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Influence of multiple electron scattering on the gain in a gas-loaded free-electron laser
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We present an analysis of the small-signal gain in the gas-loaded free-electron laser. Multiple scatter-
ing of electrons by the atoms of the gas inside the optical cavity is shown to lead to two additional
effects, as compared to the case of a vacuum free-electron laser: a loss of coherence between difFerent
parts of the electron trajectory and an enhancement of the phase "jitter." Both efFects become increas-
ingly important at short wavelengths and significantly reduce the small-signal gain per pass. In one-
dimensional approximation, analytical expressions are obtained and numerical calculations are made to
estimate the beam and undulator parameters necessary for lasing in the vacuum ultraviolet.

PACS number(s): 41.60.Cr

I. INTRODUCTION

The free-electron laser (FEL) uses a beam of relativistic
electrons traveling through a periodic magnetic struc-
ture, the so-called undulator, to generate an intense,
coherent electromagnetic wave at a frequency that is
determined by the electron energy and by the period and
field strength of the undulator [1]. There is a growing
awareness that there are two important "niches" for the
FEL as a scientific research tool: the far-infrared spectral
range above roughly 10 pm and the vacuum ultraviolet
(VUV) below 200 nm [2]. This is related to the absence of
regular (intense) lasers in these parts of the spectrum.

In the IR, FEL technology has reached the level of ma-
turity and cost efFectiveness that permits operation as a
user facility. The situation is different in the VUV and
beyond, first because of the much higher electron energy
that is required (typically several hundred MeV up to
several GeV, instead of several tens of MeV), second be-
cause the gain falls off dramatically, and third because
optics becomes a serious problem. It is worth noting
that, in this part of the spectrum, ordinary lasers also
face strong limitations due to the "Einstein collapse, "
which makes it increasingly difficult to create and main-
tain a population inversion as the photon energy in-
creases.

It was proposed by Fauchet et al. to relax require-
ments on electron energy by the introduction of a gas
into the optical cavity [3]. The main idea is that this
reduces the phase velocity of the electromagnetic wave,
and, therefore, FEL resonance occurs at a shorter wave-
length. For relatively small deviations from the vacuum
wavelength, this was confirmed in experiments performed
at Stanford University [4—6]. When the pressure is
properly adjusted, the gas may provide a considerably
larger upshift —typically one or two orders of
magnitude —of the laser frequency [7—9]. This makes
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the gas-loaded FEL a promising candidate for operation
in the VUV at the electron energies that nowadays are
used for operation in the IR.

Unfortunately, the gas inside the cavity not only slows
down electromagnetic waves but also "damages" the elec-
tron beam as it passes through the interaction area. The
scattering of electrons by the gas is an important feature
of the gas-loaded FEL (GFEL). A theoretical analysis of
the small-signal gain in a GFEL including multiple
scattering effects was made in [8]. The analysis was based
on the assumption that the scattering can be represented
as a degradation of the initial beam emittance.

In the present paper, we study the inhuence of multiple
scattering on the small-signal gain in a GFEL in a more
detailed way. First, we take into account a possible loss
of coherence between different parts of the trajectory of
an electron inside the undulator. This effect is shown to
be important in the short wavelength region where it
leads to a significant gain reduction. Second, we include
into the consideration a phase "jitter" due to a modula-
tion of the longitudinal electron velocity. For conven-
tional FEL's, it is well known that, in the case of a planar
undulator, significant modulation can occur on a length
scale of one undulator period, with the consequence of a
high-frequency oscillation of the particle phase relative to
the ponderomotive potential well [1]. This reduces the
gain. The effect is known to be negligible for helical un-
dulators [1] provided that the angular spread in the elec-
tron beam is suKciently small [10]. In a GFEL, however,
phase "jitter" becomes important even for a helical undu-
lator [11],due to the strong r'eduction in wavelength.

Analytical expressions for the small-signal gain are ob-
tained and numerical calculations are made to estimate
the prospects of lasing in the VUV. Our results show
that the approximation used in [8] becomes inadequate in
the short wavelength region. It may considerably overes-
timate the gain if used outside the limits of its validity.

The paper is organized as follows. In Sec. II, we con-
sider the phase "jitter" in a helical GFEL. Multiple
scattering is incorporated into our calculations in Sec.
III. Section IV contains numerical results and a compar-
ison of our analytical expressions with a few simple limit-
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ing cases. A summary and conclusions are given in Sec.
V.

expression for y', which corresponds to a single spectral
line with oscillator strength equal to unity [13]

II. PHASE "JITTER"IN A GFKL

We start from the usual pendulum equations (see, e.g.,
[12])describing phase and energy evolution of an electron
in the combined field of a helical undulator plus an elec-
tromagnetic wave. In the one-dimensional (1D) approxi-
mation one has

Pl M a„a,sin@,
dz 6'

Ax'(~) =
Nsrp (1—co /coo)

where N/Nsrp is the ratio of the actual gas density and
the density under STP conditions (STP = standard tem-
perature and pressure: 0 C, 1 atm), coo is the resonant
atomic frequency, and A is a gas-dependent constant.
The two most important cases are helium and hydrogen;
corresponding parameters are shown in Table I.

Further, for an ultrarelativistic particle (e))m ) the
longitudinal velocity is close to unity. Namely,

dN
dz

1 —n +Q, (2) 1
U =1-2

2y 2

U

2

I

n =1+
2

(3)

where m is the electron mass, z is the particle coordinate
along the undulator axis, N is the particle phase with
respect to the ponderomotive potential well, e and U, are
the particle energy and longitudinal velocity, co and
a, =eEolmco are the frequency of the wave and its nor-
rnalized intensity, and Q =2m. /A, „and a„=eBo/m Q are
the corresponding undulator frequency and the undulator
parameter, respectively. Relativistic units A=c=1 are
used throughout this paper.

