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Surface deconstruction and roughening in the multiziggurat model of wetting
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We relate a random surface model appropriate for wetting in three dimensions to first-passage percolation for
the planar Ising model. This establishes that the macroscopic drop, sitting on a rectangular substrate in the

completely wet phase, adopts the shape of a pitched roof. It also suggests that fluctuations about this mean

shape are not logarithmic, but rather have a roughness exponent y= 3.

PACS number(s): 64.60.Cn, 68.45.Gd, 64.60.Ak, 68.35.8s

Burton, Cabrera, and Frank [1](hereafter BCF) suggested
that an interface established between coexisting, oppositely
magnetized, phases in a d=3 Ising ferromagnet should un-

dergo a phase transition at T,(2), the d=2 critical tempera-
ture, because the interfacial spins would be acted on by equal
and opposite Curie-Weiss mean fields coming from the re-
maining spins above and below the interface respectively,
thereby removing the bulk influence entirely at this level of
approximation. Thus the interfacial free energy would be ex-
pected to display a logarithmic specific heat divergence. Ex-
tremely compelling evidence has accrued [2] for an interfa-
cial roughening phase transition at, or above [3] the d=2
critical temperature, but since the free energy should then
have an isolated essential singularity as a function of tem-
perature, this would place the Ising interface in a different
universality class from that of the BCF transition. It is there-
fore of considerable interest to find that an interface model
[4—6], of potential relevance to wetting as it happens, does
exist which has BCF behavior for some range of values of
substrate interaction parameter.

BCF made few geometrical claims about their transition.
A number of results have been established for our model in
the low-temperature phase and wetting has been proved
above the transition, but without obtaining detailed geomet-
ric behavior of the wetting film. In this communication, we
shall show that our random surface, suspended over a rect-
angular substrate of length scale L, adopts the shape of a
pitched roof with volume of order L unlike the usual wet-
ting case, with volume of order L lnL [2]. In addition, the
square of the height difference fluctuations about their mean
shape value for points in the same roof facet, but separated
by a distance r, diverges; furthermore, we give good reasons
why this divergence is a power law in r rather than the
Kosterlitz-Thouless logarithmic behavior. These results are
obtained by an association of the static geometry of a ran-
dom surface with the stochastic process of first-passage per-
colation [7,8].

A brief review of our model will now be given, followed
by some facts gleaned for the most part from the probability
literature about first-passage percolation. The volume
bounded by our random surface is assembled out of unit
cubes (representing molecules and following Kossel and

Stransky [9]); these are stacked up vertically over cells of a
unit-sided quadratic lattice to form a planar histogram. Thus
we have a solid-on-solid (SOS) model with non-negative
integer-valued heights h(x) for xe Z2. Such a surface can
also be described in terrace-ledge-kink (TLK) [1] terminol-

ogy by specifying the surfaces of constant height as terraces
which are bounded by closed polygonal paths on crossing
which the height must jump. These closed paths are the
ledges which must contain bends (in order to close); these
are kinks.

We obtain a mapping from the three-dimensional (3D)
surfaces to a 2D classical statistical mechanical model by
specifying suitable energetics and by restricting the height
variables as follows: (i) Whenever Ix —y~=1, h(x) —h(y)
=0,~ 1. (ii) The extent of the random surface model on the
substrate is denoted A C Z; it is defined by requiring
h(x)=0 for all x& A. We shall usually take A=AL, an

