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Modified method for synchronizing and cascading chaotic systems
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In this contribution a modification of the Pecora-Carroll [Phys. Rev. Lett. 64, 821 (1990)] one-way (or
drive-response) synchronization method is suggested, such that both drive and response have the same dimen-

sionality. As a result, it is possible reproduce the driving signal with a single connection, increasing, thus, the

number of potential connections of a given system. The main features of the method presented in this work are
discussed with an application to the Rossler and Lorenz models [O. E. Rossler, Phys. Lett. A 57, 397 (1976);
E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963)), including the possibility of designing different chaotic receivers
to be used in the field of secure communications and the setup of an array of chaotic units in which several
possible connections are allowed for.

PACS number(s): 05.45.+b

Several recent studies have shown the possibility of syn-
chronizing chaotic systems [1,2], although, due to their sen-
sitive dependence on the initial conditions, at first sight this
may appear to be against common sense. In particular,
Pecora and Carroll (PC) [1]have considered the situation of
unidirectional coupling, in which a chaotic signal from a
drive system is used to force a second response system. In
the PC method a subsystem of the drive, that will be com-
mon between the two systems, will be used to make the
response synchronize with the drive. The stability of the syn-
chronized state can be written in terms of the corresponding
transverse Lyapunov exponents, which measure the growth
of small perturbations of the differences between the two
systems.

A very interesting situation [3] is obtained when the re-
sponse system, with respect to a given drive, acts as the drive
of a second response system, this connection being called
cascading. Cascading two PC subsystems in this way allows
one to regenerate the driving input signal. It is in this sense
that it is possible to show [3] that this system can act as a
chaotic filter, potentially useful in the field of secure commu-
nications [4] (see, however, Ref. [5]).In its simplest version
the idea is to use a chaotic signal to mask the information to
be transmitted, the latter bearing a small fraction of the
power spectrum, and this is an alternative to the classical
noise masking procedure. The receiver should have the ap-
propriate chaotic filter, which in this setting can be obtained
by using two cascaded chaotic subsystems.

Cuomo et al. [4] have implemented a Lorenz chaotic filter
that could be useful in the field of secure communications.
These authors were able to design a receiver circuit that is a
single three-dimensional chaotic circuit comprising the cas-

x y'
cade —+(y ',z') +(x",z"), which has, in principle, an overall
dimension of four. The device is implemented by noticing
that variable z" in the second subsystem does not inhuence
x", but rather performs its own dynamics, or in other words,
variable z does not enter into x. The result is that one can
write the usual expression for a Lorenz [6] chaotic circuit
acting as the drive (transmitter),

xi tT(Yi —xi), Yt =~xi —Yl xlzl zi xlY1 bzl (1)

while the response (receiver) circuit can be written in the
form [4],

x2 rr(Y2 x2) 3 2 ~xi 3 2 xi 2 z2 xiY2 z2 ( )

The parameters have the usual meaning, and it is to be no-
ticed that the driving signal x& appears in y2 and z2, while
x2 appears in x2, and, thus, one has some kind of hybrid
dynamical system.

One could also think of designing a more general cascade
acting as a nonlinear information processing unit, but this is
difficult to achieve if one strictly sticks to the PC method.
The reason is that in a cascade of low-dimensional chaotic
systems the connectivity is limited because not all the pos-
sible subsystems of a given chaotic system are stable from
the viewpoint of synchronization, and in order to build such
a cascade any two contiguous connections must be different

Thus, and within the examples considered in Ref. [1], in
the case of the Rossler [7] model there is a single stable
subsystem, namely (x,z), while in the case of the Lorenz [6]
model both (x,z) and (y, z) subsystems are stable. Thus, the
Rossler system cannot be a candidate to build a chaotic filter,
for which one needs a cascade such that the driving signal is
regenerated (although one could obtain the same effect
through the use of a suitable modification of the method [8]).
Moreover, if one wishes that the chaotic filter is compact,
i.e., that it has the same dimensionality as the drive, such as
is the case of the Lorenz circuit of (2), it is necessary that one
of the variables (z in the case of the Lorenz system) does not
appear in the evolution of the input variable to the cascade
[x in (2)].

The aim of this work is to introduce a strategy consisting
in a generalization of the PC method, that should allow one
to design in a systematic way a response system with the
same dimension as the drive and that yields the same result
obtained within the original PC method with a cascade of
two subsystems. One of the most interesting potential appli-
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processing units, that could eventually outperform classical
fixed point artificial neural networks. In Fig. 3 one such set-
ting is shown, namely, one in which four Lorenz systems are
connected in the form

x1=~(y1—x1), y1= x1 —y1 —x11, zt=xtyl b 1

xz = a (yz —xz),yz =Rx1(t) yz —xzz—4(t), zz =xzyzx —bzz,

x3=tr(y3 x3) y3=Rxl(t) y3 x3z4(t) z3=x3y3 bz3

x4= o (y4 —x4), y4=Rx4 —y4
—x4z4, z4=x4y4 —bz4. (6)

Thus, the first system is linked through connection
R x(t) to the second and third systems, while the fourth
system is linked through connection xz(t) to—the second
and third systems. This is an example in which two systems
receive, each, signals from two other systems, and then,
some kind of competition may occur regarding the effects of
the two signals. The result is that the second and third sys-
tems become synchronized one to each other, exhibiting a
different behavior than the first and fourth systems, although
they are not connected directly. One could analyze the sta-
bility of this kind of setting by a generalization of the stabil-
ity analysis outlined before Eq. (4), although the calculations
are more complex now due to the fact that two different
chaotic systems need to be followed.

The conclusion of this work is that the method put for-
ward by Pecora and Carroll (PC) [1], and that allows syn-
chronization of chaotic systems by one-way coupling, can be
easily extended to the case in which there is no subsystem in
common between the two connected systems. This can be
achieved by introducing a signal from the driver into a pre-
cise term of the response, allowing regeneration of the input
signal with a single connection. Among the possible uses of
this variant of the original method, one has the design of

chaotic filters potentially useful in the field of secure com-
munications in which a deterministic signal to be transmitted
is masked with a chaotic signal produced by a chaotic sys-
tem. One could design the receiver system to be formally
identical to the transmitter, except for the fact that the com-
pound signal to be filtered is introduced at some given place
of the circuit. This allows a compact design of the receiver
unit without the need of designing it as a cascading of two
systems as in the PC scheme. In this work, a chaotic filter
using two Rossler units is suggested, making it possible to
use for this purpose a system with a single stable subsystem
in the PC sense. The practical implementation of the present
idea in a circuit such as the one devised by Cuomo et al. [4]
would consist in the injection of the driving signal in the
appropriate part of the circuit through an operational ampli-
fter (the use of a resistance would yield mutual driving [11]).

Another use of the present suggestion is the possibility of
cascading a large number of low-dimensional systems with
different possible connections without reducing the dirnen-

sionality of the response systems, including discrete maps.
This kind of connection can be applied to the case where the
units represent model neurons. One of the features of the
brain is that a large number of neurons are connected in
many different ways, and its computation power appears to
stem from this property. The method introduced in this work
presents the advantage of allowing one to set up a network
with a virtually unlimited number of circuits that are con-
nected in many different ways. Thus, these arrays of chaotic
systems might be useful as information processing systems
that would work by synchronizing one to each other, mim-
icking the behavior observed in physiological studies.
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