In the following, a, is assumed to be small, so that all
quantities under consideration can be expanded to the
lowest nonvanishing order in a, . As usual, the initial
conditions for Eqs. (1) and (2) correspond to a nonmodu-
lated beam at the entrance of the undulator:
@o—=C&(z =0) is uniformly distributed from 0 to 2m. The
result may then be averaged over the initial electron ener-

gy e; with a weight function corresponding to the energy
spread of the electron beam.

The above set of equations differs from the correspond-
ing equations for a vacuum FEL in two aspects. First,
Eq. (2) contains a new parameter n, the refractive index
of the medium inside the optical cavity; for a vacuum
FEL one should obviously take n =1. Second, there is"+"sign in front of Q because in a GFEL two resonant
modes are possible [7]: a phase slip mode for which the
electron slips one optical wavelength per undulator
period as in a vacuum FEL, and a phase advance mode
for which the phase velocity of the electromagnetic wave
is so small that the electron advances it by one wave-
length per undulator period. In the present paper we
shall consider only the phase slip mode, which corre-
sponds to the "—"sign, because the phase advance mode
requires a higher gas pressure inside the cavity and is,
therefore, more sensitive for multiple scattering.

The refractive index n for gases is close to unity and
may thus be written as

where v, = j u, u ] is the transverse velocity of the parti-
cle and y=@/m is the Lorentz factor. If the transverse
part of the undulator field is B,(z) = [BocosQ„BosinQz],
then up to small terms proportional to a, the transverse
velocity is

eB(z )
v, (z) =vo, —

77l yCO

where vo, =[uo„,uo~] is the transverse velocity of the
particle at the entrance of the undulator (z =0).

Taking into account Eqs. (3)—(6), one can rewrite Eq.
(2) as

(1+a„)
dz 2 y'

2am
( uo cosQz + u0~ sinQz )

y

+U, —g' —0 .

d y co ~au Uo~=—a„a,Jo sin
dz y

" ' yQ

boa„vo„

yQ

d4
dz

(1+a„)
Ot+U

y

TABLE I. Refractive and scattering properties of hydrogen
and helium; coo is the resonant atomic frequency, A,o—=2~/ct)0 is

the cutoff wavelength, R is the characteristic scattering length
[see Eq. {22)].

Together with Eq. (1), the above equation forms now the
set of equations describing the particle dynamics in a hel-
ical gas-loaded FEL.

Equations (1) and (7) still contain terms of different
time scales: "fast" oscillations such as cos(Qz) with typi-
cal frequency Q and "slow evolution" terms with much
lower frequencies. The next step is to average the equa-
tions over one undulator period. As a result of this
averaging, one has (see Appendix A)

where y' is the real part of the dielectric permittivity of
the medium. It is co dependent and for frequencies below
the resonant one satisfies the condition 0&y'«1. For
simplicity, in the present paper we adopt an approximate

Gas

Hp
He

2.8X 10
0.7X 10-'

Acro (eV)

10.2
21.2

A,o (nm)

121.6
58.4

R (m)
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where Jo is the zeroth order Bessel function.
Up to now, we did not include multiple scattering in

our model. Before doing this, we will brieAy discuss the
equations obtained. First, from Eq. (9) one can see a
modification of the synchronism condition under the
inhuence of a medium, as compared to the case of a vacu-
um FEL. Assuming the angular spread in the electron
beam to be small, vo, (&y, and taking dC&/dz =0, one
has

2Q
CO=

(1+a„)y
(10)

When properly adjusted, the two terms in the denomina-
tor may nearly compensate each other, thus leading to a
considerable upshift of the frequency generated; for STP
conditions (see Table I) nearly full compensation takes
place for beam energies in the range 50—100 MeV. In
fact, one should solve Eqs. (10) and (4) simultaneously be-
cause g' is a function of m. The corresponding photon
frequency co then becomes a double-valued function of
the gas density (or pressure, if one keeps the temperature
constant) [7].

Second, a simple estimate of the importance of the
phase "jitter" can be made. The "jitter" inAuence is de-
scribed by the argument of the Bessel function,

x= ua„uo,

yQ

III. INFLUENCE OF MULTIPLE SCATTERING

When passing through a GFEL, relativistic electrons
from an accelerator inevitably collide with the atoms of
the gas inside the optical cavity. The inhuence of these
collisions will be taken into account in this section. Be-
cause of the long-range nature of the Coulomb force of
interaction, a fast charged particle in a medium experi-
ences many random small-angle scatterings. The process
of multiple scattering looks, therefore, as a diffusion pro-
cess in transverse velocity phase space, while the energy
of the particle remains nearly constant.

Equations (8) and (9) contain an explicit dependence on
the initial transverse velocity of the electron vo, . To in-
corporate collisions into our calculations, we should now
consider the transverse velocity of the particle as a "slow-

Substituting here co from Eq. (10) and taking into account
that typically vo, «y ', one has

2a
x « 1+a„—g'y

For an ordinary helical FEL (y'=0), the Bessel function
argument is x « 1 because the undulator parameter a„ is
typically about unity, ' the "jitter" inhuence is thus negli-
gibly small in this case. But as a compensation of the
positive and negative terms in the denominator of Eq.
(11) [and the corresponding frequency upshift, see Eq.
(10)] becomes noticeable, the right hand side of the above
condition allows x to be larger than unity. The "jitter"
becomes thus increasingly important in the short wave-
length region of GFEL operation.

ly" varying function of the coordinate z. This assump-
tion is consistent with the averaging of the exact equa-
tions of motion over one undulator period made above.
It only means that the effect of the multiple small-angle
scattering is assumed to be negligible at distances of order
A,„but can be substantial when accumulated over many
undulator periods.

