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Unusual universality of branching interfaces in random media
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We study the criticality of a Potts interface by introducing a froth model which, unlike its solid-on-solid
Ising counterpart, incorporates bubbles of different phases. The interface is fractal at the phase transition of a
pure system. However, a position space approximation suggests that the probability of loop formation vanishes
marginally at a transition dominated by strong random bond disorder. This implies a linear critical interface,
and provides a mechanism for the conjectured equivalence of critical random Potts and Ising models.
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The effect of quenched impurities on phase transitions is
important and quite fascinating. A simple "Harris criterion"
[1]indicates that critical behavior is modified by (bond) ran-
domness in systems with a positive heat capacity exponent.
Impurities can also change first order transitions to second
order [2], to the extent that in two dimensions there are no
discontinuous phase transitions [3].There is a growing body
of numerical [4] and experimental [5] evidence that, at least
in some situations, the asymptotic criticality is similar to the
random bond Ising model, irrespective of the underlying
symmetry. Here we provide some justification for this obser-
vation based on an unexpected universality of the critical
interface in the presence of strong bond randomness.

Interfaces are key to second order phase transitions; the
interfacial free energy vanishes at criticality with the Widom
exponent of p, . The behavior of Ising interfaces has been
extensively studied by a solid-on-solid (SOS) model which
simplifies numerical and theoretical analysis [6]. Potts mod-
els also have a potential continuous transition with broken
discrete symmetry [7].Potts interfaces are harder to study as
they are complicated branching objects which become fractal
at criticality. We introduce several approximations to such
interfaces in 1+1 dimensions, eventually arriving at a model
that is amenable to a position space renormalization group
(RG) treatment; exact on a hierarchical lattice. The simpli-
fied model also allows us to examine interfaces of random
bond Potts models. This leads to an intriguing generalization
of directed polymers in random media [8], with potential
applications beyond those discussed here.

Consider the interface between two distinct phases of an
ordered q state Potts model. At very low temperatures the
interface is a weakly fIuctuating surface, much as in the Ising
case. However, on approaching the critical point, bubbles of
any of the other q —2 phases may appear at the interface, in
addition to islands in the bulk phases. As in SOS models of
Ising interfaces, we shall ignore isolated islands and over-
hangs. The resulting froth is a collection of bubbles, each
bounded by two SOS surfaces. Even this simplified model is
too hard to analyze: The allowed configurations in 1+1 di-
mensions are a subset of those encountered in directed per-
colation (no dangling branches), with weights depending on

Z„+,= 2Z„+ (q —2)Z„.
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FIG. 1. Phase boundaries for q = 3 and 4, with mixtures of positive and

negative bonds (solid, dashed), and positive bonds (dotted, dashed dotted).
Arrows indicate RG flow towards the T=O fixed point. The solid lines in
the inset figure indicate the cell replacing each bond at every stage of the
DHL construction. The central (dashed) diagonal is also present in -the

DDHL.

q. To make the problem tractable, we confine the interface to
the bonds of a diamond hierarchical lattice (DHL) (inset of
Fig. 1). In one iteration on this lattice the interface can cross
either of two branches, or create a bubble by going through
both. The bubble has a "fugacity" of q —2, the number of
possible intermediate phases. This procedure is repeated it-
eratively creating the possibility of loops within loops ad
infinitum. Not all configurations of the original froth model
(those with multiplicities that are not powers of q —2) are
included within this scheme. It is possible to construct more
complicated models and RG schemes without these deficien-
cies; for example by considering the diamond plus diagonal
hierarchical lattice (DDHL) in Fig. 1. We have checked that
the qualitative results are unchanged by the choice of RG
scheme, and will thus focus on the simpler DHL where the
recursion relation for the interface partition function is
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TABLE I. The exponent p, (q) for the vanishing of the interfacial
free energy, obtained from the DHL and the DDHL, compared to
the exact values in d=2.

DHL DDHL Exact

1.634
1

0.886
0.830

1.429
0.847
0.749
0.700

4/3

1

5/6

2/3

Here Zi = exp( —2Pf) is the Boltzmann weight of one broken
bond and P= I//(ktiT).

