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A method is presented for solution of the spatially inhomogeneous Boltzmann equation in the two-
term approximation for low-pressure inductively coupled plasmas (ICP). The total electron energy
€ = w — e (the sum of kinetic energy w and potential energy e¢ in an electrostatic field) is used
as an independent variable in the kinetic equation. Two energy ranges are distinguished. In the
elastic energy range w < ¢*, where £* is the first excitation energy, the problem is effectively reduced
to one variable (total electron energy) by performing an appropriate spatial average. The electron
distribution function (EDF) in this energy range is a function solely of ¢ and does not depend
explicitly on the coordinates. In the inelastic energy range, the kinetic equation in the variables
(r,2,€) (two spatial coordinates and the total energy) is solved for trapped and free electrons in a
cylindrically symmetric ICP with a given spatial distribution of electric fields. The EDF and the
spatial distributions of the electron current density and the ionization rate are calculated as functions
of pressure, plasma density, and the profile of the electrostatic field. Explanations of some available
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experimental observations are given.

PACS number(s): 52.25.Dg, 52.50.Dg, 52.65.—y, 52.80.—s

I. INTRODUCTION

Recent demands in plasma processing of materials have
resulted in the introduction of a new generation of plasma
sources operated at low pressures 1 — 100 mTorr [1]. Mod-
eling of these sources plays an important role in under-
standing the basic physical properties of the plasma and
aids source design. For these low pressures, the main
difficulties in discharge modeling arise from the neces-
sity of rigorous kinetic treatment of electrons in spatially
inhomogeneous plasmas in the presence of complicated
electromagnetic fields. Since the electron energy relax-
ation length typically exceeds the source dimensions, the
spatial nonlocalness of the electron spectrum is of vital
importance. The spatial displacement of electrons oc-
curs faster than their energy relaxation, thus the electron
spectrum is governed by discharge properties in the whole
volume, not just local characteristics. One striking non-
local effect manifests itself in the spatial displacement of
the ionization rate with respect to the electric power de-
position. The hydrodynamic approach, which treats the
electron gas as a fluid characterized by density, velocity,
and mean energy, can give only a rather crude description
of phenomena in low-pressure plasma sources.

One such “novel” plasma source which is increasingly
being used in semiconductor manufacturing and other
applications is an inductively coupled plasma (ICP). The
ICP is sustained by an inductive RF electric field from a
coil which results in electron heating. A planar coil con-
figuration was developed to satisfy manufacturer’s needs
of plasma uniformity in a large volume [2]. The intrin-
sically two-dimensional character of ICP with a planar
coil makes ICP modeling a rather complicated problem.
Straightforward numerical simulation using Monte Carlo
treatment of electrons is a computationally very demand-
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ing task [3]. Comparatively fast yet effective kinetic mod-
eling of ICP has recently been demonstrated by Kortsha-
gen and Tsendin [4], who self-consistently calculated the
electron distribution function (EDF) and electric fields
in the plasma. The model of Ref. [4], however, leaves out
important physics since it is assumed that all electrons
are trapped in the plasma by a static space-charge elec-
tric field. Calculation of the wall potential and kinetic
treatment of free electrons which escape to the walls are
necessary to explain the experimentally observed behav-
ior of the light emission [5] and plasma uniformity as a
function of gas pressure, coil design and chamber geom-
etry.

One can take advantage of low operating pressures to
simplify the treatment of nonlocal electron kinetics in the
transition region between having no collisions and many
collisions. In a weakly ionized low-pressure ICP, electron
collisions with neutrals dominate over collisions between
the charged particles. Even if the electron gas is colli-
sion dominated, it is the electron momentum which un-
dergoes a substantial change in every collision with neu-
trals, not the electron energy. This is due to the large
mass difference between the colliding partners. Thus, the
energy relaxation length of the electrons greatly exceeds
the momentum relaxation length. The dimensions of the
discharge chamber are typically less than or comparable
to the energy relaxation length. The so-called nonlocal
approach, which was originated by Bernstein and Hol-
stein [6] and Tsendin (7], is appropriate for these con-
ditions. The key idea of this approach consists of using
the total electron energy (kinetic plus potential in the
static space-charge field) as the independent variable in
the Boltzmann equation. This idea proved to be insight-
ful and effective in application to various gas discharge
problems [8-11] and has recently been applied to ICP
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modeling in Refs. [4], [5], and [12]. For trapped elec-
trons (which represent the vast majority of electrons in
ICP) a further simplification can be achieved. Regard-
less of the multidimensional character of a discharge, an
appropriate spatial averaging of the Boltzmann equation
reduces the number of variables in the problem to only
one (total energy). The experimental data [5,13] con-
vincingly demonstrate that for the majority of electrons
the EDF in a typical ICP is a function of total electron
energy only and does not depend explicitly on the coor-
dinates. Nevertheless, the spatial information is retained
in the EDF calculated from the spatially averaged kinetic
equation. This is revealed when the EDF is expressed in
terms of the kinetic energy.