a&L X a2L rectangle centered on the origin and parallel to the
coordinate axes with a, , az fixed as L~~. (iii) From any
x e A, there is a path to the boundary BA along which the
height does not increase. Thus local height minima are ex-
cluded and, with this, the "fingering" often considered cru-
cial for wetting [10].In particular, we allow adatoms on the
terraces, but not vacancies; this asymmetry establishes a cru-
cial distinction from the usual SOS models. However, more
than one height local maximum is permitted, in a way which
is essential for a correct description of partial wetting. We
shall call this the multiziggurat (MZ) model. For a more
physical, but lengthier definition in terms of molecular rafts,
see [4] or Appendix B of [5].Antecedents of the MZ model
are discussed at the end of the paper. We explain next how
the MZ model can be mapped into the planar Ising model.
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Consider an auxiliary planar Ising model with spins
o.(y) = ~1 located at the sites of Z . With A defined as
above, we take o (y) = + 1 for all y & A. The crucial result of
the configurational restrictions is that the terraces become
parallel-spin clusters of the Ising model and the ledges be-
come Peierls contours. The relationship is completed by
specifying the energy E&(I') of a configuration I:

E (I')= rL(I )+(r—e)A (I ).

edge e, equivalently nearest-neighbor bond, in Z . The pas-
sage time for a contiguous collection, or path p, of bonds
e, , . . . , e, is defined by

The travel time between vertices u and U is then appropri-
ately given by

Here 7. is the surface tension of the upper surface defined by
the histogram. Its area has a contribution from plaquettes
with normals parallel to the substrate. Because of restriction
(i) above, this is the total length L (I ) of the ledges. The term

Ao(I ) is the area of plaquettes in the surface with normals
perpendicular to the substrate. By virtue of the model, this is
the contact area with the substrate; —eA„(I ) is a contact
interaction of the droplets with the substrate. Equation (1)
goes over into the Ising expression

T(u, v)=min(T(p): p is a path from u to v). (4)

We mention immediately the connection with the random
surface problem: suppose we take its Ising equivalent and for
e = (x,y) define

r((x,y)) = [1—o-(x) o(y)]/2.

Then T(u, v) is the minimum number of Peierls contours
crossed in going from u to U and

h ~(x) = miny ~t, T(x,y ), (6)

(2)

In the last term on the right-hand side, b = e —r and

p, (x) = 1 if there is a path from x to some y outside of A
along which there are no spin fiips [if there is no such path,
p, (x) =0]. In spin terminology, the last term is a magnetic
field applied only to spins in the plus cluster of the boundary.

Elsewhere [4—6], we have described results about the

phase transitions in this model which follow from Ising
model percolation theory. They are summarized in Fig. 1.
Here we focus on recent developments in first-passage per-
colation [11—13].

The first-passage problem will be described here for per-
colation in the plane. A non-negative random variable

r(e), called a passage time, is assigned to each unit-length

where the Ising model has o.(y) =+ 1 for all y g A.
Returning to the general model, define the region B(t)

attainable from the origin in time t or less in terms of

B(t)=(x e Z: T(0~)«t) (7)

and fill in for convenience between the quadratic lattice
points to get

B(t)=(x+y: x c B(t), y c U),

p, = lim T(0,(n, O))/n.

where U=((xt, xq): !x,! -1/2)
Richardson's theorem and its extensions [14] relate the

existence of an asymptotic shape for B(t) to the strict posi-
tivity of the time constant p, defined by

It has been shown [11]that p,)0 (strictly) is guaranteed if
(!Co! +

) is finite for some 8)0, where! Co! is the number
of sites in Co, the parallel-spin cluster containing the origin.
Higuchi [15]has proved that this condition is satisfied when-
ever T)T,(2). An alternate proof (also based on [15]) that

p, )0 appears in [16]. The shape theorem in a version of
Derrienic [17]asserts that if p,)0, there exists a nonrandom,
bounded, convex set BOCH such that with probability 1,
given any e)0,

(10)

FIG. 1. The partially wet phase extends at least up to the line
(T= T,(2)(1—b/[4 r]), (b}a0nd the wet phase extends strictly
into the region (T)T,(2), b(0). The free energy approaches the

wetting transition curve analytically from the wet side. It has a
discontinuous b derivative at the line (T(T,(2), b=0) due to the

appearance of a monolayer.