For further calculations it is convenient to rewrite Eqs.
(8) and (9) in a shorter notation (we omit the index 0 of
the transverse velocity because v, is now a function of z),

du coau vi (z) coci„v (z)—COpJo (12)
dz y;Q y, Q

sin

2

dz 2 [p—bu—(z)+ v, (z)], (13)

where u =(y/y; ) —1 is a new independent variable, y; is
the particle initial Lorentz-factor, P=2a, a„/y; «1 is a
new s~all parameter, and b and p are constants de6ned
as

1+ab=
yl

2Q
P =b —y'(CU)—

Q)

(14)

where e is the electron charge, nb is the beam density,
and L, is the length of the undulator. The brackets indi-
cate averaging over the initial phase 4o from 0 to 2m. .

Integrating now Eqs. (12) and (13) over z from 0 to L,
expanding them in P up to the second order and averag-
ing over 4o, one has the following expression for the
average energy transfer from the particle to the elec-
tromagnetic wave in a distance L, :

bp2 3 L
(u(L))q, = f dzi Jo4 o

CUQ„U, (z, )

y, Q

Z ]
X f dz2(z, —z~)JO

COO„U, (Z2 )

y;Q

cuba~
Xslil [Uy(zi ) vy(zp)]

yl

+ f dz3[P+U) (Z3)] (17)

With the help of Eq. (17) one could find the energy
transfer from any given particle trajectory, that is, for
any given dependence v, (z), 0 &z (L. But in a scattering
medium the consideration of a trajectory of an individual
electron has not much physical sense. To obtain a mean-
ingful result, we should average the quantity under con-
sideration over all possible trajectories. Equation (17) has

The initial condition for the new variable u is
u(z =0)=0, and in the small-signal regime u is assumed
to be small: ~u ~

(& 1. With the help of the energy conser-
vation law, the small-signal gain per pass may be ex-
pressed in terms of u as

2me nby;G= ——
mco a,
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an advantage for this task because it is written in the
form of a two-point correlation function of an electron
trajectory. We may, therefore, apply a special technique
developed by Migdal [14] for averaging such functions
over trajectories.

Equation (17) contains the two following kinds of pa-
rameters of a trajectory: first, the transverse velocity v,
at different distances z, and second, a special combination
of the transverse velocities, which we shall denote as g,

g(z, z') = f dx u, (x) . (18)
Z

The cog'/2 term in the argument of the sine in Eq. (17)
carries information about coherence between different
parts of the electron trajectory and, therefore, needs an
accurate treatment.

Let w&(v„z) be the probability for a particle to have
the transverse velocity v, at the distance z, and
w2(g, v'„z'~v„z) be the probability to have the "coordi-
nate" g and the transverse velocity v', at the distance z',
provided that at the distance z this "coordinate" and ve-
locity were equal to 0 and v„respectively. Averaging of
Eq. (17) over all possible trajectories then means

((u(L))@)„,j„,= — Im f dz& dz2(z& —z2)exp i —(z~ —z2)
Qp2~3 L») .COP

4 0 0 2

X f d u~w)(v), z2) f dg f d vtw2(g, v~, z) ~v), zz }
'I T

boa„u, boa„v,
'

boa„
XJo

"
Jo

"
exp i —" (u' —u~) —i—gr,. ' r,. x, n

(19)

The transverse velocity distribution ur& is well known
in the theory of multiple scattering [15]. It is a Gaussian
distribution, the width of which grows linearly with the
depth of a particle penetration into a medium,

1 U~

exp —,(20)
m(4qz+ 80) 4qz +80

w, (v„z)=

(8')=N fd88'
0

(21)

where N is the density of the medium, do /d 8 is the elas-
tic cross section, and 8 is the angle between the initial
and the final particle momenta. For applications, it is
convenient to present the parameterq as

N 1

NsTP y;~
(22)

where 00 is the angular spread of the beam at the en-
trance of the undulator, q —= (8s ) /4 is the only parame-
ter describing the multiple scattering, and (8s) is the
mean square of the scattering angle of the particle per
unit path. The latter is defined as

7 —Z] Z2

In the small-angle approximation, one thus obtains [14]

Bw2 Bw2
+(v,') =qk, wz

31 8 Ur

where

wz(r =0}=5(g)5(vI —v, ) .

It is convenient to define a new function

(24)

F(v„v'„r)= f dg w2(g, v'„r~v, }exp i—
00

Combining Eqs. (23)—(25), one has

8 8

Bv» Buy

is the Laplace operator in the transverse velocity space.
Equation (23) is to be solved under the following initial
condition:

where R is a characteristic length (see Table I}.
As for the correlation probability function m2, it is

known to satisfy a kinetic equation that can be reduced to
the Fokker-Planck equation [15]. Because of space-time
uniformity, w2 obviously depends only on the difference
between z& and zz, in the following we shall denote it as

' 1/2

BF . co+i—(v,') F=qh, F
a7- 2

with the initial condition

F(&=0)=5(vI —v, ) .

