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Synchronous chaotic behavior is often interrupted by bursts of desynchronized behavior. We investigate the
role of unstable periodic orbits in bursting events and show that they serve as sources of local transverse
instability within a synchronous chaotic attractor. Analysis of bursts in both model and experimental studies of
two coupled Rossler-like oscillators reveals the importance of unstable periodic orbits in bursting events.

PACS number(s): 05.45.+b, 47.20.Ky, 84.30.—r

Synchronization of chaotic systems [1,2] has attracted
considerable attention lately. Recent applications of chaotic
synchronization ideas to communications [3,4] and model
verification [5] have further enhanced the appeal of this phe-
nomenon. Despite this widespread attention, basic issues in
chaotic synchronization have yet to be settled. One of these,
and perhaps the most basic issue, is a sharp, sufficient con-
dition stating when two identical systems will synchronize.
There is a growing body of evidence [5—8] pointing to the
fact that standard stability statements centered around the
negativity of so-called transverse Lyapunov exponents are
inadequate to guarantee high-quality synchronized behavior.
While such conditions are necessary for synchronization,
they are by no means sufficient. Intervals of desynchronized
bursting behavior can appear even when the largest trans-
verse Lyapunov exponent is negative, especially, as in prac-
tical settings, when there is noise in the system. Such burst-
ing events are undesirable and potentially detrimental in
application settings. Methods have been proposed for en-
hancing the quality of synchronous behavior by suitably al-
tering the form of the dynamical systems involved [9]. This
approach may not always be practical in real systems, how-
ever. It is therefore important to understand the origin of the
bursting behavior, so that alternative methods for enhancing
the synchronization quality can be devised. While in this
paper we do not provide the definitive stability statement for
synchronization of chaotic oscillators, we do point to one
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reason for the inadequacy of standard stability statements. In
particular, we show that unstable periodic orbits within a
synchronous chaotic attractor can play a crucial role in burst-
ing events. We illustrate these effects with numerical and
experimental studies of two coupled Rossler-like oscillators.

A common system for chaotic synchronization studies is
the system of two identical coupled oscillators given by
[10,11]

u;j=f(u;)+cl(uj1—u;), j=0,1 (1

Here the u;e R" represent the individual oscillator coordi-
nates and the vector field f: R”"—R" defines the dynamics of
a single oscillator. The coupling is diffusive type, with an
nXn coupling matrix I" and scalar coupling constant c. If
s(¢) is a chaotic solution of u= f(u) then a synchronous
chaotic state is defined by uy=u,=s(¢). This state resides
on an n-dimensional synchronization manifold within the
2n-dimensional phase space. The stability of the synchro-
nous state can be determined by performing a linear stability
analysis of (1) about s(¢). This analysis is facilitated by in-
troducing coordinates along and transverse to the synchroni-
zation manifold, »=uy+u; and é=u,—uy, respectively.
Linearizing (1) about s(¢) then gives

n=Df(s)n, (2a)
E=[Df(s)—2cT1¢, (2b)
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FIG. 1. Largest transverse Lyapunov exponent versus coupling for the
coupled modified Rossler oscillators (left scale). Also plotted (right scale)
are the rms and max values of the Euclidean distance between the two
oscillators.

where D f(s) is the Jacobian of f evaluated on s(¢). The first
variational equation determines the nature of the synchro-
nous state s(¢) itself; the Lyapunov exponents of s(¢), de-
noted by AY=\9=-..=\"?, are computed from this equa-
tion. The second equation governs the transverse
coordinates; the transverse Lyapunov exponents, denoted by
Ai=\}=.--=\}, are found from this equation. A neces-
sary condition for stability of the synchronous chaotic state is
)\}<0 for all j. One of the main points of this paper is that
this condition is not sufficient for the stability of the synchro-
nous state if s(t) is chaotic. The reason is that there can be
invariant sets within a chaotic attractor (e.g., fixed points,
periodic orbits, invariant manifolds, invariant Cantor sets)
whose largest transverse Lyapunov exponent is positive,
even when the largest transverse exponent of the attractor as
a whole is negative. As trajectories come near these invariant
sets they can be repelled from the synchronization manifold,
giving rise to bursts. If there is noise in the system the burst-
ing events can continue indefinitely. In this paper we focus
on the role of periodic orbits in the bursting process.

To illustrate these effects we focus on a particular ex-
ample, where each oscillator is described by the vector field

x=—a(rx+By+z),
y=a(x+ay), 3

z=alug(x)—bz].

This system, which was investigated numerically and experi-
mentally in [11], is a variant of the well-known Rossler sys-
tem [12]. The time factor is set to a=1.0 in all numerical
work, and is a=10* s™! in the circuit. The function g(x) is
a ramp; g(x)=(x—x.) if x>x_ and O otherwise. This piece-
wise linear ‘“nonlinearity” is easy to realize in the circuit
construction. For parameters a=0.12, b=1.0, B=0.5,
wm=15.0, r=0.05, and x.=3.0 the modified Rossler system
(3) has a well-developed chaotic attractor. The coupling ma-
trix is chosen to be diagonal, given by I'=diag (0,1,0) (y
coupling).

