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Ginzbnrg criterion for the mean-field to three-dimensional Ising crossover in polymer blends
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Composition fluctuations within the mean-field and three-dimensional Ising range were measured in a

homogeneous binary polymer blend by small angle neutron scattering as a function of temperature and pres-
sure. The experimental data were analyzed in terms of the crossover function of Belyakov and Kiselev [Physica
A 190, 75 (1992)].It is sho~n that the reduced-crossover-temperature, the Ginzburg number Gi, decreases with

pressure sensitively, in accordance with the prediction of Belyakov and Kiselev. On the other hand, de Gennes
crossover criterion for polymer blends predicts an increase of Gi with pressure which contradicts our results.

PACS number(s): 05.70.Jk, 36.20.—r, 64.60.Fr

Composition fluctuations in homogeneous polymer blends
are generally described by the universality classes of mean-
field approximation and three-dimensional (3D) Ising behav-
ior very far and very near the critical point of phase de-
composition, respectively. The characteristic crossover tem-

perature separating mean-field and 3D Ising behavior is pro-
portional to the Ginzburg number, Gi, determined by the
Ginzburg criterion [1]. For polymer blends, the Ginzburg
number was derived by de Gennes [2], who showed that Gi
depends on the molecular volume of the two components in
a way that in high-molecular-weight systems the Ginzburg
number is significantly reduced, thereby making the critical
exponents mean-field-like even close to the critical point. It
was therefore generally accepted that polymer blends are de-
scribed by the Flory-Huggins mean-field theory [2]. Recent
experiments on a variety of different polymer systems have,
however, shown that the Ginzburg number in polymer blends
is appreciably higher than that calculated from the de Gennes
expression. It was observed, e.g., that (i) the high-molecular-
weight blend of poly(vinylmethylether) and deuterated

poly(styrene), PVME/d-PS, has a non-mean-field transition
range of more than 2 K which should be compared with the
predicted 0.1 K [3]; (ii) blends of polymers with a degree of
polymerization %=50 can have a Ginzburg number more
than one order of magnitude larger than the value typical for
low molecular liquids [4]; and (iii) the microstructure of
polymers can sensitively influence the crossover range [5].
The reason for the anomalously high values of Gi is sus-
pected to be related to the packing of the polymers, i.e., the
free volume in the blend [4—6]. Presently, two theoretical
predictions are proposed for the Ginzburg criterion with dif-
ferent implications of Gi with respect to the free volume. The
one expression is an extended theory based on the de Gennes
derivation [2] given by Bates et al. [7,8]. The other expres-
sion is based on the crossover expression of Belyakov and
Kiselev [9,4]. The two theories have different implications
on Gi with respect to the free volume. In the present paper
we provide alternative experimental studies in which the
pressure dependence of the critical composition fluctuations
near the critical composition, including the crossover regime,
has been explored. Since pressure directly affects the free
volume, these experiments will give direct insight into the

physics of the crossover behavior, and thus a better basic
understanding of the Ginzburg criterion on high-molecular-
weight materials.

Bates et al. [7] extended the de Gennes' derivation of Gi
by including asymmetry (both polymer components can have
a different molecular volume) in the polymer blend. In a
formally modified form [8], their result for the Ginzburg
number Gi reads as

~
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where V; and @; is the molecular volume and concentration
of component i. The quantity I is the segmental entropic
term of the Flory-Huggins parameter I' = (I h /T)
—I", I z being the corresponding enthalpic term. I, is the
Flory-Huggins parameter at the critical temperature T, given
by

Gi= 0.069(C/C ) '/& ~-') (2)

where C and CM„are the critical amplitudes of S(0) in the
asymptotic 3D Ising and mean-field regimes, respectively.
The amplitude CMF is evaluated from the Flory-Huggins

Xz is Avogadro's number and A is the slope of the inverse
structure factor S '(Q)=S '(0)+AQ in the Zimm repre-
sentation where A is proportional to the square of the corre-
lation length of the composition fluctuations. Q is the scat-
tering vector. For a blend with off critical composition, I, in
Eq. (1) must be replaced by the corresponding Flory-
Huggins parameter at the spinodal, I z, which is calculated
from the same relationship as I, .

