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Chromosome mapping: Radiation hybrid data and stochastic spin models

C. T. Falk'* and H. Falk '~

'The Xew York Blood Center, Rem York, Rem York 10021
Physics Department, City College of the City University ofNew York, New York, New York 10027

(Received 4 November 1994)

This work approaches human chromosome mapping by developing algorithms for ordering markers
associated with radiation hybrid data. Motivated by the recent work of Boehnke, Lange, and Cox [Am.
J. Hum. Genet. 49, 1174 {1991)],we formulate the ordering problem by developing stochastic spin mod-
els to search for minimum-break marker configurations. In one particular application, the methods
developed are applied to 14 human chromosome-21 markers tested by Cox et al. [Science 250, 245
(1990)]. The methods generate contlgurations consistent with the best ones found by others. Additional-

ly, we find-that the set of low-lying configurations is described by a Markov-like ordering probability dis-
tribution. The distribution displays cluster correlations rejecting closely linked loci.

PACS number(s) 87 10.+e, 02.70.—c, 05.20.—y

I. INTRODUCTION

The use of data from radiation hybrid (RH) experi-
ments has become a useful method for fine structure map-
ping of human chromosomes. Based on methods de-
scribed by Goss and Harris [1,2], Cox et al. [3], and Bur-
meister et al [4] hav.e developed the technique in detail
so that results from their experiments provide material
for ordering DNA markers on human chromosomes.

The basic strategy employed in radiation hybrid map-
ping (fully described in Cox et al. [3])entails irradiating a
rodent-human somatic cell hybrid, which contains a par-
ticular human chromosome, with a lethal dose of x rays.
This will cause the chromosomes to break into several
fragments. After fusion with HPRT-deficient rodent cell
lines, only the fused cells, containing both the x-ray irra-
diated cells and the normal rodent cells, will survive if
grown in HAT medium. Detailed descriptions of HPRT
and HAT are contained in Ref. [3]. Each hybrid clone
arising from this fusion will contain a unique set of frag-
ments from the original human chromosome. Each clone
can then be typed for a set of human DNA markers
(equivalently, loci) known to be on that human chromo-
some. Based on the assumption that tightly linked mark-
ers are unlikely to be broken apart by the radiation,
markers close to one another wi11 show a correlated pat-
tern of retention in the clones; whereas, distant markers
will be retained in a relatively independent manner.

Several methods for ordering markers have been
developed using results from RH experiments [including
both parametric (Cox et al. [3], Boehnke et al. [5]) and
nonparametric methods (Boehnke et al. [5], Falk [6],
Bishop and Crockford [7], Weeks et al. [8]). In particu-
lar, Boehnke et al. [5] used a mathematical quantity asso-
ciated with the number of breaks and then used optimiza-
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tion techniques to minimize that quantity. One optimiza-
tion technique involved a simulated annealing search for
configurations associated with minimal numbers of
breaks.

We set out to study and understand the work of
Boehnke et at'. , and we developed a formulation in the
context of stochastic spin systems (Falk [9]). It may be
useful to point out some differences in the formulations.

Boehnke et al. use block inversions of a given marker
order and compare the old and new orders with respect
to "obligate" breaks. They then apply simulated anneal-
ing techniques and decide, at each time step, whether to
retain the original order or transition to the new. If a
transition would result in a smaller number of breaks, the
transition is made with probability 1. If a transition
would not decrease the number of breaks, then the transi-
tion probability is less than 1, and that transition proba-
bility systematically decreases over time.

In our study we implement three algorithms which in-
corporate the number of "breaks. " The three algorithms
are three stochastic spin models. These, too, are designed
to search for configurations with small numbers of
breaks. A probability is constructed to determine wheth-
er or not to retain the current order or transition to the
new. The probabilities are set up so as to bias the de-
cision towards transitions to configurations with fewer
breaks; however, at a given step, a possible transition
leading to a smaller number of breaks will not necessarily
be realized.

The spin language provides mathematically intuitive
expressions for the number of breaks. Those expressions
contain products of adjacent spin variables, and calcula-
tions involving breaks are easily presented in spin nota-
tion. For those seeking a rigorous mathematical setting,
we remark that Liggett [10] has treated stochastic spin
models and related models from biology, physics, and
economics. Liggett s book contains an extensive bibliog-
raphy and guides the reader to survey papers by
Cxriffeath, Durrett, Stroock, Holley, and others.
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Assign a particular DNA marker, labeled f,

(j =1,2, . . . , N), to each column. Associate a variable
("a spin") s; with the site at row i, column j. If the
marker f is present at site (i,j), take s;1 =+1;iff. is not
present at site (i,j ), take s;J = —l. If one is uncertain as
to whether a marker is present at site (i,j ), we take s;J to
be unknown, and we deal with such sites in a manner to
be specified subsequently.

For (j =1,2, . . . , N) the marker f was arbitra. rily as-
signed to column j. But any of the Xf assignments would
be possible. A criterion is needed for judging the "good-
ness" of an assignment.