The above recursion relation has a stable fixed point at
Z* = O. For initial values Aowing to this point Z„
~ exp[ —Lf,], where L = 2" is the length of the lattice after n

iterations and f, is the interfacial free energy. There is an-
other stable sink with Z*~~ where Z„~exp[ —L fb]. This
phase is a dense foam of bubbles where the interface analogy
breaks down. These two phases are separated by an unstable
fixed point at a ftnite Z*(q). Clearly any finite fixed point for
Z corresponds to f,=fb = 0. A similar fixed point mechanism
for the vanishing of the surface energy is present in wetting
phenomena [9]. Denoting t =Z, —Z*(q), we find
t ' = 2~ I~It with y (q) = 2+ in[1 —Z*(q)]/ln2. Since the inter-
face free energy satisfies the homogeneity condition

f,(t)=b 'f, (bYI'I&t), it vanishes as t~ with p, (q)=1/y(q).
The exponents obtained from the DHL and DDHL RG
schemes are compared with the exactly known values for the
Potts model in d=2 in Table I. The exponent is (acciden-
tally) exact for q= 2 on the DHL, and sho~s the correct
trend on increasing q. However, this approach does not show
the expected change to first order transitions at q= 4 [7].The
critical interface is fractal, its mass (number of occupied
bonds) growing as M = dlnZ/dlnZi~L"& with d&=y(q). The
probability of forming a loop is independent of scale and
given by P=2"~ —1.

As shown by Hui and Berker [2], randomness in the cou-
plings of a Potts model may change first order transitions to
second order. In particular, there can be no discontinuous
symmetry breaking in two dimensions [2,3], and all disor-
dered Potts models have continuous phase transitions. This
opens up the possibility of an infinite set of new universality
classes. A numerical study [4] of the eight-state Potts model
has confirmed the second order nature of the transition. In-

triguingly, based on their simulations, the authors of Ref. [4]
conjecture that all these new universality classes are in fact
similar to the random bond Ising (q = 2) model. There is also
some experimental support for this conjecture from the ef-
fects of oxygen impurities on the phase transition of
(2 X 2) —2H on Ni(111). The pure system is a realization of
the q = 4 Potts model, while in the presence of impurities the
asymptotic behavior appears to be Ising-like [5]. This con-
tradicts other evidence based on RG schemes [10,11] that, at
least for weak disorder, the critical exponents do depend on
q. In fact, the latter RG scheme [11]was partly motivated by
an earlier work [12] suggesting that the (nonuniversal) criti-
cal line of the pure Baxter model shows Ising behavior in the
presence of randomness.

To gain further insight into random bond criticality, we
examine the singular behavior of the interfacial energy in the

framework developed earlier. The initial weights (Zi(i)} for
the bonds of the DHL are chosen randomly from a probabil-
ity distribution &~i(Z). The recursion relation for a specific
realization of bonds,

Z„,=Z„(1)Z„(2)+Z„(3)Z„(4)

+ (q-2)Z„(1)Z„(2)Z„(3)Z„(4), (2)

can be used to construct a functional recursion relation for
H„(Z). We use a binary initial distribution of energies with a
fraction p of positive bonds J&, and 1 —p of positive or
negative bonds Jz, i.e.,

&~~i(Z)=p8(Z —e ~ i)+(1—p)8(Z —e P 2). (3)

E„+,= min(E„(1) +E„(2),E„(3)+E„(4),E„(1)
+E„(2)+E„(3)+E„(4)}. (4)

The last term is of course absent for q=2. We could iterate
exactly the probability distribution for bond energies up to
n=7. The Monte Carlo iteration was typically extended up
to n =20 for our determinations of the T=O critical proper-
ties. It is not immediately apparent from Fig. 1 that the phase
boundary for an initial mixture of ferromagnetic bonds is
also governed by a T=O fixed point that has a mixture of
positive and negative bonds. Although in a regular RG
scheme positive bonds only generate positive bonds, it can
be checked easily that for all temperatures intermediate be-
tween the extreme critical points, the recursion of Eq. (2)
leads to a mixture of positive and negative bonds. Thus the
critical behavior is likely to be the same for both cases.