A relatively small fraction of electrons in an ICP can-
not be treated using the spatially averaged kinetic equa-
tion. These are (i) free electrons which are capable of
escaping to the chamber walls and (ii) fast electrons hav-
ing an energy relaxation length less than the discharge
dimensions. While these electrons give small contribu-
tions to the plasma density, they determine such impor-
tant discharge characteristics as electron direct current
density and the ionization rate. A rigorous treatment of
these electrons is therefore just as important in ICP mod-
eling as the description of slow electrons, which represent
the vast majority of the ensemble.

The present paper is devoted to the kinetic treatment
of electrons in ICP. We divide the electrons into differ-
ent groups by total energy and demonstrate an effective
method for numerical solution of the nonlocal Boltzmann
equation in different energy ranges. We use the spatially
averaged kinetic equation for slow electrons in the elas-
tic energy range and solve the spatially inhomogeneous
Boltzmann equation in the inelastic energy range (the
EDF tail). We calculate the EDF, the ionization rate,
and the electron fluxes in an ICP and compare our results
with some available experimental data. In particular, we
explain the experimentally observed dependence of the
spatial distribution of light emission on the gas pressure

[5]-
II. ELECTRON BOLTZMANN EQUATION
FOR ICP

We consider an ICP driven by an inductive electric
field from a spiral coil placed on the dielectric roof of a
squat cylinder of height L and radius R with metallic
walls and bottom (Fig. 1). The azimuthal component of
the RF inductive field Ey (Fig. 1) is responsible for elec-
tron heating. The electrons and ions created by electron
impact tend to diffuse out of the plasma, and, since elec-
trons are faster, a positive space-charge excess develops in
the volume. A space-charge field is built up which assists
the ion current and retards the electron current. At high
charge densities, when the electron Debye length is small
compared to the discharge dimensions, a weak ambipolar
space-charge field in the plasma gives rise to a combina-
tion of diffusive and mobility flow of charged particles.
In the ambipolar regime, the electron and ion currents
in the plasma are equal. In addition to the ambipolar
field in the plasma, a potential drop in the sheath near
the walls is set up to trap the majority of the electrons
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FIG. 1. Schematic of the discharge. The contour lines

on the right show the levels of the calculated azimuthal RF
field Ey for an argon pressure p = 30 mTorr and a plasma
density on axis of n=10'° cm™3. The contour lines on the
left are equipotential lines of the electrostatic field E;. These
lines also indicate the discharge cross sections accessible to
electrons with different total energies ¢.

and assure the balance of total electron and ion currents
to the walls. In a steady state, each electron must have,
on average, one ionizing collision in the plasma before
escaping. As the space-charge field reduces the electron
escape rate it also reduces the required ionization rate.
If the ionizing collision frequency is less than the elastic
collision frequency, an electron undergoes many elastic
collisions in the discharge volume before it escapes to the
wall. Owing to the substantial change of electron mo-
mentum in an elastic collision, an almost isotropic EDF
is formed for the majority of electrons regardless of the
ratio of the electron mean free path to the discharge di-
mensions.

We assume that the total electric field has the form
E = E; + Eg exp(iwt), where E; is the DC space-charge
field with potential ¢(r) and Ejy is the azimuthal compo-
nent of the RF inductive field (Fig. 1) with w being its
angular frequency. The shape of Fj is determined by the
coil design, by the influence of induced currents on the
metallic sides of the chamber and by the plasma shield-
ing. The equipotential lines of the field E, are shown
schematically in Fig. 1. In the general case, analysis
of the electron spectrum which is formed in a bounded
plasma with such a configuration of electric fields in the
presence of different types of collisions is a rather com-
plicated task. For a weakly ionized ICP, electron colli-
sions with neutrals dominate over collisions between the
charged particles. Specific features of the electron kinet-
ics depend on the relation between the electron mean free
path for momentum transfer, )\, and the characteristic
discharge dimensions, L and R, as well as on the relation
of the collision frequency to the RF field frequency w.

