two terms.

The first term describes the forces due to magnets, as well
as any ‘“‘potential well distortion” due to longitudinal wake-
field forces [11,12], which may be different for different
bunches. We assume that the motion due to these forces is at
least approximately integrable, so we can write this term as a
function of the action variables only [10]. We call this term
H,y(J), where r is the bunch index.

The second term in the bunch Hamiltonian describes the
forces due to wakefields generated by the bunches. The fields
induced at a position s in the ring are proportional to the
transverse displacement and charge of a particle passing that
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position. The transverse force a time 7 later at the same
position in the ring will then be proportional to this dipole
moment of the source charge times a transverse wakefield
W, (7). Taking into account the fact that a storage ring is
periodic with length L, the second term in the Hamiltonian
for the rth bunch is
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Here r( is the classical radius of the electron; B is the av-
erage velocity of a reference particle divided by the speed of
light; yo=(1—B%)~ Y% BocTo=L where c is the speed of
light; N, is the number of particles in bunch »n; y,(8,J) is the
transverse displacement for particles in bunch r; 7,(8.J) is
the difference between the arrival time of a particle in bunch
r and the arrival time of a synchronous particle; and
V¥ ,(6.J,s) is the phase space distribution function for bunch
n at a position s. Note that y, and 7, represent two of the
four phase space coordinates, and these functions describe
part of a canonical transformation to the coordinates y and
7 from the action-angle coordinates @ and J.

We have assumed here that the ring is uniform, in the
following senses: First of all, the transverse displacement
y, and time-of-flight displacement 7,, written in terms of
action-angle variables, are independent of s. Secondly, W, is
also independent of s. By doing this, we assume that coher-
ent synchrobetatron resonances are avoided [5,11,13,14],
which turns out to be a good approximation [14]. We correct
for nonconstant lattice functions by weighting each piece of
the wakefield by the average of the B function over the
source of the wakefield [2,13-15].

We can also consider the effect of adding a feedback sys-
tem through an extra term in the Hamiltonian similar to Eq.
(1) above. Simply replace kL in that equation with kL +As
(and thus kT by kT o+ As/Byc), and rename W to Wrg. We
have once again assumed uniformity around the ring, and are
thus ignoring coherent synchrobetatron resonance effects
[5,11,13,14], which should be straightforward to avoid.

We now consider a distribution ¥, (6.J,s)
=¥, () +¥,(8.J,s), where ¥, is a small perturbation to
W¥,o. We further assume that
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where w,= Byc(dH,o/dJ). A solution of this equation with
f y¥,olJ (y’Py TP ) ]dy dPy dp,=0, )] Im{Q}>0 corresponds to the existence of an unstable mode.

where y and 7 are the canonical phase space coordinates
corresponding to the transformation described above, and
py and p, are the corresponding canonical momenta. If Eq.
(2) were not true (it generally is true in the vertical direc-
tion), we have a transverse potential-well distortion problem
similar to the longitudinal case [11,12].

The time evolution of the distribution ¥ of particles
where the motion of any individual particle is described by a
Hamiltonian H is given by the Vlasov equation [11]

v _
¥+[‘II,H]—O, 3)

where [ ] are Poisson brackets [10].

Because of the bunched nature of the beam, we may write
an individual Vlasov equation for each bunch. The Vlasov
equations will end up being coupled through the wakefield
term in each Hamiltonian. The Vlasov equation for bunch r
is

r

as

+[¥,H,]=0. @

Note that ¥, is independent of s. Second, note that from
Eq. (2), H, does not contain ¥ ,,. We will also ignore terms
that are second order in ¥, .

It is useful to define the impedance, which is the Fourier
transform of the wakefield:

Zl(w)=if:°Wl(T)e"“"dT. (5)

Next we define the Fourier transform of the perturbation to
the bunch distribution:

1 .
v.(0,J,0)= Boc f V,(0,J,s)e' ¥ Pocds, 6)

Finally, it is useful to define the dipole moment due to the
entire train of bunches seen in the laboratory frame at fre-
quency pwgy+ ) as

D,(Q)

r

@)

The Vlasov equation then becomes

d
[Q+ iw,(J)- ﬁ]‘l’r( 0.J.,Q)
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Adding a feedback system simply adds a term to the right
hand side of Eq. (8), with Z, (Q1+pw,) replaced by
Zep(Q+pwg)e PASR 7.0 is the Fourier transform of
Weg as in Eq. (5).

To find the eigenfrequencies () in Eq. (8), the equation
must be transformed to eliminate ¥, and replace it with
D, . To do this, we need to invert the operator

Q+iw(J)- 610 9)

After doing so, and applying Eq. (7), we get an eigenvalue
equation D () =Z2,4,,(Q)D,(Q).

We now assume that we have a lattice consisting only of
linear focusing and defocusing magnets. This ignores poten-
tial damping effects due to chromaticity [1-4,7-9,11] and
tune shift with amplitude [7,16,17].

We also assume that all bunches are identical and equally
spaced. If the bunches are all equally spaced but have differ-
ent numbers of particles (including zero), we can get worst-
case values for the growth rates for the symmetric system by
setting the single bunch current equal to the current in the
highest-current bunch in the real system [18]. Nonequally
spaced bunches will only introduce small corrections to the
results, since the deviation from equal spacing is typically
kept under a few percent [19]. Nonidentical bunches will
also cause the synchrotron frequencies of different bunches
to be different due to potential well distortion [11,12,20]; this
can give an additional damping effect similar to Landau
damping [20].