Under iteration, the simple fixed points of the pure system
are replaced by stable distributions: The analog of Z*=O
describes directed paths on the hierarchical lattice and is
governed by the distribution discussed in Ref. [13].This dis-
tribution for lnZ is characterized by a mean that shifts as

fg (&0 —and a width that grows as L" with to=0.30 (com-
pared to the exact value of co= 1/3 on a two dimensional

lattice [8]).In the dense foam phase with lnZ= —fbL &)0, the
central limit theorem should apply and we expect fluctua-
tions of lriZ to grow as L. An argument similar to the Harris
criterion [1] shows that the relevance of randomness at the
critical fixed point is determined by the sign of y(q) —1.
Thus any randomness is expected to modify the interfacial
criticality of Potts models with q~2. By analogy with the
other two limiting distributions, we expect the critical point
to Aow towards a third zero temperature stable distribution

with lnZ=O, and 6'lnZ~I. "~.

These expectations are consistent with numerical itera-
tions of the recursion relation starting from a large initial
ensemble of (Z, (i)} [14]. The RG fiows are towards zero
temperature, leading to the phase diagrams indicated in Fig.
1 for J2= —Ji (and J2=+Ji/2) for q=3 and 4. The choice
of an initial distribution with a fraction of negative bonds
ensures that the phase boundary extends to zero temperature
[15].Since the eventual fixed distributions are at zero tem-
perature, criticality can be examined by directly looking at
the recursion relations at T=O. With this enormous simplifi-
cation, we have iterated energies,
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FIG. 2. Data collapse of E(L,p)p, )/L "r, against (p —p )I"Lt ri (left
g"o"p) or Ip pell»(lp p I)I'Lt' "'i (right group) in the abscissa. The
scales are logarithmic.

FIG. 3. The iterated probability for loop formation P„. The decay is
fitted to c/n (asterisks and dashed line) at p, . Data for p~p, (squares) can
be fitted to an exponential.

A striking feature of the T=O recursion relation is that it
is independent of q for q4 2. Thus the critical behavior for
the vanishing of f, should not depend on q. This expectation
goes beyond the approximations of the model and the hier-
archical lattice. Consider the configurations contributing to a
low temperature expansion of the interface free energy of the
Potts model on any lattice. The index q appears only in en-
tropic factors giving the multiplicity of possible colorings. If,
as is usually the case in random systems, the scaling proper-
ties of the interface are controlled by a zero temperature
distribution, these properties will be independent of q. Of
course, the SOS configurations allowed for q= 2 are very
different from the froth that appears for q)2, and thus in
principle, we expect two different universality classes.
Strictly speaking, since four colors are needed to cover an
arbitrary "map" in two dimensions, there are restrictions on
configurations allowed for q=3. If relevant, this leads to a
third potential random interface behavior in d = 2. Indeed the
recursion relations of the DDHL at T=O discriminate be-
tween q=2, q=3, and q~4.

We focused our studies of critical behavior at T= 0 on the
mixture of bonds of strengths +J and —J. The critical con-
centration in the presence of bubbles was identified by trial
and error as p, =0.883~0.001. At the critical point, the

mean and variance of energy should scale as E(L) =L ' and
v r[a(E)L]=L ~, with H, =to, if there is only one energy
scale. The fits at p, are consistent with this expectation, giv-
ing t9, = 0.34~0.05 and ~,= 0.31~0.08. Rather surpris-
ingly, cu, is very close to the value of co for directed paths
with no loops. Figure 2 shows that the data for the energy on
approaching p, from above can be collapsed by a finite-size
scaling form,

E(L,p)p, ) =A Ip, pI~L+BL". —

dP/dn= f,P —P /c, d—f,/dn =f,+f,P. (6)