Figure 1 shows the largest transverse Lyapunov exponent
)\i of the coupled system as a function of the coupling con-
stant ¢. The exponents were obtained from the variational
equation (2b) by computing the growth rate of a randomly
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FIG. 2. Large burst in the numerical model at coupling ¢ =0.055.

chosen initial variation £(0). Integrations were carried out
with a fourth order Runge-Kutta method [13] and the growth
rate was computed over 20 000 typical attractor cycles (1
cycle=7=2m/ \/]_‘) after a 1000 cycle transient. The step size
was fixed at Ar=7/100. A zero line is drawn to indicate the
zero crossing of N} (“naive” synchronization threshold),
which occurs at c=cy=~0.051. The degree of synchroniza-
tion is measured via the Euclidean distance between the two
oscillators, A = /(x; —x¢)>+ (y1—yo) >+ (21— z9)? [5]. Plot-
ted on the right scale of Fig. 1 are values of A, and A,
computed from the coupled system for runs of 20 000 attrac-
tor cycles. In practice a small amount of white noise of order
1077 is added to the right hand side of (1) during the nu-
merical integrations. This is done to prevent spurious syn-
chronization stemming from finite precision arithmetic. For a
range of coupling constants ¢>c there are small values of
A s accompanied by large values of A_,,,; this situation is
indicative of bursting behavior. The condition X} =0 is there-
fore inadequate to guarantee sustained high-quality synchro-
nization. Similar bursting events have been reported by oth-
ers [5,8] and have been observed by us in other coupled
chaotic systems. Figure 2 shows a bursting episode for the
numerical model at coupling constant ¢ =0.055. This burst is
comparable to the size of the attractor, which for these pa-

rameters is Vo> + a*§+ o-~3.4. Similar bursts are observed
in the coupled electronic circuit experiment. As shown be-
low, an examination of these bursts reveals their association
with unstable periodic orbits within the synchronous chaotic
attractor.

Periodic orbit thresholds—theory. The destabilizing ef-
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FIG. 3. Largest transverse Lyapunov exponent versus coupling for un-
stable periodic orbits through period 5. Also shown is the largest transverse
Lyapunov exponent for the chaotic attractor.
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TABLE I. Threshold coupling constants for the coupled modified
Rossler system on various orbits. Third column gives experimental
values adjusted for the factor of 2 stemming from the one-way
driving setup.

Orbit Threshold coupling Threshold coupling
(theory) (experiment)

period-1 flip 0.096 0.094
period-5 regular 0.077 orbit not found
period-4 flip 0.073 0.061
period-3 regular 0.065 0.074
period-5 flip 0.059 0.078

chaos 0.051 0.062
period-2 flip 0.047 0.065
period-3 flip 0.033 0.058

fects of periodic orbits can be understood by computing the
largest transverse Lyapunov exponent on the periodic orbits
themselves. This is carried out as follows. First, a periodic
orbit of (3) is located. This is accomplished with a Newton
search algorithm [14]. Next, the Floquet matrix [14] is con-
structed for the transverse variational equation (2b) on the
periodic orbit. The Floquet matrix, denoted by Q, takes an
arbitrary variation about the periodic orbit, §(0), to its value
one period later, 8(7),

8(T)=Q8(0). 4

The eigenvalues of Q are the “transverse Floquet multipli-
ers,” {a,a,, a3}, for the periodic orbit, ordered by decreas-
ing modulus. The largest transverse Lyapunov exponent for
the periodic orbit is then given by
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FIG. 4. (a) Burst of Fig. 2 shown on a logarithmic scale. Labeled regions
are associated with the indicated unstable periodic orbits. (b) Projections of
trajectories extracted from one oscillator corresponding to the first three
labeled intervals in (a). From left to right the extracted segments are close to
the period-1 flip saddle, period-3 regular saddle, and period-4 flip saddle.
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where T is the period of the orbit.

Figure 3 shows the largest transverse Lyapunov exponent
as a function of coupling for all periodic orbits through pe-
riod 5 for the modified Rossler system (3). Also shown for
comparison is the largest transverse Lyapunov exponent for
the chaotic attractor. For of the six computed orbits have
exponents larger than the exponent of the chaotic attractor.
Over the range of coupling constants shown, all of the expo-
nents maintain the same ordering as in the uncoupled (c=0)
limit. From this we expect dominant unstable orbits within
the attractor to be dominant sources of transverse instability.
This is borne out in the burst analysis below.