We will consider primarily the collisional case when the
electron mean free path A is much smaller than both the
dimensions of the chamber and the characteristic spatial
scale of the RF field decay é,. It is supposed that the RF
field strength is such that the oscillation amplitude of the
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electron motion under the action of this field is small as
compared to L, and the energy gained during the field
period is smaller than characteristic energy of electrons.
For most gases the transport frequency v exceeds the
total inelastic collision frequency v* at energies near the
first electron excitation level €*, and the conventional
two-term approximation for the EDF is applicable for all
electron energies typical for ICP:

fv,z,rt) = fo(v,z,m,t) + (v/v) - fi (v, z,7,t). (1)

The EDF components are functions of the electron speed
v, the spatial coordinates z and 7, and time ¢t. When
expansion (1) is substituted into the Boltzmann equation
where the magnetic field is neglected, and each term is
expanded in spherical harmonics, one obtains [14,15]

afo v e 9 -

W—ngr fi; + 3 vzb‘;(v E-f1) = C(fo), (2)
afl eE (9f0 _

B TUVlot gy = v ®)

The collision term C(fo) depends only on the isotropic
part fo. Electron collisions with neutrals in the con-
sidered energy range can be unambigously divided into
quasielastic and inelastic. Quasielastic collisions include
those with small energy loss compared to the electron
energy, i.e., elastic collisions and excitation of molec-
ular vibrations and rotations. They are described by
the Fokker-Planck collision integral and characterized by
the parameter 6 < 1 which is the average fraction of
the energy lost in a single collision. For atomic gases,
6 = 2m/M < 1, where M is the atom mass. For typ-
ical electron energies in ICP, inelastic collisions lead to
an energy loss comparable to the electron energy, e.g.,
in excitation of electron levels and ionization of neutrals.
They are represented by an absorbing term in the kinetic
equation (see below) and characterized by the frequency
v*(v). The electron-electron collision operator can be
written in the Fokker-Planck form with characteristic fre-
quency

4metnA
ee = T

; (4)

m2y3

where n is the electron density and A is the Coulomb

logarithm.
For typical pressures, the energy relaxation length in
elastic collisions Ay = Ad~1Y/2 > X greatly exceeds

the discharge dimensions. For typical plasma densities,
Vee < v for the majority of electrons. The EDF re-
laxation length due to ee collisions is given by A.. =
A(V/Vee)t/?. Since an electron performs a random walk
with the step ), the length A.. corresponds to the elec-
tron displacement during the time v_! between subse-
quent ee collisions. When the EDF relaxation length ex-
ceeds the discharge dimensions, it is useful to include the
influence of the static field on the electron kinetics using
the total energy of the electrons € = w — e¢, where w is
their kinetic energy, as an independent variable. Since
the change of the total energy due to electron heating
by the RF field and energy transfer in collisions are slow

compared to the time scale of the spatial displacement of
electrons, the total energy ¢ is approximately an integral
of the electron motion.

The time scale of fy relaxation is determined by the
collision integral C(fo). Since v* K v,év < v, fo relax-
ation is much slower than momentum relaxation which
occurs with the time scale 1. In the presence of the RF
inductive field of the frequency w > v*, and the static
space-charge field, the isotropic component f; is mod-
ulated only slightly and can be assumed constant to a
first approximation. The anisotropic part f; breaks into
oscillatory and steady-state parts:

fi = ff(v, z,7) + fll (v, z, ) exp(iwt). (5)

Bearing in mind the above assumptions and using the
total energy € as an independent variable, one can rewrite
Egs. (2) and (3) in the form

0 0]
V. WD,V fo) + SwDs I =u0(f)), ()
v )
fj? = _;Vrf07 (7)
1 veEg 8fo
fi = v4iw O (8)

Equation (6) is obtained by substituting f2(z,r,¢) and
fl(z,7,€) from (7) and (8) and averaging over the oscil-
lation period. In this approximation f} is determined
by the local value of the RF field. Thus we neglect
the spatial dispersion of the electron conductivity and
the collisionless electron heating [16-18]. The left-hand
side of Eq. (6) describes the electron diffusion in con-
figuration space and in energy. The diffusion coefficient
D, (z,7,&) = vA/3 and the diffusion coefficient in energy

2 3
Dg(z,re) = (eEo(z,r)A) v 1

6(1% + w?) g(eEeﬂ)‘)zV (9)

are functions of the coordinates and the total electron en-
ergy. According to Eq. (6), the time-averaged energy gain
from the RF field corresponds to diffusion in €. The dif-
fusion coeflicient in energy is proportional to the square
of the effective field Eeg = (Fo/+/2)[1+ (w/v)?]*/? which
rapidly vanishes with increasing distances from the coil.
The heating is therefore spatially inhomogeneous and oc-
curs mainly in the vicinity of the coil.

