
PHYSICAL REVIEW E VOLUME 52, NUMBER 2

Folding RNA with the minimal loss of entropy

AUGUST 1995

Ariel Fernandez, ' Hugo Arias, and Diego Guerin
The Frick Laboratory, Princeton University, Princeton, New Jersey 08544

Instituto de Investigaciones Bioquimicas —INIBIBB, Consejo Nacional de Investigaciones
Cientiftcas y Tecnicas, Universidad Nacional del Sur, Bahia Blanca 8000, Argentina

Departamento de Fisica, Universidad Nacional del Sur, Bahia Blanca 8000, Argentina
(Received 14 April 1995)

The principle of sequential minimization of entropy loss (SMEL) is introduced and justified within the

context of biopolymer folding in vitro. This principle implies that at each stage in the dominant folding
pathway, the conformational entropy loss associated with loop closure, ASI„p, is minimized while the number

of effective contacts is maximized. The applicability of the SMEL principle is contingent upon a rigorous and

reliable derivation of the contribution AS&„p. This derivation is carried out in this work for RNA by taking into
account the orientational restrictions associated with the self-energy of charged phosphate moieties within a
loop. The predictive potential of the principle is revealed by showing that the theory reproduces the biologi-
cally competent secondary structures of specific catalytically competent RNA's.

PACS number(s): 87.10.+e, 87.15.He, 87.15.Da

I. INTRODUCTION

The aim of this paper is to postulate and justify a plau-
sible expedient by means of which a biopolymer chain can
fold itself by selecting at each stage of the process the step
that entails the minimal loss of conformational freedom. In
this regard, the principle of sequential minimization of en-
tropy loss (SMEL) is introduced. This is essentially a least-
action approach in the spirit of Helmholtz s minimum prin-
ciples in thermodynamics [1,2]. The SMEL principle relates
to the context of biopolymer folding in vitro and, in plain
terms asserts that folding proceeds at each stage by minimiz-
ing the loss of conformational freedom while forming as
many new favorable intrachain contacts as possible. This te-
net does not necessarily conform to existing algorithms for
structure prediction rooted in free energy minimization. To
cast the principle in proper terms, one should emphasize that
the enthalpy loss associated with contact formation and the
entropic contribution are not placed on equal footing: SMEL
control implies that each event along the folding pathway is
chosen so that the conformational entropy loss, denoted

AS&„„, associated with loop closure is minimized and the
number n of effective contacts maximized so that the quan-
tity Q=n exp( —55t„z/R) is minimized at each stage in
the folding process. This requirement is justifiable: Equilib-
riurn thermodynamics cannot dictate a sequence of events in
a time-constrained situation unless the contributions to the
thermodynamic potential represent kinetic parameters them-
selves P].

The SMEL principle has been anticipated in the context of
RNA secondary structure formation which often takes place
under stringent time constraints [3—5]. This fact can be
readily shown as follows. The unimolecular rate constant k
of formation of an intramolecular stem [5,6] is

k= fn exp( B/RT) =fn exp(5—5t„&/R),

where f=10 s ' is the rate constant for base formation
within a disrupted helix [6,7], n is the number of contacts or

base pairs stacked in the helical stem, T is the absolute tem-
perature, and 8 is the activation energy barrier for closure of
the loop associated with stem formation. Since the closure of
the loop is the rate-determining step in the formation of an
intramolecular stem [4—6], we have B= b, G i„,„= —TASt„~, and thus, Eq. (1) follows. Thus the choice of
an intramolecular folding event becomes dictated by the
minimization of the quantity Q whenever the time span of
each consecutive elementary unimolecular step is minimized.
In other words, the SMEL principle holds whenever RNA
folding is subject to kinetic control.