for all large enough t. If p, =O, B(t) grows faster than lin-

early. The asymptotic scaled shape Bo has a boundary BBO
compatible with convexity lying between a square S, with
vertices at (0,~ p, ) and (~ p, ',0) and a square $2 with

vertices at +2p, (~1,~1). Evidently 5t is inscribed in

S2. It is intuitively clear, and even correct, that to construct
an asymptotic shape function for the surface height hz(x)
above the large rectangular substrate Az with x far from
BAL, we dilate a Bo centered on a fixed x' in the fixed
rectangle Az /L until it just touches the boundary. As (7)—
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(10) indicate, the dilation factor H(x') is then the limit of
hi(Lx')/L, and a simple roof shape follows. The roof has
four facets, corresponding to the four boundaries of the rect-
angle. The facets are triangular pieces of linear height func-
tions with gradients (0,~ p, ) and (~ p, ,0).

We have been reticent on two points: firstly, the first-
passage Ising percolation of Refs. [11,12] refers to an infinite
lattice, not to A with all boundary spins up. This cannot be
easily dismissed by configurationwise consideration of spin
states; a stochastic domination argument is simpler. After
discussing this briefly, we shall then look into the second
point, namely what happens if b40, but we are still in the
wet region.

Going back to (6), let hA(x) be the minimum number of
Peierls contours crossed to reach BA from x, within the in-
finite area Ising system. In a distributional sense, h~(x) is
bounded between hz(x) —2 and hz(x)+1. To justify this

[13], first note that two distinct roles are played by the +
boundary conditions on hA(x): (a) they determine the distri-
bution of spins inside A; and (b) they determine whether a
change in height occurs on the last edge of a path from A to
BA. Suppose in replacing h~(x) by hA(x) we first do this in

respect of (a). By the Fortuin-Kasteleyn-Ginibre (FKG) in-

equalities, this decreases the zero-height region and hence
increases the heights [5]. If we consider role (b), this can
decrease the height by at most 1. The lower bound for
hz(x) is obtained similarly. The O(1) effects which we get
are irrelevant for the shape theorem.

Going back to the second point, if b )0 there is a mono-
layer squeezing out the plus cluster of ojA. The shape theo-
rem is unchanged. For b(0, we expect this to be true as well
in the wet phase, but the free-energy result [6] is not strong
enough to prove this. More information would be needed
about the nature of the zero-height region in A hugging the
boundary.

Our result shows that the wetting transition in the multi-
ziggurat model is accompanied by a kind of surface recon-
struction [18,19] to the roof shape discussed above. Note,
however, that the slope of the facets of the roof is p, , which
is temperature dependent. Hence we call this a surface de-
construction to distinguish it from the usual case where the
slope is determined by boundary conditions. For b «0 (but
not for b(0 [6]), the specific heat diverges on the high-
temperature side (an exact result). It has been suggested that
this divergence is associated with a roughening transition
[20]. By adapting recent results for first-passage percolation,
we see that this is indeed true. The inequalities relating

hz(x) and hz(x), that allowed us to replace hL(x) by its

counterpart ht (x) and obtain the roof shape, also show [13]
that the mean square fluctuations, var(ht (x))= ([ht (x)
—(hL (x))] ) and var(hL(x)), diverge comparably. But
var(ht (x)) can be proved to diverge at least logarithmically
in L = d(x, BA), the distance from x to the boundary of A,
by essentially the same arguments used for Theorem 4 of
[12]:

var(hr (x))«A ( T) lnL,

where A(T))0 for T) T,(2).

