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Controlling chaos by pinning neurons in a neural network
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Chaos control in an artificial neural network is achieved by "pinning"' the state of a few neurons and

adjusting the threshold value. The activity of the network, when the control is on, can be constant or periodic.
The mechanism used is compared with other well-known algorithms of chaos control in low-dimensional

maps. Some comments are made on possible similarities with memory retrieval in natural neural networks.

PACS number(s): 05.45.+b, 05.50.+q

Controlling chaos is presently an active line of research in
the field of nonlinear dynamical systems. Ott, Grebogi, and
Yorke [1] demonstrated chaos control using a feedback
mechanism acting on one or more parameters of the chaotic
system. Since then this technique has been applied to many
low-dimensional maps and real physical systems [2—4]. The
technique relies on a fundamental characteristic of chaotic
systems, namely, their extreme sensitivity to initial condi-
tions. By a suitable small perturbation, the chaotic system
can be driven to any desired fixed or periodic state. Usually
a chaotic attractor embeds a great number of periodic orbits.
A carefully chosen perturbation, modifying a system param-
eter, can stabilize one of these periodic orbits. In a great
majority of cases, chaos control has been applied to low-
dimensional systems. However, controlling chaos in systems
with a great number of degrees of freedom is important for
practical uses, This has been performed with a coupled map
lattice model [5] by fixing the values of some sites ("pin-
ning"). In this case, there is a critical number of pinnings
above which chaos can be controlled. Neural networks are
spatiotemporal systems consisting of a great number of units
(the neurons) that can be led to behave chaotically. It is de-
sirable to know how to take a neural network from a chaotic
to a fixed or periodic behavior by modulation of only a few
degrees of freedom. This is the main concern of the present
communication.

Artificial neural networks usually fall short as reliable
models of high brain functions. The study of electroencepha-
lograms (EEG's) of humans and animals [6,7] has revealed
that the dynamics of brain activity is very rich and intricate,
as would be expected. Techniques of analysis borrowed from
the study of nonlinear dynamical systems have been of great
utility in this line of research. A weak point in many artificial
neural networks is their dynamical rigidity. This can be of
minor concern when the network is used only for static
memory retrieval but curtails the simulation of other inter-
esting brain properties. Some mechanisms have been pro-
posed to bypass these limitations, for instance, by adding
controlled noise. In the present study we use local control or
pinnings acting only on a few neurons. The intention here is

to understand how these pinnings infIuence the dynamics of
the network and how dense they have to be for controlling
chaos.

In this report we use a typical model of neural network
where the state of each neuron depends on the input from
some other neurons that send signals modified by weights,
the synapses. Although very simple, this model has an activ-
ity that can mimic the dynamics of real neural systems, as
viewed through EEG time series. Results already published
[8,9] show that the dynamics of this type of model can dis-

play a variety of behaviors. Acting on the threshold function,
the activity of this network can be led to be fixed, periodic,
intermittent, or chaotic. Now we are interested in taking this
activity from chaotic to fixed or periodic by acting only on a
few neurons while maintaining all other parameters fixed.
We will show how this can be achieved and speculate on
possible insights to be obtained on the mechanisms of
memory and association of ideas in real neural networks.

Our model is a variation of the original model created by
McCulloch and Pitts [10]. It consists of N neurons, each
connected to n other randomly chosen neurons (n(&N) A.
neuron is a simple binary unit, x(t), that can take only two
states: x=O (inactive or quiescent) and x=1 (active or fir-

ing). The state of the neuron i at time step t is updated
synchronously as

l( n

x,(t)=8 g S,,x/(t —1)+T,
~J( 0

where (i) is the set of neurons sending input signals to neu-
ron i and S;J is the synaptic weight between neurons i and j.
These weights can take any value from +1 and —1 and are
randomly chosen in the present realization of the model.
Positive weights correspond to excitatory synapses and nega-
tive weights to inhibitory synapses. They are not symmetric,
that is, S;j+Sj, . The threshold value T is taken as constant
and is the same for all neurons. 0" is the Heaviside function:
O(z) = 1 if z~O and 0" (z) = 0 if z(0. Our observable is the
activity of the network, defined as
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A(t) =
x;(t)

(2)
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FIG. 1. Time series of the neural network activity with threshold
T=O. Control is on from step 1000 to step 3000, with one neuron

kept active. The controlled activity is periodic.