A direct and useful application of the SMEL principle for
RNA folding prediction has been lacking since it is contin-
gent upon a proper derivation of the entropic contribution for
any size loop. The unreliability of the compilation of ther-
modynamic parameters [8] for conformational entropy loss,
especially outside the excluded-volume regime [9], makes
the SMEL principle particularly unsuitable given the expo-
nential dependence of Q on the entropic term. Accordingly,
we shall obtain the entropic contribution that corrects or su-
persedes, depending on the loop size, the excluded-volume
effects. We shall show (Sec. II) that a paramount effect is
introduced by the orientational constraints associated with
the self energy of the cha-rged phosphate moieties within an
unstrained loop. To conclude, the operational version of the
SMEL principle will be applied to predict catalytically com-
petent folding of specific ribozymes.

II. ENTROPY AND THE SELF-ENERGY
OF POLAR MOIETIES

Loop closure is paramount among folding events that a
flexible polymer chain undergoes. From a thermodynamic
perspective, the entropic contribution —TAS &„~ is a positive
term in the free energy change for loop closure. Thus the
loop closure becomes feasible only if sufficient contacts are
made so that the enthalpic loss is smaller than minus the
entropic contribution: AH~ TAS&„„, where the enthalpy
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FIG. 1. Secondary structure
for the sun YL-13 and the tdL-7
group I ribozyme as obtained
from the SMEL-based sequential
algorithm.

&&~„~=—(3/2)R 1nN+R In[(3/27rl2)3t U], (2)

where I is the effective length of a monomer and U is the
effective contact volume within which two monomers are
assumed to have made contact [9].In a good solvent, where

change b 0 accounts for the heat released upon formation of
the contacts.

Despite this simple scenario, the thermodynamics of a
folding event involving loop closure could only be calculated
rather crudely and for moderately large loops, where the ef-
fects of discrete solvent organization inside the loop may be
neglected [8,9]. Thus, in the Jacobson-Stockmayer approxi-
mation, one assumes an unrestricted Gaussian coil of length
%= size of the loop. This gives the well-known result [9]:

excluded-volume effects are to be taken into account, the
logarithmic dependence on Ã must be corrected to
—p,R lniV, with p, =1.75 [9].

At this point one can pose the question: Why can we not
extrapolate these results for small loops? The answer is ob-
viously no, since discrete solvent structure effects will be-
come apparent, changing the situation in a qualitative way. In
this section we offer a quantitative approach to encompass
such effects. The discussion is first cast in general terms and

subsequently specialized for RNA.
Let us assume that the solvent is water and that the poly-

mer chain is able to selectively orient its charge or polar
moieties whenever the solvent surrounding the molecule rep-
resents more than one distinctive dielectric environment.
These requirements are fulfilled by RNA or proteins under in
vitro renaturation conditions [9].Provided the number of sol-
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vent molecules confined by the polymer rod inside the loop
is sufficiently small, two distinctive domains are formed: the
inner domain, of clusterlike dimensions, and the outer bulk-
like domain. The outer domain is a distinctively better di-
electric and thus charges or polar moieties would, if at all
feasible, tend to orient themselves towards the outer domain,
where they can be better solvated.

There is a critical size loop beyond which both domains
are indistinguishable. Thus, above the critical size loop, the
confined water must be indistinguishable from the bulk.
Given specific dimensions of the polymer rod and admitting
a maximum of four solvation layers per polar moiety, it be-
comes straightforward to calculate the critical size N=Np
beyond which the domain differences break down: it suffices
to take a planar loop such that the inner domain of confined
solvent molecules is at least seven molecules across for any
pair of opposite points on the chain. Thus, in the particular
case of a circular loop, its critical size would be the one for
which the inner domain is seven solvent molecules in diam-
eter. If the solvent is water, this is the cross section of a
28-molecule cluster which should be considered bulk for
most thermodynamic implications [10].