We suspect strongly, however, that the transition is not of
Kosterlitz-Thouless type [21,19], for which (11) would be an

asymptotic equality. Firstly, at a thermodynamic level, for
b~0 we have a logarithmically divergent specific heat as
mentioned above, rather than the essential singularity as
found exactly in the body-centered SOS (BCSOS) model

[22], which is an example of the Kosterlitz-Thouless (KT)
universality class. Secondly, although lacking a complete
proof, we argue that var(hr(x)) should diverge as a power

L with a strictly positive exponent p= 3.
To simplify the argument, we suppose that as

L ~~, x =x(L) stays well within one of the four facets (say
the eastern one) of the roof. Replacing, as we did above,

hL by hL, we note that the shape theorem implies that the

paths from x to BAL which cross the minimum number (i.e.,
hr) of Peierls contours (we shall call these minimizing
paths) end up (with high probability) on the eastern bound-
ary. Let ( denote the exponent for transverse fiuctuations of
these minimizing paths, i.e., the smallest value such that the
minimizing paths are (with high probability) contained
within a strip of width L~ about the horizontal straight line
from x to the eastern boundary. A simple heuristic argument
[23] gives (=(1+y)/2 [24]. It is generally believed [24,23]
but not proved, that 2g= g. This would follow if, locally, the
boundary of B(t) behaved like an ordinary random walk.
These two identities yield the well-known values g= 1/3 and
(= 2/3 for growing interfaces, polymers in random environ-
ments, etc. [24,23]. We see no reason why the replacement of
an independent random environment by an Ising environ-
ment should change the universality class. Hence we expect
that y= 1/3 is also the correct value for height fluctuations in
the MZ model.

In the absence of a rigorous proof that y= —,', it would still
be of interest to prove that y)0 since that would differenti-
ate from the KT class logarithmic divergence. The current
status is as follows. An extension of Theorem 5 of [12]yields
the inequality, y«(1 —g)/2, of Wehr-Aizenman type [25].
To show that (» -', and thus y« —,', as in the independent ran-
dom environment case [12],one would need to verify in the
Ising case two things. First (and somewhat stronger than
what has been proved for the independent case), that the
boundary of the asymptotic shape 80 has finite radius of
curvature at its intersection with the coordinate axes; second,
that B(t)—tBD+O(tt't & '), as was previously shown for
independent environments [26].

We conclude the paper with a brief discussion of anteced-
ent models. There appears to be some confusion in the lit-
erature between the MZ model described here (as introduced
in [4]) and the "wedding cake" model [27] (see Ref. 42 of
[28] and also [16]) which is a natural development of the
SOS tube model of correlations [29] as follows: Let the nor-
mal to the substrate be (0,0,1). We form a pile of cubes as
for the SOS model, but with constraints. Let the intersection
of the surface of the pile with the plane z=n+ —,

'
(n a non-

negative integer) be P„(these are the ledges); then (like SOS
tubes) each P„must be a simple closed path which (unlike
SOS tubes) encloses the next closed path P„+, (disregarding
the z coordinates) with PD arbitrary. Thus the wedding cake
model of [27] has a surface with a single maximum, which
can be a plateau (since the ultimate P„has no further con-
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straints), and no other local maxima; we therefore suggest
that it be renamed the single-ziggurat (SZ) model. As ex-
plained above, the MZ model can be mapped into the planar
Ising model and hence is largely soluble. The SZ model,
however, has no mapping to the Ising model and the nodal
analysis techniques employed for SOS tubes are inappropri-
ate; thus the SZ model, in addition to being less physically
relevant, has only meager results to date.

We thank the Newton Institute of Mathematical Sciences,
Cambridge University, for its hospitality and support during

a period when some of the work reported here was done. One
of us (C.M.N. ) thanks Professor D. Sherrington and the
Theoretical Physics Department, University of Oxford, for
their hospitality when this paper was being written. The re-
search reported here was supported in part by SERC Grant
Nos. GR/H 73028 and 26697, and by NSF Grant No. DMS-
9209053. The work of L. Fontes was supported in part by
FAPESP, Grant No. 87/2629-7. The Ph. D. studies at New
York University of M.S.T. Piza were supported in part by
CAPES.

[1]W.K. Burton, N. Cabrera, and F.C. Frank, Philos. Trans. R.
Soc. London Ser. A 243, 299 (1951).