We next assume that the distribution ¥ ,y(J) depends on
J only in the Hamiltonian H,,, and is Gaussian in 7 and y.
The Gaussian distribution in 7 is expected in electron storage
rings [21]. Since the longitudinal force due to the trans-
verse wakes is typically small enough to be ignored
[3,8,11,13,14,17], we need not be concerned with the precise
form of the transverse dependence in ¥, .

Since all the bunches are identical, all the r indices in the
above equations disappear, except in 7,. The linear lattice
leads to w being independent of J. Thus, we get

202 2
w,a;Bsc
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r Mwo Bocwz z

where a. is the momentum compaction factor, B, is the
average betatron function [22], o, is the rms bunch length,
and M is the number of bunches. Also, w,, and w,, are the y
and 7 components of w,, respectively.

There is a summation over bunch number in the matrix
elements A ;, . Because the bunches are symmetric, this sum-
mation can be performed; it gives zero if p—gq is not an
integer multiple of M, and M if it is. Thus, we get M sepa-
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rate eigenvalue systems, indexed by p,, with p=p,+aM
and g=po+ BM. Thus, a and B are now the indices on A.
The resulting A is

AP (Q)=i roc’BNM (pwo+Q)
Ba((V) =1 aylle, pwy

% e~ T11(qwg+ D)2 +(pwg+0)21/265c

X3 (8t 8, _1>[zeofwwomxpwwmwécz
> ,

Q Q—mwyf" (Q-maw,)6’
— —cscT cos
2 w, - W
><e‘0,2<qwo+9)<Pwo+9)C°S‘9'/Béczd0/]' (13)

We take the series for small o, of the bracketed term in
Eq. (13). Next, we make a change of basis to

oy
Boc

—a? 29 32,.2
XDp0+Ma(Q) e g [+ (po+Ma)wyl“/2B5c

¢n<n>=( ) ; Z,[Q+(po+Ma)w,]

X[Q+(po+Ma)wy]". (14)

Our system then becomes
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FIG. 1. Single-bunch mode coupling. Solid lines are the real
part of the mode frequencies, dashed lines are the imaginary parts
(growth rates). Of the real parts, the center line is the m =0 mode,
while the top and bottom lines are the m =1 modes.
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FIG. 2. Multibunch modes with mode coupling, real part of
frequencies. Shown are three groups of 1746 lines, each line corre-
sponding to a multibunch mode frequency. The center group are the
m=0 modes, the top and bottom groups are the m =1 modes. No-
tice that for some of the multibunch modes, the m=0 and m=1
modes have the same frequency at 10 A.

As an example, we consider the PEP-II B Factory [23]
low-energy ring. We will only calculate the effects involving
the m=0 and m=1 terms in Eq. (15). If we consider only a
single bunch, we find that the m =0 and m =1 modes couple,
as expected (Fig. 1). If we consider multiple bunches, but do
not consider coupling between the modes, we would see
growth rates and frequency shifts approximately proportional
to current. If we now allow the multibunch modes to couple,
we see a strong mode coupling effect, at currents much
smaller than the mode coupling threshold for a single bunch
(Fig. 2; compare Fig. 1). The growth rates of the m=0
modes which have large growth rates when mode coupling is
ignored are only slightly affected by mode coupling. Those
which had small growth rates essentially mirror the single
bunch behavior of Fig. 1.

The major effect is on the m =1 modes. If mode coupling
is ignored, these typically have small growth rates which
increase linearly with current. Mode coupling affects these
modes in two ways. First, the m=1 growth rates no longer
increase linearly with current, and so for even small currents,
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FIG. 3. Multibunch growth rates with feedback. Dashed lines
are the m =0 modes, other lines arem=1.
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they can become very large. Second, the sudden increase in
growth rate as a function of current that occurs in the single
bunch case (see Fig. 1) now occurs at a much lower current.
The approximate location of this increase is the point where
the real frequencies coincide (see Fig. 2), similar to the
single bunch case. In the case of the PEP-II low-energy ring,
the operating current will be 3 A at worst, well below the
current of 10 A where the multibunch mode frequencies co-
incide in Fig. 2. Thus, we expect minimal effects from mul-
tibunch mode coupling (although the nonlinear increase with
current discussed above does have a slight detrimental ef-
fect).

Typical feedback systems damp only the m=0 modes.
Damping the m=1 modes requires pickups and kickers that
operate at very high frequencies. Thus, the strong effect of
mode coupling on the m=1 modes can produce instabilities
that are difficult to correct, and are at much lower currents
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than the single-bunch mode coupling threshold (see Fig. 3).

Radiation damping, as well as other damping effects
which we have ignored in this calculation, may serve to re-
duce the growth rates that have been computed by this
method. If the growth rates computed here are smaller than
the the damping rates from these effects, then we may as-
sume that the beam is stable.

To conclude, we have demonstrated a method for calcu-
lating the eigenfrequencies for a storage ring containing mul-
tiple bunches, which allows one to include coupling between
the internal degrees of freedom in the bunches. We show that
this can have an effect similar to single-bunch mode cou-
pling, but at significantly lower currents. This is an important
effect to consider in the design of the next generation
electron-positron storage rings such as the PEP-II B Factory.
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