Let the maximal value of ¢(z,r) in the plasma corre-
spond to ¢ = 0. The wall potential ¢,, is set up to ensure
the integral balance of ionization and electron escape to
the walls. Since the characteristic time for electron spa-
tial diffusion is small compared to the time between sub-
sequent ionizing collisions, —eg,, must exceed the lowest
excitation potential of atoms &* (or the ionization po-
tential, if direct ionization prevails) [8]. Using the total
energy ¢ as the independent variable, we distinguish two
energy ranges. The elastic energy range corresponds to
€ < €*. The electrons in this energy range are trapped in
the potential well. The only mechanisms for their energy
relaxation are elastic collisions and electron-electron in-
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teractions. The electrons in the inelastic energy range,
€ > €*, can be subdivided into two groups: trapped (with
€ < —e@y,) and free (with € > —e¢,,). We consider be-
low specific features of electron kinetics in the elastic and
inelastic energy ranges.

III. INELASTIC ENERGY RANGE

Practically the whole discharge area is accessible to
electrons in the inelastic energy range. The EDF tail (at
€ > €*) in the collisional case comprises a small fraction
of the total number of electrons and exponentially de-
creases with ¢ [12]. Consequently, in inelastic collisions
most electrons lose almost all their energy. The source of
electrons can be neglected in the inelastic energy range.
Since the electron-electron collision frequency decreases
rapidly as the electron velocity increases, the electron-
electron interactions do not influence the EDF in the in-
elastic energy range. Taking into account only important
terms, the kinetic equation (6) in the inelastic energy
range can be written in the form

9fo

o
Vr * (vDrVrfO) + EEUDE'%"E"

= v (w)O(e —e* —ed(r,2)) fo, (10)
where v*(w) is the total frequency of inelastic collisions.
The left-hand side of (10) describes the particle diffu-
sion in space and in energy with coordinate and energy-
dependent diffusion coefficients. The right-hand side
represents the particle absorption. The step function
©(z) emphasizes that the “absorbing” region in the (z,r)
space (the area where inelastic collisions occur) occu-
pies only that part of the discharge volume where the
electrons with total energy & have kinetic energy w suf-
ficient for excitation. The energy relaxation length of
fast electrons (with w > ¢*) from Eq. (10) is given by
A* ~ A(v/v*)Y/2 > A. This length corresponds to elec-
tron displacement during the time 1/v*. Since electrons
undergo a random walk with step size A, the length A* is
a net distance an electron travels before an inelastic colli-
sion occurs. This length differs evidently from the mean
free path with respect to inelastic collisions, v/v*. Since
typically A* <« Ar, the requirement of the EDF non-
locality is more stringent in the inelastic energy range.
When A\* < L < Ar the EDF in the elastic energy range
(e < €*) is nonlocal while the EDF in the inelastic energy
range is almost local. In this case, a strong depletion of
the EDF tail is expected in the “absorbing” region in the
(2,7) space where inelastic collisions occur.

Neglecting the sheath thickness, the boundary condi-
tions for both trapped and free electrons can be speci-
fied at the chamber walls. The boundary condition for
trapped electrons corresponds to their reflection by the
potential well:

9fo
on

where 77 denotes the direction normal to the walls. Free
electrons (with total energy € > —e¢,,) are capable of

=0, (11)

escaping from the discharge. The isotropy of the EDF is
disrupted within a length A of the walls (because of the
absence of an inverse flux). To escape from the discharge
an electron with € > —e¢,, must move toward the wall,
i.e., after the last scattering its velocity must lie in a
loss cone. The loss cone is determined by the condition
that electron kinetic energy associated with motion in
the direction normal to the wall exceeds the potential
drop in the sheath eA¢. A boundary condition at € >
—eg,, can be obtained by imposing equality of the normal
component of the electron diffusive flux and the electron

7 loss to the wall [19]:

A fo Q
-D,—= = —_—, 12
on vfo 4 (12)
where —L%; is the derivative normal to the wall. The frac-

tion /27 represents the fraction of the thermal flux lost.
The solid angle 2 of the loss cone is given by

_ [ eA¢
Q-——27T(1“ m).

Electrons having kinetic energy w = & + e¢g, near the
wall and managing to get into the loss cone after the last
scattering can overcome the potential drop A¢ and reach
the absorbing wall.