Periodic orbit thresholds—experiment. Experimentally,
the threshold coupling at which a periodic orbit became
transversely stable (A} =0) was determined as follows. First,
the x, y, and z signals from a single chaotic circuit were
digitized at a rate of 100 kHz (about 100 points per cycle).
The method of close returns [15] was used to extract unstable
periodic orbits from a three-dimensional time series of
50 000 points. From this data all periodic orbits indicated in
Fig. 3 were found, with the exception of the period-5 regular
saddle. Each orbit was then used to drive a second circuit by
playing the orbit back with a computer through a digital-to-
analog converter. The coupling configuration, was a one-way
variant of the mutual coupling arrangement (1);

u=f(u)+cl(upo—u), (6)
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FIG. 5. (a) Portion of burst (measured via |x;—x,|) in the coupled
circuit experiment on a logarithmic scale; (b) projection of trajectory ex-
tracted from one circuit over interval indicated in (a), showing underlying
period-1 dynamics.
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where upg is the periodic orbit. This arrangement is the same
as one proposed by Pyragas [16] for synchronizing a chaotic
system to a stored chaotic signal. Because of the one-way
coupling configuration (6), the coupling constant ¢ required
to synchronize the response u with the drive upg is twice the
value required in the mutually coupled case (1). The experi-
mental thresholds are summarized in Table I, adjusted for
this factor of 2; theoretical values are given for comparison.
The chaotic threshold ¢ =0.062 was determined by averaging
the difference between x signals to smooth out the bursts.
The extreme orbits (period-1 flip saddle and period-3 regular
saddle) are in qualitative agreement with the theory. While
the ordering for the other orbits is not exactly as in the
theory, there are several possible sources of error: the re-
sponse circuit is not identical to the circuit from which the
orbits were obtained, the periodic orbits from the data are
close to but not exactly on the true periodic orbits, and there
are timing and digitization errors induced by the digital-to-
analog converter when the orbits are played back.

Burst analysis—theory. Figure 4(a) shows the numerical
burst of Fig. 2 displayed with a vertical logarithmic scale.
Exponential growth regions are clearly present. Six growth
regions are indicated by the unstable orbits associated with
them [17]. The burst initiates with a strong growth phase
mediated by the period-1 flip saddle. Subsequent visits to
other periodic orbits, particularly the period-3 regular saddle
and the period-4 flip saddle, amplify the burst even more.
Large bursting events, such as this one, are generally found
to be connected with more than one periodic orbit. Figure
4(b) shows x-y projections of the trajectory of one of the
oscillators corresponding to the first three growth intervals in
Fig. 4(a). The extracted segments match well with the nu-
merically computed orbits, establishing the connection be-
tween the labeled growth intervals and the periodic orbits.

For additional confirmation we have estimated the growth
rates of A over the intervals labeled in Fig. 4(a) and com-
pared these rates to the transverse Lyapunov exponents of the
associated periodic orbits. The growth rate of A can be esti-
mated by assuming that over the interval of interest A can be
written as
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A()=g()eM, (M

where N is the growth rate, 7 is the known period of the
associated periodic orbit, and g(#) is an unknown periodic
function with period 7, g(t+T7T)=g(t). A plot of A(¢t+T)
versus A(¢) then gives a straight line with intercept zero and
slope M. Least squares fits to this model for the first three
growth regions shown in Fig. 4(a) give growth rates of
0.027, 0.011, and 0.0077, respectively. The corresponding
theoretical rates are as follows: period-1 flip saddle, 0.035;
period-3 regular saddle, 0.0076; period-4 flip saddle, 0.015.
Other intervals give similar results. The estimated growth
rates are in reasonable agreement with the transverse
Lyapunov exponents, particularly for the period-1 flip saddle
and the period-3 regular saddle.

Burst analysis—experiment. Figure 5(a) shows a burst for
the mutually coupled experimental system at coupling con-
stant ¢=0.0735 (beyond the coupling constant for chaotic
synchronization, ¢ =0.062). During the indicated time inter-
val the circuits are near the period-1 orbit. Figure 5(b) shows
a plot of y vs x from one of the circuits over this time
interval. Almost three full cycles of the unstable period-1
orbit are present. Over this interval the two signals diverge
exponentially at a rate of about 100 s~ 1. Of the bursts studied
in detail, almost all were initiated by the unstable period-1
orbit.

In summary, we have shown through numerical models
and electronic circuits that unstable periodic orbits within a
synchronous chaotic attractor can serve as local sources of
transverse instability. Trajectories that come near periodic
orbits with large transverse Lyapunov exponents can initiate
desynchronized bursting behavior. Sustained bursting is
found in both the model (with small additive noise) and the
experiment. This phenomenon must be taken into account to
yield high-quality chaotic synchronization. Future work will
focus on formulating a more stringent stability criteria for
high-quality synchronization of chaotic oscillators.
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