The solution of Eqs. (26) and (27) can be found as
I

(26)

(27}

F(v„v'„r)= 1 LCO

nsinh(&2icoq r) &q
' 1/2

I', CO

8q
Xexp

L

I

—[u, +(v,') ]coth(&2icoq r)
sinh(&2i coq g)

(28)
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Substituting the above expressions for w, and E into Eq. (19), one has
1/2

((u(L))~)„„„,= —— Im f dz f dr
4~2 8q

1 . COP7
exp —i

sinh( V'2i coq r ) 2

Xfd.,
' ...p4qz+ 80

r
I

boa„v,
Jo

"
exp

Vl

LCO

Sq

2

4qz+ 00
1/2

coa„v, coa ~
Jo f d u,'exp i— —(u' —u )

7l

2Vt Vt —[u, +(u,') ]coth(&2icoq r)
sinh( 2icoq v )

(29)

This is the expression for the energy transfer that takes
into account phase "jitter" and coherence loss due to
multiple scattering.

In the most general case, one should average the above
expression over a distribution of the initial energy of the
particles in the beam. For the Gaussian form

where bo and po are defined as

l+a„
bo

Vo

2Q
Vo=bo —X'(~)—

(32)

(33)

1w(y;)=
&2m goo.,

()'; —)'o)'

2gocT y

this averaging involves a simple change in Eq. (29)

2 2 2M
. COP'7 copp7 bott) 0 y7

exp —i
2

~exp l
2 2

(30)

(31)

The relative energy spread in the beam o. is assumed to
be small, cr ((1, therefore, in all other terms of Eq. (29)
the particle energy y; may be taken equal to the average
energy of the beam yp.

The six-dimensional integral in Eq. (29) can be reduced
to a four-dimensional one (see Appendix B). Taking into
account Eqs. (31) and (16) as well, we arrive at

2e nba„(1+a„) To+«~e T, +«~e —T pot
Im dT dt tD(T, t)exp i—

0 2

b2 ~2)2
0 y

2q

X f dg f dgexpI QTD(T, t)[(—2 —cosP —cosg)cosh(t&2i )
—(1—cosg)(1 —cosg)])

0 0

X exp — —' (1—cosg)sinh(t l&2i ) cosh[QTD( T, t )sin/sing],
QD(T, t)

v'2i (34)

where

D(T, t)= 1

cosh(t&2i )+T+2i sinh(t/v'2i )

' 1/2
0 CO

To 4 q

The dimensionless parameter

2a 2 3/2 1/2

Q yo
(36)

characterizes the influence of the "phase jitter" for a heli-
cal GFEL.

Equation (34) is our final result for the small-signal
gain per pass in a GFEL. The only step to be made is to
include the absorption of light in the medium (in fact,
below the resonant atomic frequency there is no real ab-
sorption, only scattering, but in our considerations we
may ignore the difference). The effective gain is then the

difference between the amplification and the absorption
of the wave,

G,s =G —2Lh(co), (37)

where 21 is two times the undulator length, i.e., the
minimal length of the roundtrip path, and h is the extinc-
tion coeKcient. For gaseous media the extinction
coefficient is [13]

2coh= (n —1)
3m%

(38)

IV. NUMERICAL RESULTS AND DISCUSSION

We have derived a rather long and complicated expres-
sion for the gain in a GFEL, which can be studied only
numerically. But before turning to numerical calcula-

Because of the sharp co dependence of the refractive index
n [see Eqs. (3) and (4)], absorption will be important only
at frequencies close to the resonant frequencies of the gas
molecules.
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2qre nba„(1+a„) I.~v'~qG= Im df
~

q
~

y 0 V2i sinh(rv2i )

6 6700 y

2g

1+ ~2i (L&coq —t)tanh(t&2i )Xln 1+ I+&2i Totanh(tv'2i )
(39)

One can see from Eq. (39) that the initial angular spread
of the beam (which is represented by To) is not equivalent
to the influence of multiple scattering (which is propor-
tional to q). It means, generally speaking, that the latter
cannot be represented merely as a growth of the beam
emittance, as was assumed in [8]. The diff'erence comes
from taking into account the possibility of coherence loss
between different parts of the particle trajectory.

As an illustration, the ratio R of the exact result [Eq.
(39)] and a "naive" result, which assumes usage of an or-
dinary small-signal gain expression for a vacuum FEL
with distance-dependent [corresponding to the multiple
scattering theory, see Eqs. (20)—(22)] beam emittance, is
shown in Fig. 1. The ratio is presented as a function of
the undulator length L measured in units of some "coher-
ence scale" L which is defined as

1.0

0.8—

0.6—
R

0.4—

0.2—

0.00.0 1.0 2.0
L/L

3.0 4.0

FIG. 1. The ratio of the small-signal gain calculated from Eq.
(39) and from a simplified approach, assuming usage of an ordi-
nary small-signal gain expression for a vacuum FEL with a
predescribed distance-dependent beam emittance, as a function
of the dimensionless undulator length L /Lq [Eq. (40)].

tions, it is instructive to consider some simple limiting
cases.

Let us first separate the inAuence of the "phase jitter"
and of the coherence loss. The "jitter" is negligible if the
above parameter Q [see Eq. (36)] is small (one may for-
mally consider this as the limiting case of a small undula-
tor parameter, a„—+0}. The inAuence of the coherence
loss remains unchanged in this limit. Putting Q —+0, one
obtains from Eq. (34)

I dy I dy
0 0

and, therefore,

L —=4/1 coq

One can see that the "naive" approach is reasonably
correct at L (L but may strongly overestimate the
small-signal gain as the undulator length becomes larger
than L . To be specific, let us take y0=100 and consider
a gas pressure P-0. 1 atm. In the infrared range, the
corresponding scale is then rather long: L —(3—5) me-
ters for A, =(2—4) pm. But it becomes considerably
shorter as one approaches the VUV region. For the
wavelengths nearby the hydrogen cutoff wavelength
(A, =121.6 nm) the scale Lq is about 70 cm. For the heli-
um cutoF wavelength (A, =58.4 nm) it is even shorter:
L -40 cm. The influence of the coherence loss thus be-
comes increasingly important as the wavelength de-
creases; consequently, the assumption of an increase in
emittance becomes less valid.