FIG. 2. Time series of the neural network activity with threshold
T=O. Control is on from step 1000 to step 3000, with one neuron

kept inactive. The controlled activity is constant.

The total number of neurons utilized in the simulations was
W= 300, with each neuron coupled to n = 10 other randomly
chosen neurons.

Depending on the value of the threshold T, the activity of
the network can be constant, periodic, or chaotic. By chaotic
we mean an activity time series that does not repeat itself for
an extremely long time. A deterministic neural network with
a finite number of neurons cannot display genuine chaos be-
cause the number of configurations is finite, although very
large. As soon as any configuration is repeated, a cycle will
take place. Here a chaotic behavior can be considered as a
very long transient that eventually will settle as a periodic or
fixed time series. However, for large values of N (N = 300 is
already large) this transient can last for an exceedingly long
time and the dynamics can be considered chaotic. In order to
control this chaotic behavior we act on one or a few neurons,
either by fixing their states or feeding them with a periodic
signal. In the present report we will consider only results
obtained by fixing the state of a few neurons, that is, by
pinning these neurons for some time. We are interested in
studying how these pinnings influence the dynamics of the
network. As will be shown, control can be achieved in cer-
tain cases with even only one controlling neuron with a fixed
state. An analysis of the control process through the obser-
vation of the Poincare map will then reveal that this process
is an autonomous implementation of well-known control al-
gorithms.

Figure 1 shows the effect of using only one neuron to take
the entire network from chaotic to periodic behavior. In this
example, the controlling neuron was chosen as tentative and
its state was fixed as active while control was on. We will
discuss later how this choice can be dependent on the syn-
aptic weights. When control is turned on at time step 1000,
the activity changes from chaotic to periodic, after a tran-
sient. Turning control off at time step 3000 restores the cha-
otic condition. Figure 2 shows another example of chaos
control with only one neuron. After a transient, the activity
goes from chaotic to constant behavior and remains in this
condition wh~le the controlling neuron is maintained as inac-
tive. When the state of the controlling neuron is again loos-

ened, the chaotic activity resumes. Similar results can be
obtained by pinning more neurons or by forcing them to a
periodic signal.

The control action depends on many factors: the synaptic
matrix S;, , the number of synapses per neuron, the number
of controlling neurons, and the threshold value. The network
controllability is very sensitive to the particular realization of
the synaptic matrix S;, . Fixing the threshold, the form of the
controlled signal also depends on which neurons are used as
control and the time of activation. Most control neurons are
very effective, always taking the dynamics to the same at-
tractor, irrespective of the instant in which the control is
turned on. Others can lead to different attractors when acti-
vated at different time steps. The size of the basin of each
attractor and the value of the threshold are the key factors
governing this behavior. Specifically, the parameters utilized
in our simulations (N=300, n=10, T=O) were chosen be-
cause they always give rise to a chaotic network activity that
is still susceptible to control, even with a small number of
neurons. Adopting these values, control can be achieved with
only one neuron in approximately 4% of the runs. Pinning 30
neurons (1/10 of the total network), control is attained in
more than 60% of the cases. A more precise account of the
effectiveness of the control action and its dependence on the
network parameters will be presented in a subsequent contri-
bution.

Some insight on the mechanism of control set forth by the
pinning neurons can be gained if we observe how the activity
is driven to a period-4 attractor. The Poincare plot is em-
ployed here for this purpose, as seen in Fig. 3. This graph
shows the activity at time step 1+1 p).otted against the ac-
tivity at time step t. The dashed line indicates part of the
trajectory without any control. The continuous line shows the
trajectory with control. While the uncontrolled path wanders
through the plot, the controlled activity is captured in the
basin of attraction and, after a few steps, settles as a periodic
series with period equal to 4 time steps. Normally this attrac-
tor is unstable (around a saddle point), but it can be turned
stable by the control action. Figure 3 also shows the approxi-
mate directions of the stable and unstable manifolds of the
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FIG. 3. Poincare map obtained from an activity time series with
threshold T=O and one controlling neuron. The controlled activity
is periodic, with period 4. The dashed line corresponds to the un-

controlled trajectory. The continuous line corresponds to the con-
trolled path. General directions of the stable and unstable manifolds
are shown.
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FIG. 4. Hamming distance from the controlled configuration.
The arrow shows the time step when the control, with one neuron

kept active, is turned on.

unstable attractor. The control action pulls the activity to the
direction of the stable manifold. Eventually the activity gets
trapped by the attractor and remains there while the control
is maintained. It is also helpful to examine how the Ham-
ming distance to the controlled configuration evolves after
the control is turned on. This is shown in Fig. 4 for a typical
controlling process. The Hamming distance is defined as
dH=(N N, )/N, where —N, measures, at time step t, the
number of neurons with states equal to their corresponding
states in the totally controlled configuration. dH is zero when
control has effectively taken place. From Fig. 4, it is seen
that the process of control is not steadily progressive. When
the control is turned on, the average value of dH drops rap-
idly to a lower value but does not go continuously to zero. It
oscillates some time around this lower value and then, quite
suddenly, goes to zero and stays there while the control is on.