(13)

IV. ELASTIC ENERGY RANGE

Energy loss in elastic collisions with neutrals and
electron-electron interactions are the only mechanisms
for EDF relaxation in the elastic energy range € < e*.
Under nonlocal conditions the corresponding relaxation
lengths exceed the chamber dimensions, and the slow
electrons bounce in the potential well with (almost) con-
stant total energy. The surface ¢ = —e¢(z,7) bounds the
area accessible to electrons with energy €. Since the spa-
tial displacement of electron occurs rapidly compared to
the total energy change due to collisions and heating, a
spatial averaging of Eq. (6) over the accessible area can
be performed [10,12]. The idea of spatial averaging, orig-
inated by Bernstein and Holstein [4] and Tsendin [5], is
analogous to that of time-averaging used above to derive
Eq. (6). In the case of a time-dependent field the elec-
tron energy gain averaged over the field period is gov-
erned by an effective electric field F.g. In a spatially
inhomogeneous case, due to rapid electron diffusion, the
whole available discharge cross section contributes to the
EDF formation. This means that the heating rate is de-
termined by a spatially averaged field Eg rather than its
local value, the effective energy transfer in ee collisions
is determined by the whole plasma density profile in the
discharge volume, etc. This nonlocal case can therefore
be considered as the opposite limit to the local case where
the EDF is governed by local parameters of the plasma.

According to the Bernstein-Holstein-Tsendin (BHT)
method, the EDF of trapped electrons under nonlocal

conditions can be expressed in the form
for,2,6) = £$7(e) + £§0 (7, 2,€) (14)

where the principal part f(go)(z-:) is a function of the total
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energy only, and fél)(r,z,e) is a small correction. The
EDF féo)(e) can be calculated from a spatially averaged
Boltzmann equation. Integrating Eq. (6) over the volume
accessible to electrons with total energy ¢, one obtains

(0)
- {((vDE> + @w.) To

+((vVee) + (vVen)) éo)} = (vl). (15)

The angular brackets () designate integration over the
accessible volume of the discharge. For a quantity
G(r, z,w), due to axial symmetry

(G) =2m /s( ) G(e + e¢(x))rdrdz, (16)

where S(g) is the available area bounded by the curve
€ = —e¢(z,7). The shape of the EDF is governed by the
balance between the electron energy diffusion caused by
heating and ee collisions and dynamical friction caused
by energy loss in elastic collisions (Vexy = wév) and ee in-
teractions; I is the source of slow electrons. The electron-
electron collision integral is written in the Fokker-Planck
form with diffusion coefficient D., = 2mwv,..4; and dy-
namical friction coefficient V. = 2wvr..A;. Functions
Ai1(fo) and A2(fo) are given by

o (2\*2( (¥ oo
Ay = — (—) {/ w32 fodw +w3/2/ fodw} ,
3n m ) w

(17)

3/2 pw
4, = (3) / w2 foduw, (18)
1]

n m

where w(e, z,7) is the kinetic energy. For w — oo, A; —
T./m and Ay — 1, where T is the electron temperature.
The electron density is given by

3/2 a0
n(z,r) =27 (%) ¢f0(e)\/e + e¢ de. (19)

Dividing Eq. (15) by (v) one obtains
1 df{”

T {(DE +D.) 4o

+ (Vee + veN) 50)} = Ia

(20)

where the quantities Dg, Dee, Vee, Ven, and T designate
the spatially averaged values, e.g., Dg = (vDg)/(v), etc.
The quantity (v) describes the change of the phase space
volume with change of e. The procedure of spatial aver-
aging reduces the problem of the EDF calculation to the
solution of the ordinary differential equation (20). The
physical meaning of spatial average is straightforward.
Due to rapid electron diffusion, the whole available dis-
charge cross section contributes to the formation of the

EDF. Though the EDF in (20) does not explicitly depend
on the coordinates, the spatial information is retained im-
plicitly, as is revealed when the EDF is expressed in the
kinetic energy domain. The EDF versus kinetic energy
at a given position can be found from the relation

éo)(w,r, z) = éo) (e = w—ed(r, 2)) (21)

which can be treated as a generalization of the Boltz-
mann relation for a non-Maxwelliam EDF. Expression
(21) splits up into a product of two factors, one depend-
ing only on the coordinates and the other on the kinetic
energy, only in the case of a Maxwellian EDF fo(¢). In
this case, Eq. (21) corresponds to a Maxwell-Boltzmann
distribution, and the electron density from Eq. (19) is
given by the conventional formula n. ~ exp(e¢/T.).