The transition to the case of a vacuum FEL can be
traced as well. This corresponds to the limit q ~0. The
upper limit of the integral in Eq. (39) then becomes small,
L +coq &( l. One may, therefore, expand hyperbolic and
logarithmic functions in the integrand into series in t and
take lowest-order terms. Introducing a new variable
x = t l&coq —and using Eq. (35), one has

2qre nbcoa„(1+a„)6= Im dx
my,' 0

x(L —x)
(1+ice@xl2)

1+a„
Xexp —i-

yo

2Q
X

CO

COO X

For generality, we keep a nonzero refractive term y', as if
refraction could be introduced without scattering; in the
limit y'~0 the above expression describes the small-
signal gain per pass of a vacuum FEL with finite angular
and energy spread of the electron beam. In the limit
o.&~0 and 80—+0 we arrive at the expression

qre nba„(1+a„)coL
2m y,'

de (42)
g 0=col. /4[(1+a )/y —2fL/m —y']

which is identical to the well-known formula for the vac-
uum case [16] if y'=0. Our result thus correctly repro-
duces expressions for ordinary FEL's.

To illustrate the above statement and to check our nu-
merical scheme, we made computations of the gain at
different energies of the electron beam with the help of
Eq. (34) and compared them with the analytical formula
Eq. (42). The generated wavelength was taken to be 130
nm; the value of g' was chosen such that exact synchron-
ism corresponded to yo=100. The following undulator
parameters are used in our numerical calculations
throughout the paper: A,„=2cm, B0=5 kG, a„=1. The
results (in arbitrary units) are presented in Fig 2; the dot. -

ted line is obtained from Eq. (34) and the circles from Eq.
(42). One can see the excellent consistency of the two sets
of data.
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5.0

J3
L
5$

5 I

~g ae

0 r++ra I i I ~
~ 0 I 1& a j ~ ~ I F011

t

rO

-5.0 I I I I I

99.4 99.6 99.8 100.0 100.2 100.4 100.6

FIG. 2. The small-signal gain per pass as a function of the
particle energy for an idealized case wherein the multiple
scattering, as well as angular spread and energy spread of the
beam, are neglected. The dotted line is the result of direct nu-

merical calculations from Eq. (34), circles are the analytical ex-
pression for the limiting case of a vacuum FEL with refraction
[Eq. (42)]. The undulator parameters are A,„=2cm, B0=5 kG,
the generated wavelength is A, =130nm.

The in6uence of difFerent efFects on the small-signal
gain is illustrated. in Fig. 3. For the same parameters as
in Fig. 2, we calculate the gain: (i) without energy spread
and multiple scattering, (ii) taking into account only the
energy spread with o r

= 1 X 10, and (iii) with both mul-
tiple scattering and an energy spread of o. =1X10
taken into account. The gas inside the cavity is hydro-
gen. One can see from Fig. 3 that even as small a relative
energy spread as 10 noticeably reduces the gain in the
short wavelength region (dashed line). The addition of
multiple scattering not only further reduces the gain but

also makes the gain curve asymmetric (solid line).
We now turn to the magnitude of the GFEI. gain and

the beam parameters necessary for lasing in the ultra-
violet. For realistic estimates, it should be noted that the
parameters appearing in Eq. (34) are not independent.
Because of 3D eff'ects, the beam density nb is in fact a
function of the longitudinal coordinate z and strongly de-
pends on the beam waist radius rp. In turn, the latter, as
well as the initial angular spread Oo, is connected to the
undulator length L. To incorporate all this with the 1D
expressions obtained above, the following procedure was
adopted.

We keep the four most important beam parameters
fixed: the total current of the beam I, the average energy
y0, the energy spread o.

&
and the normalized emittance

eN —=nypro00. Then nb is estimated as

I
Jib =

eS,ff
(43)

L L
r —=r+ —O=r+

2 2 277+07"0
0 0 0 (44)

Minimizing Eq. (44) with respect to ro, one has

ro=+Le~/2vryo (45)

where $,s. is some etfective (averaged over the longitudi-
nal coordinate) cross-section area of the beam inside the
cavity. The beam is always focused onto the undulator
axis to reach a high-current density, but it cannot be fo-
cused too much because it has to match the optical mode
along the whole undulator length. If the electron beam
waist is situated nearly in the middle of the interaction
area and rp is the waist radius, then the beam radius at
the ends of the undulator can be estimated as

0.0

t ~

~
~

~r~ ~

I
~ o

N
g0 ~F0~0

' 1/2
2~N

(46)

for the waist radius at which the optical mode matches
the beam in an optimal way. The radius of the beam at
the ends of the undulator is then two times larger than in
the center. The corresponding initial angular spread is,
in this case,

0~& A e

'I

0 4

'~

4

~ ~

-5.0 I I I I

99.4 99.6 99.8 100.0 100.2 100.4 100.6

In addition to its intrinsic size, there is also beam
broadening due to multiple scattering. At a distance of
about one half of the undulator length, the beam radius
associated with the scattering is roughly [15]

1/2

~scat
qL (47)

FIG. 3. The influence of different effects on the gain curve of
a GFEL at short wavelength. Dotted line, no multiple scatter-
ing, no energy spread (same as for Fig. 2); dashed line, no multi-
ple scattering, the relative energy spread is o ~

= 1 X 10; solid
line, the same energy spread together with multiple scattering.
The undulator parameters are the same as in Fig. 2. The gas in-
side the cavity is hydrogen, the pressure is adjusted for genera-
tion at 130 nm and equals to -0.08 atm.