The separation of environments produced as a loop of size
N(Np is formed must have conspicuous entropic effects for
polymer chains that are able to selectively orient their polar
groups. Thus, if we assume two distinctive orientations for
each residue, we obtain the following reduction of conforma-
tional entropy:

AS„,~=R ln(A'/A)=R ln(2 ~/2 )= —RN ln2,
(3)

where A' is the number of conformations with the ends of
the loop constrained to be in contact with one another, A is
the total number of available conformations, M is the total
length of the chain, and N~ is the number of residues in the
loop that contain a polar or charged group which is able to
orient itself facing the most favoring solvent domain. While
nonpolar residues may have two distinctive orientations
(pointing inwards or outwards), polar residues will invari-
ably point outwards, and this fact drastically reduces the
number of available conformations once a loop is formed.
Since in general the number of polar side chains is propor-
tional to the total number of residues, the orientational effect
as estimated with Eq. (3) must be far more dominant (linear
in Ã versus logarithmic in N) for small loops than the well-
studied excluded-volume effect. The linear dependence of
orientational effects on the size of the loop appears to be a
consideration of paramount importance in theories that at-
tempt to infer the folding events taking place in the initial
stages of the search for the native conformation.

That proteins might exhibit this drastic entropy reduction
upon loop closure is not unexpected because it is well estab-
lished since Kauzmann's seminal observations [9] that polar
groups always point to the bulk solvent in the native confor-
mation. The situation is similar in RNA, since the charges
are in this case located on the phosphate moieties of the
backbone itself and thus are susceptible in unstrained loops(¹4)of orienting themselves towards the bulk, minimiz-
ing the self-energy. Two pieces of evidence support this pic-
ture: (a) For small unstrained loops N(=5 —12), the indi-

rectly measured [8] free energy associated with loop
formation is proportional to N, and not to lnN, as would be
the case for a chain with excluded volume [9]. (b) There is
strong kinetic evidence suggesting a substantial orientational
contribution to AS&„z. Taking into account orientational ef-
fects, a straightforward computation of the unimolecular rate
constant for the formation of a hairpin with loop size
N(Np gives (cf [3—5].)

/r. = fn exp[ B/R—T]=fn exp[TASq„~/RT]

=10 s n2

In this computation, it has been rightly assumed that the
rate-determining step in the formation of the hairpin is loop
closure, which should be regarded as the nucleation event in
intrachain helix formation (cf. Sec. 1). Thus, for a loop of
size 5—12, Eq. (4) brings the mean time of formation of the
hairpin precisely in to the millisecond range, in good agree-
ment with kinetic experiments as well as computations
[3—5].

The estimation of the critical size Np for RNA follows
readily from a simple computation incorporating molecular
dimensions and regarding the molecule as a rod of sectional
radius equal to the mean phosphate-base distance [9].Thus,
assuming a phosphate-base distance of 10 A, a phosphate-

O

phosphate distance of 5.9A, and a diameter corresponding to
seven water molecules across the critical loop we obtain a
critical size Np=17. This computation leaves us with the
following working equations:

b S~„&(N)= —pR ln[N/L]+ b, S,„(L) RN ln2, (5—a)

valid for 5~N(No with L&)N, L&)NO and b,S„,~(L), the
entropy loss for closure of a loop of size L, known with good
degree of confidence [9].Above the critical size we get

ASi„p(N) = —pR ln[N/L]+ AS I„p(L) (Sb)

III. RESULTS AND DISCUSSION

A SMEL-based predictive algorithm requires the minimi-
zation of the quantity Q at each stage of the folding process
using the working equations (5a) and (5b). This requires
solving the combinatorial problem of searching for all
Watson-Crick (WC) complementary regions with antiparallel
orientation and following the pathway that allows for the
maximization in the number of WC contacts with a minimal
loss of conformational freedom for each step. Given these
considerations, the dominant folding pathway is the one ini-
tiated by the folding event that minimizes Q when starting
from a random coil. Thus the initial stages of folding favor
short-range (N(~No) and moderately long-range interactions
(N)No). Since the latter are dominated by the slowly grow-

valid for N)Np and L &)N.
Reliable measurements for triloops and tetraloops [8,9],

together with Eqs. (5a) and (5b), respectively taking into
account orientational effects as well as excluded-volume ef-
fects for sizes below criticality, or incorporating only ex-
cluded volume for sizes above criticality, allow us to imple-
ment the SMEL principle within the full range of folding
events in RNA.
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TABLE I. Sequence of events dictated by the SMEL principle for
the most economic folding of the sun'-13 and tdL-7 ribozymes.

sun YL-13 ribozyrne:

[P4][P6a, P7 2, P. 9]—+[P3j—+[P7j[P7.1, PS, P9.1, P9.2]
[P51
tdL-7 ribozyme:

[P4][P2, P7.1, P7.2, P9][P6a]~[P3]~[P7]
[P8, P9.1, P9.2][P5]

ing term proportional to ln¹, loops involving solely
excluded-volume effects have a high probability of occurring
even if N is larger than ¹0by one order of magnitude.

