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Effects of laser spatial incoherence with finite correlation length on the space-time behavior
of backscattering instabilities
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The average space-time behavior of backscattering instabilities in the presence of a purely spatial incoher-
ence of the laser beam is investigated analytically. It is found that the divergence of the strongly damped limit

of the average backscattered light amplitude [cf. H. A. Rose and D. F. Dubois, Phys. Rev. Lett. 72, 2883
(1994)] must be replaced by the onset of an absolutelike instability characterized by a local, space dependent

growth rate. The validity of the results is discussed in the regime where the breakdown of our model is caused

by the onset of absolutely unstable hot spots. The time asymptotic behavior of the instability in this regime is

computed heuristically. The average Green's function for the backscattered light is computed analytically in the

case where the laser incoherence is characterized by an exponentially decaying correlation function.

PACS number(s): 52.35.Mw, 52.35.Nx, 52.40.Db, 52.40.Nk

The effects of driver incoherence on parametric instabili-
ties have been the topic of many theoretical studies since the
middle of the 1970's [1].So far, all these studies have been
devoted to computing thresholds and growth rates with the
assumption that the correlation time or length of the turbu-

lence is very short. Considering the case of laser spatial in-

coherence induced by random phase plate (RPP) optics, Rose
and DuBois have recently reconsidered this problem without
assuming a short correlation length [2]. Restricting them-

selves to the strongly damped convective limit, they have
shown that the existence of statistically significant intense
hot spots leads to the divergence of the average linear am-

plification factor as the average laser intensity approaches a
critical threshold values [3].A physical interpretation of this
result is very questionable, since the strongly damped ap-
proximation is clearly not valid in the intense hot spots that
are responsible for the divergence. Actually, one can demon-
strate from simple scaling arguments on the gain factor in the

weakly damped regime that no divergence of the linear am-

plification factor is to be expected [4]. This shows that a

strongly damped model cannot properly describe the insta-
bility near the critical intensity. In this paper, we reconsider
the problem raised by Rose and DuBois without restricting
ourselves to the strongly damped regime. We will study the
space-time response of the average amplitude of the back-
scattered light in the limit of a nonpropagative longitudinal
wave. We will see that, in this limit, the divergence of the
amplification factor must be replaced by the onset of an ab-
solutelike behavior of the instability characterized by a local,
space dependent, growth rate.

This paper is organized as follows. First, we study the
time asymptotic behavior of the average linear response of
the backscattered light. Next, we heuristically demonstrate
that an ensemble of independent hot spots leads to the onset
of an absolute behavior when the average convective gain
length is smaller than the hot spot length. Then we determine
the validity domain of our results in the regime where the
breakdown of our model is caused by the onset of absolutely
unstable hot spots and we heuristically compute the time
asymptotic behavior of the instability in this regime. Finally,
we perform the exact analytical computation of the average

Green's function for the backscattered light in the case where
the laser incoherence is characterized by an exponentially
decaying correlation function.

We consider the one-dimensional linear space-time evolu-
tion of the backscattered light (wave 1) in the limit where the
envelope approximation is valid for this wave and where the
propagation of the longitudinal wave (wave 2) can be ne-
glected. We do not make any envelope approximation for the
longitudinal wave, so that our results apply to both the so-
called weak and the strong coupling regimes. We neglect the
pump depletion, but we keep the spatial variations of the
amplitude of the coupling parameter when they result from
the incoherence of the pump itself. We study the space-time
behavior of the backscattered light by means of the Green's
functions 6» defined as the solutions to the system,

(8,+ V, B + v, )G,p
—ypS(x)Gzp= Bp, 8'(x) 8'(r), (la)

( i
(8,2+ 2 v28, ) + (8,+ v2) ' Gzp —ypS(x) Gypj

= 6'p 28(x) 8(r), (1b)