A second expression for the crossover temperature was
given by Belyakov and Kiselev [9] in context with a deriva-
tion of a crossover function for the susceptibility S(0). This
expression, reformulated in a more appropriate form in [4],
reads as
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TABLE I. Sample parameters: P = 0.5, I,= 4.84 X 10
mol/cm, (N) =37.8, and (N) =($2/N, + P, /Nz)

2.0

System Mtv (g/mol0 Mtv/M„Vtv (cm /mol)

PPMS
d-PS

4530
4880

1.22
1.04

3960
4320

33.3
43.6

7= [1+2.333S(0) ~] r (S (0)

+[1+2.333S(0) /~] (3)

as derived by Belyakov and Kiselev [9] with 7.= r/Gi,
7.=(T, ' —T ')/T, ' being the reduced temperature, and

S(0)=S(0)Gi/CMF. Equation (3) is a universal function of
S(0) and 7 with Gi and CM„as the characteristic parameters
of the system. Gi is the reduced crossover temperature where
the crossover function Eq. (3) deviates 10% from the asymp-
totic 3D Ising scaling law: 5 (0)=C r~ [12].This form
of the crossover function was successfully applied to SANS
and light scattering data [4,5,12].The route of data treatment
is thus the following: From a At of the experimental data
with the Zimm approximation one extrapolates the tempera-
ture and pressure dependent susceptibility S(0), and with

Eq. (3) one thereby gets Gi and CMF. The critical amplitude
C is obtained from Eq. (2), and I from CM„. I, (or, gen-
erally, I, for off-critical composition) is calculated from the
molecular volume (Table I) and from the composition of the

theory as CMF=0.5/~I' +I', ~, while C~N( '~l [10] fol-
lows a scaling law with the critical 3D Ising exponent of
5(0), namely y =—1.24.

If one compares the two expressions for the Ginzburg
criteria [Eqs. (1) and (2)] for I' (&I, , one gets the same
scaling law, namely Gi~ V ' as predicted by de Gennes [2].
This form of the criterion is universal in the sense that it is
inversely proportional to the molecular volume. For
~I'

~

~I, , on the other hand, the cases Eqs. (1) and (2) are
different and no scaling law is observed. The striking differ-
ence is their dependence on the segmental entropy term
I . While Eq. (1) leads to a negative derivative
8Gi/&~I ~, Eq. (2) gives a positive value. As discussed in

[11]I is related to the packing or the free volume of the
blend. Therefore, the absolute value of I is expected to
decrease with pressure, namely 8~I ~/BP(0, and the two
expressions for Gi lead to an opposite pressure dependence.
From experimental studies of the pressure dependence of Gi
it is therefore possible to exclude one of the proposed ex-
pressions.

In this paper we report small angle neutron scatter-
ing (SANS) experiments in the near critical mixture of
poly(phenylsiloxane) and deuterated poly(styrene), PPMS/
d-PS. We have measured the composition fluctuations in the
homogeneous phase at three pressures, ranging from 1 to
1000 bar, as a function of temperature in a range of about 50
K above the critical temperature T, . The relevant experi-
mental quantity is the extrapolated structure factor
5(Q~O). According to the fluctuation-dissipation theorem

[2] 5(0) is the generalized susceptibility, described by the
crossover function in the homogeneous part of the phase
diagram
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FIG. 1. Inverse and extrapolated S(Q~O) vs 1/T in the one
phase region above T, for P = 1 bar ( —+ —), 500 bar ( —* —), and

1000 bar ( —0 —). The solid lines are fits of the crossover function

Eq. (3). At low temperatures the experimental points are restricted

by the binodal temperatures whose values are given in Table II.