By contrast, medium range interactions in the proximity
of the critical size (N=No, N~No) and very long range
interactions (N)&No) become excruciatingly difficult at any
stage, as direct inspection of Eqs. (5a), and (5b) reveals.
However, the contacts that result form such interactions may
form at later stages, induced by short- and moderately long-
range interactions that may form first, shortening the loop
that needs to be formed. The following two examples de-
scribing the SMEL folding of two catalytically competent
RNA molecules or ribozymes illustrate this point. Standard
notation has been adopted: the four possible RNA residues
(nucleotides) are denoted G, C,A, U, where 6=guanosine,
C =cytosine, A =adenine, and U=uracil. The WC pairing is
based upon the complementarity G-C, A-U. Thus, finding
all plausible a priori foldings of an RNA chain is tantamount
to solving the combinatorial problem of finding all WC
complementary antiparallel regions of the chain.

Figure 1 displays the secondary structures for the sun
YL 13 and tdL 7-ribozyme [11j-, as obtained making use of
the SMEL-based algorithm. Certain WC complementary re-
gions denoted by P of such molecules are conserved within a
generic family of RNA catalysts, the group I ribozymes.
Both structures predicted by means of the SMEL algorithm
contain all conserved paired regions which are known to be
required for RNA catalysis within group I introns.

The sequence of events determined by SMEL control and
followed when a random coil is adopted as the starting point
is displayed in Table I. Interactions which occur within the
same stage of SMEL folding are grouped in square brackets.
The arrows indicate that an interaction occurring at a certain
stage has induced an interaction which takes place at the next

stage. Thus the arrow indicates that an interaction of initially
unfavorable range becomes more feasible once a loop within
the purported loop of the former interaction is closed first.

We shall discuss the SMEL folding for sun YL-13 and

simply present the results for the tdL-7 as the discussion is
entirely analogous: In the first stage P4 forms (Q =40) since
this event requires closure of an ¹ 18-loop, for which the
inner and outer domains are indistinguishable and thus the
associated entropy loss does not contain the costly orienta-
tional contribution. In the next stage P6a, P7.2 and P9
form since they involve closure of the smallest unstrained
loops for which inner and outer solvent domains are differ-
entiated (tetraloops). The occurrence of P4, P6a, and P7.2
brings P3 well into the favorably moderately long-range in-
teractions with Q=8.2. Starting from a random coil, P3
would have a long-range interaction with Q = 18.8 and thus,
highly improbable. In turn, the formation of P3 induces the
formation of P7 (Q=8.8), which now involves closure of
two internal loops belonging to the moderately-long range
domain with Q = 4.4 and Q =4.2, respectively. Obviously, if
an n -interaction entails closure of two loops, A and

B, the quantity Q becomes Q =n 'exp( —[b,S„,(A)
+ASh, &(B)]/R r. The next stage of SMEL folding entails
closure of moderately short-range loops P7.1, P8, P9.1, and
P9.2, where inner and outer solvent domains are clearly dif-
ferent and Q lies in the range Q=18.8—19.2. In the final

stage, the most unfavorable P5 forms. This interaction in-
volves closure of a strained triloop (Q=18.0) and also of a
loop which requires the orientation of ten phosphate groups
towards the outer solvent domain. Applying Eq. (5a), we
obtain Q= 19.8 for this event.

These examples illustrate a physicaHy intuitive principle
at work. The principle demands from each folding event the
maximum effectiveness, that is, the maximization of the
number of contacts at the expense of a minimal loss of con-
formational freedom.
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