S,s.=2m(ro+r„„), (48)

where the coe%cient 2 gives a reasonable estimate of the
averaging over the longitudinal coordinate; any more
realistic z dependence of the beam radius would lead to a

The minimal cross-section area of the beam inside the
cavity may then be estimated as $;„= (err~ o+r„„). In
the following we shall assume S,z to be two times S;„:
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FIG. 4. Typical dependence of the gain per pass on the undu-
lator length. The wavelength is A, =130 nm, the gas inside the
cavity is hydrogen at 0.08 atm, the beam energy is 50 MeV. The
undulator parameters are the same as for Fig. 2.

similar result. Equations (43)—(46) now express all
necessary quantities in the four beam parameters and the
undulator length L.

We do not include slippage effects into our considera-
tions, assuming the electron bunch to be sufticiently long.
It is known, however, that slippage is very important
near atomic resonances because of strong group velocity
dispersion. One can find a detailed discussion of these
e6'ects in [9].

A GFEL is thought to be easily tuned with the help of
changing the gas pressure inside the cavity. In a sense,
this is similar to the tuning of an ordinary FEL with the
help of changing of the beam energy. For any given
wavelength there is then a certain gas density at which
the gain has its maximum. A more surprising feature of
the GFEL is that there exists an optimal undulator
length as well. This is because of the scattering of parti-
cles inside the cavity. At relatively short distances, the
gain is proportional to the undulator length as in ordi-
nary FEL's. But when the undulator becomes too long,
the "damage" to the beam outweighs all other effects, the
beam cross section becomes too large [see Eqs. (47) and
(48)] and the gain starts to decrease as the undulator
length increases. A typical dependence of the gain per
pass on the undulator length is shown in Fig. 4.

Taking into account the above statements, we included
an optimization procedure into our computation. Name-
ly, for a Axed beam parameter, the gas density and the
undulator length were varied until the maximum of the
gain was reached. One thus obtains three curves simul-
taneously: the "resonant" pressure of the gas, the op-
timal undulator length and the gain as a function of the
output frequency. Some of these curves are presented in
the following figures.

Figure 5 shows a typical tuning curve of a GFEL: the
gas density (or pressure, if its temperature is kept fixed) as
a function of the energy of the photons emitted. The gas
inside the cavity is hydrogen, the beam energy is 50 MeV,
the undulator parameters coincide with those for Fig. 2.
The curve is double valued: two different frequencies

1500 500 3000.6
I I

200
I

150 i 25
I I

0.4—
I-

z
z

0 ~ 2—

0.0
0

hu (eV}

10

FIG. 5. The tuning curve of a GFEL: the gas density (rela-
tive to its density at STP) as a function of the energy of the pho-
tons emitted. The gas inside the cavity is hydrogen, the beam
energy is 50 MeV, the period of the undulator is 2 cm, magnetic
field on the axis is 5 kG.

may be generated at the same pressure [7], as a result of
the co dependence of the refractive index n [see Eqs. (3)
and (4)]. Qne sees from the figure that tuning over the
whole interval from the infrared to the ultraviolet is pos-
sible with the introduction of less than 1 atm of hydrogen
into the cavity. Unfortunately, multiple scattering
strongly damages the beam at pressures higher than ap-
proximately 0.1 atm (see below), therefore, real tuning is
only possible nearby the left and the right ends of the
curve.

The next figure illustrates the inhuence of the beam pa-
rameters. The gain per unit beam current G/I is shown
as a function of the photon energy for different normal-
ized emittances and energy spreads of the beam. There
are two different sets of data in this figure: three curves
for hydrogen Ailing in the range 1 —10 eV for a beam en-
ergy of 50 MeV and two curves for helium filling in the
range 3—21 eV for beam energies of 50 and 80 MeV. One
can clearly see the extremely strong dependence of the
gain on the beam quality. For hydrogen filling, a reduc-
tion of the normalized emittance from 50m to 5m

mmmrad leads to a gain enhancement of more than 20
times at photon energies A'cu-(9 —10) eV. A reduction of
the energy spread from 3X10 to 1X10 leads to fur-
ther improvement of the gain by nearly one order of mag-
nitude. For the helium curves, the gain appears to be
much lower at a beam energy of 50 MeV even for the best
beam quality (@~=5m mmmrad, o =1X10 ). This is
due to the fact that helium requires pressure four times
higher to reach the same refractive index; respectively,
multiple scattering strongly reduces the small-signal gain.
To obtain a higher gain, one needs to increase the beam
energy. For this reason, the calculations for helium
filling were performed also at a beam energy of 80 MeV
for the same beam quality. Nearly one order of magni-
tude enhancement of the gain can be seen in the picture.
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One should also note a common feature of the curves
in Fig. 6: they all have a broad and deep plateau in the
central part with sharp maxima at the ends. This is be-
cause of the co dependence of the gas pressure. The cen-
tral parts of the curves correspond to a rather high densi-
ty of the gas inside the cavity (see Fig. 5), therefore, the
gain is strongly reduced with multiple scattering.