blend.
The SANS experiments have been performed at the DR3

reactor at the Risd National Laboratory. A steel bodied pres-
sure cell was used which allows an in situ change of pressure
and temperature in the range of 1 bar~ P~ 1500 bar and
—20 'C~ T~200 'C, respectively. This pressure cell is an
improved version of the cell described in Ref. [11]insofar as
the steel body can be directly cooled or heated. In this way a
much better temperature control of ~ 0.2 K could be
achieved (this improved temperature stability was necessary
for this experiment). The scattering data were corrected for
background, detection probability of the single detector cells,
and calibrated in absolute units by a Lupolen standard. The
resulting absolute macroscopic cross section dg/dA is re-
lated to S(Q) according to dX/dA(Q) =5(Q)hp /N„,
where Ap is the difference of the coherent scattering length
densities of the components. The experiments were per-
formed in the resolution range of 0.003~Q[1/A]~0. 03 us-

ing the settings of P =9.6 A neutron wavelength and 6 m
detector to sample distance. In this Q range the scattering of
the sample can be described by the Zimm representation
[13]. The polymers were obtained from PSS-Mainz (Ger-
many) and their parameters are given in Table I. The sample
was prepared as a /=0. 5 mixture without solvent by me-
chanical stirring. After each temperature setting we waited
about 30 min before starting the measurements in order to
have equilibrated conditions in the pressure cell.

In Fig. 1 the SANS results S '(Q~0) are plotted versus
1/T for pressures of 1, 500, and 1000 bar. The data are de-
scribed by the crossover function [Eq. (3)] as shown by the
solid lines. Apparently, the data do not follow the mean-field
approximation, namely S (0)=C M'Fr. During the experi-
ments we realized that the @=0.5 mixture is slightly off
critical composition in contrast to our estimation, using the
relation P, = V, ' /(Vt + Vz' ) [2]. The temperature gap be-
tween binodal and spinodal temperature is of the order of 8
K (Table II and Fig. 2). Below the binodal temperature T~
the system decomposes by nucleation and growth. Therefore
the experiments are limited to temperatures above Tz. The
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TABLE II. Results from the crossover function Eq (3).
12 I

' I ' I ' I
'

I
' I

xylo

'
P (bar)

Ts ( C)
BTs /BP(10 K/bar)

Ta ( C)
BTs/BP(10 2 K/bar)

Gi (units of 10 )
CMF (cm /mol)

C (cm /mol)

I (10 mol/cm )
(Ts Ts) (K)—

67.9

75.5 ~ 0.5

8.4~ 2.6
432~ 25
4524- 43
6.8~ 0.8

7.6

500

72.9
1/15 ~ 0.09
83.5~0.5
1.1~0.3
4.8~ 2.5
486~ 43
445~ 68
5.5 ~ 0.7

10.6

1000

79.4

86~1

583~ 30
432~ 43
3.8~ 0.4

6.6

10—

4

PPMS/d-PS

100 ~ t ~ t I t ~ t ~

90—
PPMS/d-PS

80
0

70—
5-

susceptibility 5 '(0) below Tti (not shown in the figure)
increases within our Q range following the composition Iluc-
tuations within the domains. Composition fluctuations above
and below T, were systematically studied in the system
PPMS/d-PS [13].The spinodal temperature T, is obtained
from the condition 5 (0) =0, which for the critical compo-
sition approaches T, . All relevant parameters of the fit in
Fig. 1 are summarized in Table II.

In Fig. 2 the phase transition temperatures Tz and Tz are
plotted versus pressure. A linear increase of both ternpera-
tures with pressure is observed. The slopes of Tz and Tz with
P are the same within the error bars, namely 0.011 K/bar
(Table II) indicating that the critical composition does not
change significantly with pressure. Our pressure coefficients
of the phase transition temperatures are about three times
larger than those found for the same system in [11].In Fig. 3
the Ginzburg number Gi is plotted as a function of P. Gi
decreases by a factor of about 4 upon a pressure increase of
1000 bar. The decrease of Gi with P is in agreement with the
Ginzburg criterion in Eq. (2) but it contradicts Eq. (1). In

Fig. 4 the segmental entropy of the Flory-Huggins parameter
I is plotted versus P and compared with I's (shown as a
solid line). The value of I decreases with pressure as ex-
pected from its relationship to the free volume [11],they are
within ~40% the same as the calculated values of I z.