The first equation reproduces P(n)=c/n at criticality; the
second is just the behavior of the mean (free) energy (or
mass of the cluster). The fixed point at f,=P=O describes a
critical cluster that is asymptotically linear, with loops ap-
pearing predominantly at short length scales. Linearizing the
second equation gives y= 1. However, the marginality of P
at criticality leads to logarithmic corrections to various scal-
ing quantities. For example, the mass of the critical cluster
grows as L(lnL)'. Similarly, the interfacial free energy van-
ishes as Ip

—p, ~
Iln([p —p, I)('. Figure 2 shows that a data col-

lapse is also possible using such logarithmic corrections. The
best fit is achieved for c = 0.5~ 0.6, compared to
c = 0.060~ 0.003 obtained directly from Fig. 3.

The asymptotic linearity of the critical cluster extends be-
yond the simple example of the DHL, and was also checked
for the DDHL. In the latter, an interface configuration that
covers both branches, as well as the central diagonal, is al-
lowed only for q~3. Thus this lattice supports three types of

with @=0.91~0.04. In the absence of loops for q=2,
p, =1 exactly, since the mean value of the final energy is
simply linear in the mean value for individual bonds. There
is also a subleading correction to the energy from Auctua-
tions that scales as L "~ [16].

To better understand the closeness of exponents in the
presence and absence of loops, we looked directly at the
fractal structure of the critical interface. This is achieved by
examining the probability P„ that a loop forms at the nth
iteration. As indicated in Fig. 3, P„decays exponentially to
zero for p)p, , while the decay slows down on approaching
p, . The data at p, can be fitted to a decay as c/n, with
c=0.060~0.003. This At suggests the phenomenological
differential recursion relations
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recursion relations at T=0, corresponding to q= 2, 3, and
«4. In spite of these differences, within our numerical accu-
racy, we could not detect any significant changes in the ex-
ponents from the simpler DHL. As indicated in Table I, even
in the absence of loops (q = 2), the critical cluster in the pure

system is a fractal. This is because it takes advantage of the
diagonal bond and is no longer simply directed. The critical
cluster of the random system does not take advantage of the
diagonal bond, or the possibility of loops, staying asymptoti-
cally linear. This suggests that the marginal irrelevance of
operators that may complexify the structure [such as P in Eq.
(6)] is in fact quite generic. Although we have presented the
results in the context of Potts models, they are probably more
generally applicable to systems of discrete symmetry. For
example, it has been suggested that regions of the Baxter
model with diverging heat capacity also exhibit Ising-like
behavior in the presence of random bonds [17,12]. It is also
tempting to generalize the conclusions to higher dimensions:
Strong enough disorder may result in a continuous transition

[2] with the interfacial criticality governed by a zero tem-
perature fixed point. If the apparent irrelevance of bubbles
can be generalized from hierarchical lattices, the exponent
p, will be the same as in the Ising model. How can we rec-
oncile this apparent super-universality of random bond criti-
cality, with earlier results [10,11] which do indicate expo-
nents that depend on q? The latter calculations were
performed for weak disorder, and lead to a finite temperature
fixed distribution. Is it possible that stronger disorder leads to
different behavior, dominated by zero temperature fixed

points? This scenario is precisely what is observed in a re-
cent position space RG of a three-state random bond model
[18].Of course, another possibility is that our approximate
interface model does not fully capture the physics of the
system. Clearly, further investigations are desirable.

In summary, we have introduced a simple position space
approximation for studying the interfacial properties of Potts
models in d=2. In the pure case, the critical interface is a
fractal froth, and interfacial tension vanishes with an expo-
nent Jz(q). In a random medium, within our numerical ac-
curacy, we find that the critical interface is asymptotically
linear, and the interfacial free energy vanishes linearly with
logarithmic corrections, i.e., p, = 1 independent of q. %'e ar-

gue that, if governed by a zero temperature fixed point,
p, (q) should be independent of q for all sufficiently large q.
The above model also provides the simplest generalization of
directed paths in random media [8] to ramified objects, with

potential applications to fracture cracks, lightning patterns,
etc.
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