To obtain insight into the beam current necessary for
lasing in the ultraviolet, it is convenient to represent the
same data in a different way. Namely, let us define I„as
the current at which the maximum of the effective gain
G,s [see Eq. (37)] equals to g. Then I&(co) is the starting
current for laser oscillation at the frequency co if go is the
corresponding wave attenuation per roundtrip in the op-
tical cavity. Somewhat arbitrarily, we choose go=0. 2;
this gives a reasonable estimate of the losses for photon
energies below 10 eV, where high-finesse cavities are
available, and may be too optimistic in the range 10—20
eV. The corresponding starting current Io z as a function
of the photon energy co is shown in Fig. 7.

We present again two sets of curves corresponding to
hydrogen and helium filling of the cavity. Sharp minima
nearby the cutoff frequency are the result of light absorp-
tion [see Eqs. (37) and (38)]. For the same beam parame-
ters, the starting current for hydrogen appears to be con-
siderably lower than for helium. With hydrogen filling,
the starting current at a photon energy 9—10 eV is seen to
drop below 10 A for beam parameters accessible for
modern linacs with photoinjectors (see e.g. , [17]):
@0=100, e&=5m mmmrad, o.&=1X10 . Hence, hy-
drogen filling appears to be a promising avenue for lasing
in the VUV region.

For higher photon energies (between 10 and 20 eV) the
situation is less optimistic. Even for such low intracavity
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FIG. 7. The starting current Ip ~, required to obtain laser os-
cillation at a roundtrip loss of 20%, for the same beam and un-
dulator parameters as for Fig. 6. See the caption of Fig. 6 for
further details.

losses as 0.2 and a beam energy of 80 MeV, the starting
current remains above 30—50 A. But a more realistic es-
timate of the cavity finesse in this range of wavelengths
would give a 2—3 times higher value for the starting
current. Such a current can already lead to a significant
degradation of the refractive index of the medium during
one macropulse, unless special measures, such as addition
of a small fraction of a dopant gas [18],are taken. GFEL
operation in the range 10—20 eV thus seems much more
dificult.

The typical dependence of the optimal undulator
length on the photon energy is shown in Fig. 8. A GFEL
operating in the VUV region appears to be a compact de-
vice: the optimal undulator design has only 10—30
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FIG. 6. The gain per unit beam current G/I as a function of

the photon energy for different beam parameters. The curves
1-3 pertain to hydrogen 6lling of the optical cavity: (1)
yp=100, o ~=3 X 10, ez =50m. mmmrad; 2 —yp= 100,
O~=3 X 10, ez =Sm mm Inrad; 3—yp=1007 o y 1 X 10
e~ =Sa mmmrad. The curves 4 and 5 pertain to helium filling:
4 pp= 100 0&= 1 X 10 E~=Sw mmmrad' S gp= 160
o-~ = 1 X 10, e& =Sm mm mrad. The undulator parameters are
A,„=2cm, Bp=5 kG.
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FIG. 8. The optimal undulator length as a function of the en-
ergy of photons. The beam energy is 50 MeV, the gas inside the
cavity is hydrogen, the undulator parameters are the same as for
Fig. 6.
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periods and a total length of 20—100 cm. The corre-
sponding intracavity electron beam radius is then very
small, of order 100—200 pm. When the beam energy yp
is increased, the optimal undulator length scales approxi-
mately as yp.

An attractive feature of a GFEL is the possibility to
provide ultraviolet radiation with a relatively low-current
and low-energy accelerator; such a machine is relatively
inexpensive. To study GFEL prospects in this respect,
we calculated the starting current Ip 2 for different beam
energies. The undulator parameters were the same as for
Fig. 2: A.„=2 cm, Bp 5 kG. The results are shown in
Fig. 9. One can see the rather weak dependence of Ip 2
on the beam energy above some characteristic energy and
a sharp increase below it. This is mainly a result of the
"phase jitter. " Its inhuence is noticeable if the corre-
sponding parameter Q [see Eq. (36)] is larger than unity,
Q ) l. In turn, Q strongly depends on yo; above a certain
beam energy the "jitter" becomes, therefore, negligible.
The typical energy range is above 50 MeV for hydrogen
filling and above 80 MeV for helium filling.

V. CONCLUSIONS

We have considered the inhuence of multiple scattering
on the small-signal gain in a gas-loaded FEL. The
inAuence was shown to be increasingly important in the
short wavelength region. Two new effects were con-
sidered, as compared to ordinary helical FEL's: the
phase "jitter" of a particle over one undulator period and
the coherence loss between different parts of the particle
trajectory. - Both lead to a significant gain reduction in
the short wavelength region. Analytical forms account-
ing for the above effects were obtained in a one-
dimensional approximation.

Numerical calculations were made to obtain insight
into the beam and undulator parameters necessary for
lasing in the ultraviolet. The hydrogen-filled GFEL's
were shown to have good prospects for this at today' s
technological level. To suit this task in the range of

E (MeV)

FIG. 9. The starting current I02 as a function of the beam
energy. The upper curve, helium, A, =61 nm, the lower curve,
hydrogen, A, =130 nm. The undulator parameters are A,„=2
cm, B0=5 kG.

wavelength 125—140 nm, an electron beam should have
an energy above 50 MeV and a good quality: a normal-
ized emittance of order 5m mmmrad and an energy
spread below 10 . All these parameters are achievable
with modern linacs and photoinjectors.

The undulator length was shown to have an optimum
that is connected to the inhuence of multiple scattering
on the radius of the electron beam as it passes through
the gas inside optical cavity. The optimal design for
wavelengths 125—140 nm involves 10—30 periods and a
total length of 20—100 cm; a GFEL operating in the
VUV region thus appears to be a compact device. One
can reach a gross small-signal gain of 20% with only 10
A of electron beam current.