0 t s I a I s I s I s t

0 200 400 600 800 1000

P [bar]

FIG. 3. Ginzburg number vs pressure as obtained from the fit in

Fig. 1. A decrease of Gi with P is clearly observed indicating that
the Ginzburg criterion in Eq. (1) is incorrect In order .to achieve
smaller error bars the blend had to be closer to critical temperature
and composition. From these results we expect that, at pressures
roughly above 1500 bar, Gi should become universal as soon as

r.&r, .

The following conclusions can be drawn from our experi-
ments. (i) One basic result is the observed decrease of Gi
with P, as presented in Fig. 3. This coincides with the pre-
diction of Eq. (2) while it is an experimental proof that the
criterion of Eq. (1) is incorrect. This observation is plausible:
Eq. (2) has been derived from the more fundamental cross-
over function [9], whereas Eq. (1) was derived using the
Flory-Huggins theory [2]. (ii) Another basic result is related
to the segmental entropic term of the Flory-Huggins param-
eter 1 plotted in Fig. 4 and to the anomalous high Gi values
of polymer blends. As demonstrated in Ref. [11] I is re-
lated to the packing or free volume of the sample. Our analy-
sis yields I —=I, . In the case of I =0 we calculate

10 I ~ I ~ I ~ I s I
s I

PPMS/d-PS

E 6

0
2

CO

0

60—

50 I i I a t a t a I ~ I

0 200 400 600 800 1000

P [bar]

FIG. 2. Spinodal and binodal temperature vs pressure. T, and

Tz increase with pressure. Their increment is the same within the
error bars (Table II). The increase of the phase transition tempera-
tures with P can be understood from the decrease of free volume
with increasing pressure and from its correlation with the segmental
entropy I (Fig. 4).

0 I ~ I i I ~ I a I ~

0 200 400 600 800 1000

P [bar]

FIG. 4. The segmental entropic term I" vs P. I decreases
about 50% for a pressure increase of 1000 bar. I, is shown by the
solid line. There is always roughly I —=I, . Therefore, Gi does not
fulfill the condition of universality. The conventional analysis of the
SANS data in Fig. 1 using 5 (0)~r for the temperatures above
=—100 C would give I values smaller by a factor of 3, compared
to the values from the crossover function.
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Gi=0.002 from Eq. (2) and the parameters in Table II. From
this value we can extrapolate the Gi number for low molecu-
lar liquids because under this condition Gi~ I/V. A value Gi
=0.01 is found as expected [4,9]. This means that the esti-
mation of the Ginzburg number and thereby the validity
range of the Flory-Huggins theory by de Gennes [2] is valid
only in the case of I =—0. According to the finite value of
I we find a value of Gi more than one order of magnitude
larger than in case of I =0 and nearly one order of magni-
tude higher than Gi of low-molecular-weight liquids. This is
consistent with the SANS results in Refs. [4,5] and with
lattice cluster theory calculations [6]. Furthermore, it is
known that the dilution of binary polymer mixtures with a
solvent as a third component increases Gi [14]. In this re-
spect we can treat the inAuence of the free volume as if there
were a third component [6].At high pressure, on the other
hand, the condition V ((I, will be fulfilled. Under this con-
dition (for our system seems to be at about 1500 bar), the
Flory-Huggins theory becomes valid as originally proposed
for polymer blends.

A final remark is related to the general validity of the
presented results. The crossover function for the susceptibil-

ity S(0) in Eq. (3) and the Ginzburg criterion in Eq. (2) are
valid for systems of the universality classes of the 3D Ising
model and the mean-field approximation. The critical ampli-
tudes C and CM„of S(0) in the respective Ising and mean-
field range are the system-dependent parameters. In our case
CMF increases with pressure by —= 35%%uo while within the error
bars no change with pressure is observed for C (Table II).
These results might be characteristic for polymer blends but

may also inspire similar experiments on other systems than

polymer blends.
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