[2] J.D. Weeks, in Ordering in Strongly Fluctuating Condensed

Matter Systems, edited by T. Riste (Plenum, New York, 1983);
H. van Beijeren and I. Nolden, in Structure and Dynamics of
Surfaces II, Topics in Current Physics Vol. 43, edited by W.

Schommers and P. von Blanckenhagen (Springer, Berlin,
1987).

[3] H. van Beijeren, Commun. Math. Phys. 40, 1 (1975).
[4] D.B. Abraham and C.M. Newman, Phys. Rev. Lett. 61, 1969

(1988).
[5] D.B.Abraham and C.M. Newman, Commun. Math. Phys. 125,

181 (1989).
[6] D.B. Abraham and C.M. Newman, J. Stat. Phys. 63, 1097

(1991).
[7] J.M. Hammersley and D.J.A. Welsh, in Bernouilli, Bayes,

Laplace Anniversary Volume, edited by J. Neyman and L.
Lecam (Springer, New York, 1965).

[8] H. Kesten, in Ecole d'Ete de Probabilites de Saint Flour XIV
2984, Lecture Notes in Mathematics Vol. 1180, edited by P. L.
Henniquen (Springer, New York, 1986).

[9) W. Kossel, Nachr. Ges. Wiss. Gottingen, Math. Phys. Kl. S.
135 (1927); J.N. Stransky, Z. Phys. Chem. 136, 259 (1928).

[10]M.E. Fisher and D.S. Fisher, Phys. Rev. B 25, 3192 (1982).
[11]L. Fontes and C.M. Newman, Ann. Appl. Prob. 3, 746 (1993).
[12] C.M. Newman and M.S.T. Piza, Ann. Prob. (to be published).

[13]M.S.T. Piza, Ph.D. Dissertation, New York University, 1994
(unpublished).

[14] D. Richardson, Proc. Cambridge Philos. Soc. 74, 515 (1973).

[15]Y. Higuchi, Prob. Theory and Related Fields 97, 1 (1993); 97,
489 (1993).

[16] L. Chayes, J. Phys. A: Math. Gen. 26, L481 (1993); note that
in this reference, the multiziggurat model of [4—6] is confus-
ingly referred to as the wedding cake model of [27].

[17]Y. Derrienic, reported on p. 259 of [8].
[18]D.B.Abraham, Phys. Rev. Lett. 51, 1279 (1983).
[19]D.B.Abraham, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J.L. Lebowitz (Academic, London,
1980), Vol. 10.

[20] M. Gelfand (private communication).
[21] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
[22] H. van Beijeren, Phys. Rev. Lett. 38, 993 (1977).
[23] See Secs. 3.3, 5.1, and 7.1 of J. Krug and H. Spohn, in Solids

Far from Equilibrium: Growth, Morphology and Defects, ed-
ited by C. Godreche (Cambridge University Press, Cambridge,
1991).

[24] D.A. Huse and C.L. Henley, Phys. Rev. Lett. 54, 2708 (1985);
M. Kardar, ibid 55, 2923 (1.985); D.A. Huse, C.L. Henley, and

D.S. Fisher, ibid 55, 2924 (1.985); M. Kardar, G. Parisi, and

Y.-C. Zhang, ibid 56, 889 (1.986); see also Secs. 3.3 and 7.1 of
[23].

[25] J. Wehr and M Aizenman, J. Stat. Phys. 60, 287 (1990).
[26] H. Kesten, Ann. Appl. Prob. 3, 296 (1993);K. Alexander, Ann.

Prob. (to be published).

[27] D.B.Abraham, J.T. Chayes, and L. Chayes (unpublished).

[28] J. Bricmont, A. El Mellouki, and J. Frohlich, J. Stat. Phys. 42,
743 (1986).

[29] D.B.Abraham, J.T. Chayes, and L. Chayes, Phys. Rev. D 30,
841 (1984); Commun. Math. Phys. 96, 439 (1984); Nucl. Phys.
B251 (FS13), 533 (1985).