The EDF féo) (g) corresponds to exact compensation
of electron drift and diffusion fluxes for each €. However,
the diffusion and drift energy fluxes are only compen-
sated on average over the discharge cross sections. The
small correction term fél) which describes the electron
flux in configuration space can be obtained from Eq. (6)
as described in Ref. [7].

The solution of the spatially averaged Boltzmann equa-
tion (20) should be matched to the solution of the full
equation (6) at energies slightly below the excitation po-
tential £*. In the case \* < L the EDF may depend
explicitly on the coordinates even in the elastic energy
range in the vicinity of €*. For low pressures when
A* > L the averaging is applicable for trapped fast elec-
trons as well. In this case the EDF does not depend
explicitly on the coordinates up to energies near the wall
potential.

V. RESULTS

Though spatially resolved measurements of EDF’s in
ICP are available [5,13], the purpose of the present study
was to examine the influence of different parameters on
the EDF shape rather than perform detailed calculations
for specific experimental conditions. Thus, the data for
necessary collision cross sections were assumed to have
a simple analytic form [10]. The electrostatic potential
profile ¢(z,r) in the plasma was chosen in the form

#(z,7) = dsn [1 = (%z - )"] [1 - (%)N] — Psh,
(22)

where ¢}, is the potential at the plasma-sheath bound-
ary. The thickness of the sheath was neglected and the
wall potential ¢,, was defined to guarantee the balance
of electron production and escape [5]. The azimuthal
component of the RF electric field Ey was calculated
for given coil current and plasma density as in Ref. [4].
We have calculated the EDF, the light emission spatial
distribution and electron flux for different argon pres-
sures, plasma densities, and profiles of the potential in
the plasma.

The EDF body was calculated from Eq. (20), and
matched to the solution of (10) for the EDF tail at



52 ELECTRON DISTRIBUTION FUNCTION IN A LOW-PRESSURE. ..

e = 0.8¢*. The discretized partial differential equation
(10) was solved using Newton’s method. For each New-
ton iteration, a relevant linear matrix equation was solved
using Gaussian elimination. We used a software pack-
age [20] especially designed for large-scale computational
problems in applied physics.

Figure 2 illustrates the x dependence of Dg and the
EDF. For a rectangular potential well (kx — o) the en-
tire cross section of the discharge chamber is accessible
to electrons. The EDF shape is determined by a spatially
averaged value of the RF field [according to Eq. (20)]. For
a rectangular potential well, the quantity Dg decreases
with € only due to the v(v) dependence. As in a spa-
tially homogeneous case, concave and convex EDF’s in
the semilogarithmic plot versus € can be obtained for a
Ramsauer gas for different ratios of w/v. For finite k, an
additional decrease of Dg with € is caused by the strong
nonuniformity of the heating field. The decrease in skin
layer thickness results in cooling of the slowest electrons.
These electrons cannot overcome the ambipolar poten-
tial barrier and thus cannot reach the region of high Ey
where the heating occurs. Due to both these circum-
stances, the averaged energy diffusion coefficient Dg in
argon vanishes at low electron energies [Fig. 2(a)]. The
electron-electron interactions are the only mechanism of
energy exchange for the slowest electrons. In ICP, they
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FIG. 2. (a) Space-averaged diffusion coefficients in energy
Dg(e) and Dec(e) and velocity Vee(e) for kK = 4 (curve 1)
and k = 2 (curve 2), plasma density n = 10'* cm™3. (b)
The dimensionless EDF F = 27"(27—?)3/2f0 in the elastic en-
ergy range for different shapes of the electrostatic potential,
Eq. (14), and plasma density n: 1, k=2, n = 5x10° cm™3;
2, k=4; n = 5x10° cm™3; 3, k=2, n = 10" cm~%. p = 30
mTorr, —e¢sn = €".

977

prevent formation of a large peak at low energies such
as is observed in capacitively coupled plasmas, where the
plasma density is usually smaller [21]. The more the en-
ergetic electrons penetrate into the RF field region, the
larger is Dg. Consequently the EDF slope in this energy
range diminishes with increasing of ¢ [Fig. 2(b)].

The solution of the full kinetic equation, Eq. (10), has
been performed in the inelastic energy range. The cal-
culated EDF’s are shown in Fig. 3 for two different pres-
sures at various spatial positions as functions of the total
electron energy. For the high-pressure case (A* < L), de-
pletion of the EDF tail is observed in the region of the
highest dc potential (where inelastic collisions occur). In
the low-pressure case, the EDF tail depends on the posi-
tion for free electrons only. For this case, an important
nonlocal effect appears in the spatial separation of elec-
tron heating and ionization, similar to that in capacitive
RF discharges [21]. Though the electron heating occurs
in the region of high RF field, a maximum of the ioniza-
tion is produced near the maximum of the electrostatic
potential ¢(z,r) where the RF field is absent.