The numerical scheme adopted in our calculations is
based on a one-dimensional approach and does not in-
clude many additional effects such as, for instance, beam
scattering in the input foil separating the accelerator vac-
uum and the undulator area, group velocity dispersion,
the transverse structure of the optical mode, etc. On the
other hand, it takes into account the most important
features of GFEL and may serve as a good basis for fur-
ther considerations.

APPENDIX A: AVERAGING OF THE PENDULUM
EQUATIONS OVER ONE UNDULATOR PERIOD

In order to simplify the equations, one should first
divide the variables e and @ into "slow" and "fast" parts,
e~e+Z, N~N+N, where 8 and N represent now
"fast" motions with typical frequency Q, which have to
be averaged out to obtain the equations of motion for the
"slow" variables e and 4. The fast energy variation F is
seen from Eq. (1) to be proportional to the small parame-
ter a, . In the lowest nonvanishing order we may, there-
fore, neglect Z terms and consider the energy e as a con-
stant when averaging the equations of motion over the
"fast" time scale.

The quantity of interest is then the phase 4. From Eq.
(7) one can find an approximate solution for 4 within one
undulator period,

C077lQ
4(z) = — (uo„sinQz —uo cosQz+uo~),eQ

(Al)

where z =z —Xi,„ is the longitudinal coordinate of the
particle, taken from the beginning of an undulator
period, 0&z &A,„.

Equation (7) is linear in 4&; the averaging is, therefore,
trivial and leads simply to cancellation of the terms con-
taining sinQz and cosQz [see Eq. (9)]. As for Eq. (1), it is
essentially nonlinear in N. The averaging over one undu-
lator period then gives
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comas
sinN~ f dz sin[@+4(z )]= dz sin 4— (uo sinQz —vo cosAz+ vo )

0 ~u tQ

comas
d g sin N —

uo~ cos
277 0 eQ

coma„
( vo„sing —

u0~ cosg )
eQ

2n.

2K 0

coma„
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(uo„sing —vo cosg)

eQ

The latter of the above integrals cancels because of the antisymmetric integrand, while the former leads to the final ex-
pression,

1sin@~—sin
'17'

coma„ 7i

v0 f dg'cos
eQ ~ 0

coma„
Otu sing' =sin

coma„
Vpy Jp

m coa„vp,

eQ

where uo, =+uo„+uo is the magnitude of the trans-
verse velocity of the particle [see Eq. (8)]. The vo~ depen-
dence in Eq. (A2) is an artifact appearing in the inter-
mediate stage of our calculations. Because of the azimu-
thal symmetry of the problem, it will disappear after a
proper averaging over all possible trajectories, as is done
in Sec. III.

APPENDIX B: TRANSFORMATION OF EQ. (29)

tion Jo [19],

cos x IcJ (~+x +y )=—f dge'~~ (81)

Having defined

coa„

y;Q

To perform the transformation, it is convenient to use
an integral representation of the zeroth order Bessel func-

and using Eq. (Bl), one obtains for the integral over
transverse velocity space in Eq. (29)

' 1/2 2

Jo(xu, )
4qz+ 490

lCO

8q

1» dg f» dg
(2~)2» +~2 g2» +~2 ri2

IU„&d—g' —U„&d—g' IU„'&2—g' —iV„'&2—g'X(e" +e " )(e" +e " ),

I(z, r) = 1 leo
d vg exp

(4qz+ go)sinh(&2icoq r)

X f d u,'exp[ ilc(u~ —u~—)]JO(vu,')

1/2
2v, .v',

Xexp —[v, +(v,') ]coth(&2icoq r)
sinh(v'2icoq r)

r 1/2
1 lCO

(4qz+80)sinh(V 2icoq r)

X f d u, f d v,'exp[ —Au, 8(u,') +2Cv, —.v', +i(lc g)u~ i(~—ri)v']— —

where

+ leo

4qz+80 8q

' 1/2

coth(/2icoq r),

lCO

8q

1/2

coth(&2icoq r),

and

1 lCO

sinh(&2icoq w) 8q
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are constants introduced for shorter notation.
The integral may thus be reduced to the sum of four integrals of a Gaussian type; each of them can be calculated with

the help of the following formula:

00 —Ax —By +2Cxy +i a ix + i a2y 2+~&1+2Ca,'12
dx dye exp

oo oo &AS —C' 4( Aa C')—

The combination ( AB —C ) is common for all the four integrals and is equal to

cosh(&2icoq r)+&2icoq (z+8&/4q)sinh(V'2icoq r)
AB —C =

Sq (4qz+8e)sinh(&2icoq r)

Calculating the four Gaussian integrals and putting them together, one has

/
2q tc(tc —ri)sinh(&2icoq r)

cosh(&2i coq r)+ &2i coq (z+ 8&/4q )sinh(+2icoq r)

2q(z+ 8o/4q ))/(tc ri )(tc —g)—
cosh(&2icoq r)+ /2icoq (z+8O/4q )sinh(/2i coq r)

Xexp

Xcosh

I( ) I» dg' y» dri 1
—» V'tc g~ ——Qtc —ri [cosh(i/2icoq r)+')/2icoq (z+8o/4q)sinh(&2icoq r)]

2q (z +8&/4q ) [tc(2tc ri —g)c—osh'( /2i coq r ) (tc —ri—)(tc—g) ]Xexp
cosh(/2icoq r)+v'2icoq (z+8 /o4q) isnh(+2i cqor)

1 2

(B4)

Substituting the above result into Eq. (29) and introducing new variables ri=tccosP, g=tccosg, r=t/&coq, and
z = T /v'coq —8O/4q, we arrive at our final formula Eq. (34).
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