(G„)= (27rI V, ) 'H(x/Vg) e

(2)

where co, v, and V denote, respectively, the angular fre-
quency, the linear damping, and the group velocity of wave
a, with V&)0 and V2=0. The quantity 6'& on the right-
hand side of Eqs. (1) is the Kronecker function. The coupling
constant yo is given by the expression of the homogeneous
weak coupling growth rate in the coherent case and the quan-
tity 5(x) is a stochastic function normalized to
(IS(x)I ) =1, where ( ) denotes statistical average. In the
following, S will be taken as a translationally invariant
Gaussian process with (5(x))= (5(x)5(x')) = 0 and
(S(x)5*(x'))= C(x —x') 4 0. For each realization of S,
System (1) can be easily solved using the Laplace transform.
The average linear response (G~ p) of the backscattered light
is then obtained by averaging over the realizations of S. One
finds
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where H(x) is the Heaviside step function and M(cp, x) is
the average linear amplification factor for the (complex) an-
gular frequency co,

xttrux)=(exp to'ptra) ' ~stx')~ dx'
Jo

(3)

Here, l G
=—

l V, l vz / yp is the convective gain length in the
2

coherent case and P(c0) is a second order polynomial given
by

tvz t apl l tvz
P(to) = ——t 1 — —+ 1.

2~2 l vz/ t ~2 vz

The non diagonal response (Giz) is found to vanish. This
result, first pointed out by Thomson and Karush [5], means
that in the case where S is a Gaussian process with (S)= 0,
the average amplitudes of the two daughter waves are decou-
pled. Before performing the detailed computation of the rhs
of Eq. (2), it is interesting to study the time asymptotic be-
havior of (G») at a given point x. This behavior is given by

(Gll)(x t) exp[ t ~max(x)t]

where t0,„(x) is the singularity of M(to, x) that has the
greatest imaginary part. Denoting by Kp '(x) the value of the
convective gain length at which M(0, x) diverges, one finds
that ~tt,„(x) is the solution to P(cu) =[Kp(x)lG]

( o

2 2 2l 402 P2
1/2

~max(X) ~2 t V2 ~2 V2 (6)

One can see that the sign of y,„(x)=1m[co,„(x)]changes
as x passes through the critical value x„defined by
Kp(x„)= lG . This means that there is a change in the nature
of the instability at the interface between the slabs
0(x(x„and x)x„.For 0&x&x„, one has y „(x)&0so
that lim, +„(G»)=0, which corresponds to either a con-
vective instability or a stable behavior. On the other hand, for
x)x„, one has y,„(x))0so that lim, + (G») =, ~high
corresponds to an absolute instability characterized by the
local growth rate y,„(x).Such a remarkable behavior can be
heuristically explained by considering an ensemble of inde-
pendent hot spots of length A~ [2]. According to recent
works [6,7] on the space-time behavior of parametric insta-
bilities in the coherent case, one can define three different
kinds of hot spots depending on their normalized peak inten-
sity Ih„, with (Ih„)=1. In the convective hot spots defined
by Ih«((lG/A~)(vzt), the instability convectively saturates
and the amplitude a& of the backscattered light does not de-
pend on time. In the weakly coupled hot spots defined by
(lG/Ai~)(vzt)(Ih„((cttz/vz) (lG/A~~)(vzt), the instability
has not reached its convectively saturated steady state yet,
and a& behaves as

It is known [8] that for high values of Ih„ the probability
density distribution function P (Ih„) satisfies
P(I h„)—exp( —Ih„) (besides some logarithmic corrections).
The hot spot contribution to the average amplitude of the
backscattered light is therefore

I
+ao

(a i ( ) )hot a i (Ih tot) exp( —Ihot) I hot (8)

Estimating the leading behavior of Eq. (8) in the large gain
factor limit, one obtains the following results: if A~~/lG(1,
the growth of (ai) is determined by the bulk of the convec-
tive hot spots and (ai) does not depend on time; if
1(A~~/lG(cpz/vz, the growth of (a, ) is determined by the
rare weakly coupled hot spots and one has

(ai(t)) —exp[(Al/lt; —1)vzt]; (9a)

finally, if A~~/l~) cpz/vz, the growth of (a, ) is determined
by the even more rare strongly coupled hot spots and one has

(a, (t))-exp[(3 '/2)( v A~ /l ) "zt]. (9b)

These results confirm the existence of a transition from a
convective to an absolute (exponentially growing) instability
when A

~

passes through a critical value (here A~~/lo= 1). It
can be shown that Eq. (9a) yields the correct value of
y, „(A~~) as given by Eq. (6) in the limit of an infinite cor-
relation length of S(x). In the same limit, Eq. (9b) slightly
overestimates y, „(A~~) by a factor of 3 /2=1. 14. This dis-
crepancy follows from the fact that the large gain factor limit
of the average response [Eq. (5)] is generally different from
the average large gain factor limit of the response [Eqs. (7)
and (8)].