Figure 4 shows the calculated spatial distribution of
the excitation rate. It allows us to explain the difference
between the experimentally observed shapes of the light
emission for different pressures [5]. With the pressure de-
crease the maximum of the light emission moves from off
axis where the heating takes place to the discharge axis
where the maximum of the electrostatic potential occurs
(see Fig. 4). Beyond the heating region in the vicinity

o Electron Distribution Function

10
a

1 1.3 4 1.6
Total Energy (¢/€*)

Electron Distribution Function

1 1.3 1.6
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FIG. 3. The dimensionless EDF F = 2% (2:2)3/2f, in the
inelastic energy range for (a) p = 30 mTorr, —e¢,=1.3 €* and
(b) p= 10 mTorr, —e¢,=1.5 €*. Solid line, r = 6 cm, z = 1
cm; dotted line, » = 6 cm, z = 7 cm; dashed line, »r = 6 cm,
z = 13 cm; dash-dot line, » =0 cm, 2 = 7 cm.
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FIG. 4. Contours of the ionization rate for two pressures:
(a) p = 30 mTorr, (b) 10 mTorr. n = 10'! cm™?, k = 4, wall
potential —e¢,, = 1.5¢™.

of the coil, the electrons diffuse with conservation of the
total energy and have the highest kinetic energy in the
region of the highest electrostatic potential. The maxi-
mum of the light emission is observed here at low pres-
sures. This maximum moves off axis when the electron
energy relaxation length in inelastic collisions becomes
less than the discharge dimensions and the fast electrons
suffer from inelastic collisions before reaching the region
of the highest potential.

The electron current density in ICP has both direct 7,
and alternating j. components. They are determined by
the components f and f} of the EDF. These are in turn
found to be derivatives of fo. Thus, from Egs. (7) and
(8) one obtains

2 o 3
je(z,m) = _A4me”Ey v %de, (23)
3m —ed(r,z) V T+ iw Oe
. 4me v3
Js(z,7) = —— —(V fo) de. (24)

3m J_ep(r,z) V

The calculated current density j, is shown in Fig. 5 for
two pressures. The arrows indicate the direction and the
amplitude of j,. The contour lines in Fig. 5 indicate the
EDF levels at fixed total energy. The highest density
of electrons in the inelastic energy range is observed in
the vicinity of the coil where the energy diffusion coef-
ficient Dg(z,7,¢) has a maximum with respect to the
coordinates. It is worth emphasizing that the maximum
value of the total electron density for these conditions is
reached on axis.
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FIG.5. Spatial distribution of the electron dc current den-
sity for (a) p = 30 mTorr, (b) 10 mTorr. The arrows show
the direction and the magnitude of the dc current density, the
solid lines show the EDF levels for electrons with a fixed total
energy € = 1.3¢".

VI. DISCUSSION

The model described here is applicable in a specific
range of discharge conditions. The assumptions de-
scribed in Sec. II require that the pressure be sufficiently
low to assure the electron energy relaxation length in the
elastic energy range be larger than the chamber dimen-
sions. On the other hand the pressure must be compar-
atively high to assure the neglect of collisionless electron
heating. The plasma density must be low enough to pre-
vent the localization of the EDF due to electron-electron
interactions.

Electron kinetics under nonlocal conditions differ con-
siderably from local hydrodynamic behavior. Some strik-
ing examples can be listed. Both dc and ac densities j,
and j, given by Eqgs. (23) and (24) differ from the clas-
sical hydrodynamic expressions. Since in the collisional
case considered here the spatial dispersion of the electron
conductivity was neglected, the ac density j. is propor-
tional to the local value of the RF electric field. How-
ever, j. is not proportional to the local electron density,
as in the hydrodynamic case, but is determined by the
plasma properties in the entire volume through the non-
local EDF. As the pressure decreases, when collisionless
electron heating comes into play, j. begins to be gov-
erned by the entire RF field profile rather than a local
field value.