Comparing this with the path in the Poincare plot we can
state that the control first spreads its inAuence through the
network forcing the average activity to remain within the
basin of attraction of the unstable attractor. This confinement
eventually leads the network to a configuration that belongs
to the attractor and the systems gets trapped thereafter.

A chaotic trajectory embodies a great number of unstable
periodic orbits. The idea of controlling chaos consists in

finding a suitable small perturbation that succeeds in stabi-
lizing one of these orbits. The most used method of chaos
control, due to Ott, Grebogi, and Yorke I1], proceeds in the
following way. An unstable attractor is located together with
its local stable and unstable contravariant eigenvectors.
These directions in phase space are called the stable and
unstable manifolds, respectively. Finding these eigenvectors
is relatively easy when the dynamics follows a simple map,
with only very few degrees of freedom. For complex sys-
tems, such as a neural network, this task can be a matter of
discernment. The structure of the attractors is governed by
the matrix of synaptic weights. In the simulations reported
here, these weights were randomly chosen. However, they
can be the result of a prescribed action, such as the Hebbian
mechanism of learning I11]. In this process, a number of
configurations is presented to the network and the synaptic
weights are modified by increasing the strength of those that
couple two active neurons. This learning process is believed
to be in permanent action in the brain. By this process, the
attractors are embedded in the dynamics of the system. They
are the "memories" to be recalled by some stimulus received
later. The Hebb rule can be applied to store any number of
stationary or dynamic objects such as fixed points or cycles
I 12]. Our model uses a mechanism for memory retrieval that
differs from the usual in neural network modeling. Here we
have dynamical attractors that can be visited and abandoned
by turning on and off the control action. Chaos control is
achieved through a match of threshold and stimulus. The
threshold is lowered, increasing the mean activity, but the
dynamics is kept in the chaotic regime. Then the control is
applied. If a match is reached after a transient and the stimu-
lus is maintained, the activity remains periodic or constant.
For memory retrieval this model has the advantage of avoid-
ing local minima which is a common problem in spin-glass-
like paradigms. The control process can be implemented ef-
ficiently when the desired attractor, that is, the memory, is
previously known and embedded in the dynamics.

One can conjecture whether some mechanism such as the
one described above can be present in biological neural net-
works. It is known that information is transmitted in the
brain as sequences of pulses, the action potentials. These
sequences, or spike trains, carry signals from sensory recep-
tors to the brain where they are interpreted and processed in
very high rates, with a high efficiency [13].It is unlikely that
the brain uses some complicated algorithm to recall its
memories or to make associations. On the other hand, it cer-
tainly uses some process that differs from pure trial and er-
ror. Real neurons tend to operate near the threshold to be
sensitive to input modifications [14].Lowering the threshold
and keeping it low for some time would allow the controlled
retrieval of selected trains of spikes, by firing a few special-
ized neurons. The choice of these neurons can be part of a
learning process, together with modifications of synaptic po-
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tentials. An intriguing possibility comes related to a hypoth-
esis presented by Crick and Mitchison [15].They propose
that dreams are necessary to remove undesirable modes of
excitation in the cortex and reinforce those that are important
for survival. It is known that during dreams, in the phase
known as paradoxial or REM sleep, the brain activity, mea-
sured by EEG series, has a 1/f type of spectrum [5]. This
might be an indication that, during REM sleep, the brain
activity wanders through all allowed neuronal frequencies. It
can be argued that this is the stage when the system learns

which neuron and which threshold values are to be chosen to
fire some desired train of spikes. Recently, we have shown
[9] that an analog version of our neural network model can
also display intermittent activity, with correlated noise. A
subsequent work will try to clarify these issues by the imple-
mentation of a learning process while the neural network is
in an intermittent regime and with controlled retrieval of
memories when it is chaotic.
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