It is important to notice that Eq. (6) is quite general and is
not related to a specific choice of the stochastic process
S(x). For instance, the strategy to compute the growth rate
of the instability at a given point in the interaction region
could be as follows. First, one determines numerically the
critical curve at which M(0, x) diverges in the plan

(l~ ', x), as done in Ref. [2].Then, for a given point x, one
determines the quantity Kp(x), as shown in Fig. 1. Finally,
inserting the value of Kp(x) in Eq. (6), one obtains the
growth rate of the instability at the point x.

All the results discussed previously have been obtained in
the limits of both spatial envelope approximation and non-
propagative longitudinal wave approximation (Vz=0). The
general problem of the validity of these approximations is
very intricate and still unsolved. In this paragraph, we will
restrict ourselves to the particular case where the validity
domain of our results is constrained by the onset of abso-
lutely unstable independent hot spots in which a& behaves as

a, (I„„,t) -exp[(2 ypI hotl Vz/Vi
l vz) t].

a i(Ih„,t) —exp[2 yp(I h„A~~t/ V, )" —vzt]. (7a)
It can be shown a pusteriori that this regime corresponds to
the limit

Finally, in the strongly coupled hot spots defined by
Ih„)(tpz/vz) (lG/A~~)(vzt), ai behaves as

ai(Ih„, t)-exp[3 cpz(ypt/4&02) (Ih„A~(/V, )' ].
(7b)

min&,2, Z„(A~~~2/I V

where K&—= ypA~/lV, Vzl is the so-called Kubo number,
Al-min(l, , L) is the hot spot length, and L is the interaction
length. Estimating as previously the contribution of these hot
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FIG. 1. Critical curves in the plan (I, /lo, x/I, ) as given by Eq.
(16) (in which v„ is replaced by lo ) for n=0, 1,2,3. This figure
shows how to determine the quantities Ir„(x) graphically for a given
value of x: here, Ir„(x=21,) =M„/l, .

spots to the average amplitude of the backscattered light as
the leading behavior of Eq. (8) in the large gain factor limit,
one finds

(at«)) exp(yol Vz/Vilt' i zt). (12)

The time t,b, at which our model fails can then be estimated
by demanding that the gain factor be a continuous function
of time at the transition to the regime dominated by the ab-
solutely unstable hot spots. In the regime Al/lo&1 where

(at) does not depend on time, one finds that there is no
temporal limitation to the validity of our results. In the op-
posite case, A~~/lo)1, Eqs. (9a), (9b), and (12) yield the
condition

t~ t.b.
—= (Al /I Vzl) min[1 ~(lo /Al)(~z/~z)],

where we have ignored unimportant numerical factors of or-
d«u»ty. In th«egtme I ~Al/lo(niz/i z, the growth of
(at) is determined by the weakly coupled hot spots and one
has t.,b, =A~~/lVzl. At this time, the propagation of the lon-
gitudinal wave starts playing a role and the approximation

FIG. 2. Evolution of,~~ as given by Eq. (18) in the weak
coupling limit (i.e., in the limit coz ~ + ~) with

v&=0, v2=1, 1&=5, V&=5 for the successive times t=0.4, 0.8,
1.2, 1.6, and 2.

Vz=0 fails. In the opposite regime, Al/lo)ruz/vz, the
growth of (ai) is determined by the strongly coupled hot
spots and one has t,b,= lVzl '(l&Alruz/vz) . At this time,
the spatial envelope approximation fails and the anti-Stokes
component of the scattered light can no longer be neglected
[7]. The validity condition (11) of this scenario is obtained
by demanding that Eq. (10) be valid for the leading hot spots
(with Ih«= y&lVz/Vilt ) at the transition time t», .

For the sake of completeness, let us mention that the
probability density distribution function P(Ih„) of a real RPP
field must have an upper cutoff at some maximum intensityI,„. In this case, the actual time asymptotic behavior of
(a, ) is the same as that of the coherent case [6,7] with the
normalized intensity I,„.The time at which this time a-

symptotic behavior takes over from the Gaussian RPP field
behavior is again obtained by demanding that the gain factor
be a continuous function of time.