The fluid approach divides the dc current density j,
into diffusion and drift parts:

Jjs = —eD.V n — epcn.E,, (25)
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where the electron diffusion and mobility coefficients are
integral characteristics of the electron spectrum. In the
nonlocal case, these coefficients are functions of the co-
ordinates. They cannot be calculated a priori without
knowledge of the EDF. Since in the nonlocal case the
electrons of different £ behave almost independently, they
contribute in an entirely different fashion to such inte-
gral EDF quantities as density, mean velocity, and tem-
perature. According to the BHT approach, the EDF of
trapped electrons in the elastic energy range is only a
function of total energy and does not depend explicitly
on the coordinates. These electrons therefore give no con-
tribution to dc density j, while they are primarily respon-
sible for the ac density j. and the plasma density. The
mechanism of electron diffusion in low-pressure bounded
plasmas differs considerably from classical ambipolar dif-
fusion. For trapped electrons, the (energy resolved) elec-
tron diffusion flux against the field E; is exactly canceled
by the mobility flux . The electron dc density j, is trans-
ported only by free electrons and those electrons in the
inelastic energy range whose EDF depends explicitly on
the coordinates. It is worth emphasizing that the den-
sity of trapped electrons exceeds the density of untrapped
electrons by orders of magnitude, but the contribution of
slow electrons to the dc current is zero in this model.
When the dc density is transported only by “free” diffu-
sion of the untrapped electrons, it is in principle impossi-
ble to express j, in terms of the total electron density and
its derivatives [9]. Therefore, Eq. (25) is altogether mis-
leading in this case and can result in substantial errors.
Attempts to express the current density j, in terms of
other characteristics averaged over the entire EDF (e.g.,
electron temperature), or addition of the thermodiffusion
term to Eq. (25), do not substantially improve its accu-
racy.

Since the EDF is a function of total electron energy, the
mean kinetic energy of electrons is spatially uniform only
for a Maxwellian EDF fq(¢). For a non-Maxwellian EDF
[represented by a convex (concave) curve on a semilog-
arithmic plot of fo versus €], the mean kinetic energy
of the electrons decreases (increases) from the point of
maximum potential towards the chamber walls [21].

The inequality v* < v assures the small anisotropy
of the EDF for the majority of electrons even for the
free-flight regime A > L. In this regime, the trapped
electrons perform many bounces in the well and pass the
heating region many times before being heated enough
to be lost to the wall. Collisionless electron heating in
this regime may prevail over Ohmic heating. Equation
(20) for the isotropic part of the EDF is expected to be
applicable in this case if the energy diffusion coefficient
is replaced in an appropriate manner. If the heating re-
gion occupies a small part of the discharge volume, the
spatially averaged diffusion coefficient in energy, Dg(¢),
can be expressed in terms of the energy Ae gained during
one passage through the heating region and the bounce
frequency Qp ~ v/L [22],

Dg(e) = (v(Ae)’)/(v). (26)

An electron gains net energy after (collisionlessly)
traversing the heating region in a time short compared to
the period of the field [22,23]. If the characteristic scale
on which the RF field decreases is §,, an essentially col-
lisionless heating occurs at wd, < v. The influence of the
RF magnetic field on the electron motion within the skin
layer may be important [24]. For the case §, <K A < L
the return of electrons into the skin layer is caused by
scattering [23]; the collision frequency v should be used
instead of the bounce frequency for calculation of the en-
ergy diffusion coefficient (26). The EDF formation in the
collisionless regime of electron heating will be treated in
detail elsewhere.

The main conclusions of the present work are as fol-
lows. (i) The approximation of small anisotropy of the
EDF is applicable for ICP in a wide range of gas pres-
sures. (ii) Total energy is an appropriate variable for
analysis of nonlocal electron kinetics. Using the total en-
ergy, two energy ranges can be separated. The EDF in
the elastic energy range is a function solely of the total
energy and does not depend explicitly on the coordinates.
(iii) Contrary to the local approach, the nonlocal EDF in
the elastic energy range depends on integral character-
istics of the plasma (fields, collisions) rather than their
local values. (iv) The EDF in the inelastic energy range
depends crucially on the ratio of the fast electron energy
relaxation length and the spatial scale of the discharge.
Various spatial distributions of the light emission, the
ionization rate, and the electron current may be observed
as the gas pressure varies.

VII. SUMMARY

We have obtained a numerical solution of the nonlocal
Boltzmann equation in the two-term approximation for
inhomogeneous bounded plasmas in the presence of static
and RF electric fields. We have presented a relatively
simple approach to the kinetic treatment of electrons in
a low-pressure ICP which offers considerable physical in-
sight and is very efficient computationally. We used it
to explain the spatial behavior of the EDF as well as
the ionization rate and electron current. The EDF in
the present model is not found self-consistently with the
electric fields. Self-consistent ICP modeling is in progress
where the proposed model of the electron kinetics is com-
bined with a consistent solution of the ion continuity
equation, Poisson’s equation, and the Maxwell equations

for the RF field.
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