We now perform the exact analytical computation of
(Gii) assuming that the correlation function C(x) is given
by C(x) = exp( —lxl/l, ). In this case, the analytical expression
of M(co,x) is obtained by substituting lGP(cu) for lG in that
of M(0~) derived in Ref. [4]. Considering the domain of
interest where M(cu, x) may diverge, one finds

2 exp(x/l, )
M(cu, x) =

2 cos[o.(ru)x/l, ]+[cr(ro) —o.(c0)]sin[a.(r0)x/l, ] '—1 (14)

where o (cu) = [2l, /l~P(tu) —1] / . The singularities of
M(tu, x) as given by Eq. (14) are simple poles located at the
angular frequencies

Mn (x) —Mz l Pz [Mz Pz 2l ( Mz Pz)/( Kn(x) lo) ]
(15)

where I~„(x) is obtained by inverting the relation

, / $2~„l,—I~
tan ~ + n'7T (16)
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where the determination of tan ' is such that
0(tan ~ 7r, and n is a non-negative integer. Equation (16)
(in which a.„ is replaced by lG ) defines the critical curves
displayed in Fig. 1. Inserting these results into Eq. (2) and
performing the Laplace integral, one obtains

(G»)=g, +Ã + 5+, where g, (x, t)=H(t) exp( —v, t)@x
—V, t) is the uncoupled Green's function and with

2
ZOIC —1

(x, t) = ~ H(x{V t —x))e" '

X g g, =(x t)
n=o

(17a)

( —1)" 2 '„(x)l, —1 exp[ —i oi„(x)(t x/Vi)—]
[v„(x)l,] Ir„(x)x+ 1 (I —( vz /ruz) —2i( vz /iuz) [K„(x)1G]

(17b)

The latter expressions exhibit what we will call a local nor-
mal mode behavior in which each mode "n ~" is character-
ized by its local angular frequency c0„(x). It can be seen
that all the modes "n+ "are stable so that the contribution of
Ã+ to (G») is rapidly negligible. On the other hand,
1m[co„(x)]becomes positive as x becomes greater than the
value x„defined by 1~„(x„)=lo . Considering then the plan

(lG,x) displayed in Fig. 1, this means that the mode
"n —"is locally destabilized when the vertical line corre-
sponding to the actual value of Iz intersects the nth critical
curve. If the point (lo, x) is above (respectively below)
the critical curve, then the mode is unstable (respectively
stable) at this point.

It is interesting to see how (G») reduces in the limit of
small or large correlation length I, . Taking the limit l,~0 in
Eq. (14) and inserting the result in Eq. (2) one finds that

(G») reduces to the coherent Green's function (with
Vz=0), which is the solution to the Bourret equation for
(a, ), as it should be [1].In the opposite limit l,—++~, one
has ~p=x ' and K ~p (I,/2)(nm/x) so that Ã reduces
to

2
POX

lim S' =
z H(x(V, t —x))e

exp[ —
ihip (x) (t —x/V, )]

[1—( vz /viz) —2t ( vz /ruz) (x/lG) ]

which can be obtained directly from Eqs. (1) in which the
stochastic function S(x) is replaced by a Gaussian random
variable S, with (S)=0 and (~S~ ) =1. Figure 2 shows the
evolution of S as given by Eq. (18) in the weak coupling
limit ruz~+~ and cop (x)=i vz[(x/lo) —1].One can very
clearly see the convective (respectively absolute) nature of
the instability for x(x „(respectively x)x„), with
x „=lG. Namely, at a given fixed point x(x„(respectively
x)x„), Ã is a decreasing (respectively increasing) func-
tion of time while its maximum grows as it propagates to the
right.

In conclusion, we have analytically computed the average
space and time behavior of backscattering instabilities in the
case of a purely spatial incoherence of the laser beam. As a
result, we have found that the interaction region must be split
up into two different domains: The interval 0(x(x„where
the instability is convective, and the interval x„~x~J
where the instability is absolute and characterized by a local,
space dependent growth rate [Eq. (6)]. Considering an en-
semble of independent hot spots, we have heuristically deter-
mined the validity domain of our results in the regime where
our model fails due to the onset of absolute unstable inde-
pendent hot spots [Eq. (13)],and computed the time behavior
of the instability outside this domain [Eq. (12)].

The author would like to thank D. Pesme and H. A. Rose
for fruitful discussions he had with them on this topic.
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