Considering the DNA markers being tested for lie on a
particular human chromosome, those markers which are
tightly linked are likely to appear together or not appear
in each clone. Therefore, it is reasonable to seek those
marker assignments which reflect such correlation. For
that purpose we say that a "break" exists between sites
(i,j) and (i,j +1) whenever s,js;i+, = —1. The strategy
is to minimize the total number of breaks. Note that in
the two-dimensional array of spins, a break refers only to
horizontal, nearest-neighbor spin pairs.

Here we devise and test several algorithms which mon-
itor the total number of breaks while selectively permut-
ing column labels. The algorithms attempt to explore the
vast configuration space in the manner of a random
walk, " biased toward configurations having a reduced
number of breaks. Notice that for %=14 there are
N!=87 178 291 200 permutations of the numbers
(1,2, . . . , 14). Thus, in the spirit of the traveling sales-
man problem, simulated annealing techniques are used
(Kirkpatrick et al. [11],Press et al. [12]).

A. Nearest-neighbor transposition algorithm

(0) Start with a specified configuration {s] of the vari-
ables s; .

(1) Select a number j at random froin the set
{1,2, . . . , N].

(2) If jAN, compute the total number of breaks be-
tween columns j —1,j and between columns j + 1,j +2.
Denote that number by BJ(1):

II. METHODS

We are considering M cones, each of which is tested
for the presence (or absence) of N different DNA mark-
ers. It is convenient to represent the clones as M rows,
each with N sites. Thus, one pictures a two-dimensional
array of M rows, X columns:

for jH {1,2, . . . , N —I ]. The Kronecker delta contained
in (1—5;i) is inserted to handle "end effects" since
column 1 has no left neighbor and X has no right neigh-
bor.

(3) Repeat (2) with the spin values s; and s; +i inter-
changed for i = 1,2, . . . , M, and denote the resulting sum

by BJ(2) instead of B (1).
(4) Then compute B, the change in the number of

breaks resulting from the interchange of the columns of
spin values s; and s; j+1.

BJ =BJ(2)—B (1) for jC {1,2, . . . , N —I] . (2.2)

(5) Interchange DNA marker column assignments and
the associated spin values for columns j and j +1 with
prob ab1hty

exp( PBJ /M— )
for jr{1,2, . . . , N —1]

2 cosh(PB /M)

0 for j=X.
(2.3)

Do not interchange DNA marker column assignments
and the associated spin values for columns j and j+1
with probability

W2j 1 W1j

Note

(2.4)

exp(+PB~ /M)
for jP {1,2, . . . , N —I]

2 cosh(PBJ /M)

1 for j=X.
(2.5)

M X —11—g .g . +1qj q, J+ 1

q=1 j=1 2
(2.6)

The "inverse temperature" parameter p (0~p( ~ ) is
allowed to increase in an empirically determined manner
as the algorithm is implemented. Clearly very large p
strongly favors transitions reducing the number of
breaks, whereas, a small, positive value of P makes transi-
tions to increase or to decrease the number of breaks al-
most equally likely. Why not just take p large at the
outset? The answer is (Kirkpatrick et al. [11], Press
et al. [12]) that setting p large early in the calculation
may cause the algorithm to get "trapped" in a local
minimum before performing a significant search of
configuration space.

Thus, the initially chosen value for P and the manner
of increasing that value constitute the "art" of simu1ated
annealing.

(6) Return to (1) and repeat the procedure starting with
the current configuration {s'} of the variables s . The
procedure may be terminated after a specified number of
iterations and/or when the total number of breaks

M
Bi(1)= g (1—5J i) ej —1e

2

q, j+i q,j+21 —s s
j,N —1 2

(2.1)

has realized acceptably small values. For each run one
retains the configurations associated with the smallest
values of B.

If P were fixed, then the above procedure would define
a finite-state, discrete-tine Markov chain with transition
probability p ( {s']

~ {s ] ) from a configuration {s ] to
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configuration Is' j. Explicitly

1 N

j (I'j~t~j)= —X
M 1 +Sqi Sq j + 1 1+sq j+1sqi

2 k=1
kWj, j+1

1 +sqksqk

2

1+s ks k+no
q=1 k=1

M

B,k(1)= Q (1—5, , )
q=1

1 sq j 1sqj 1 Sqjsq j+
2

+
2

+ q, k —1 qk +(1 ~ )
qk q, k+11 —s s 1 —s s

2 k, N 2

B. Two-column transposition algorithm

A natural extension of the nearest-neighbor transposi-
tion algorithm involves columns k,j with k &j+1. Re-
move two numbers at random from the set I 1,2, . . . , N j.
Denote the smaller number by j and the larger by k. If
k =j + 1, follow the previously described nearest-
neighbor algorithm, starting with step (2). If k & j+1,
proceed as follows.

Consider the total number of breaks between columns
j —1,j;j,j + 1; k —1,k;k, k +1. Denote that number by
B k(1), where

(2.7)

1 sqksq k ++(1—
&k, lv) (2.13)

After flipping the block, the number of breaks is

M
Bblock(2 )

q=1

1 sq j lsq

2

I

number by j and the larger by k. If k =j + 1, follow the
previously described nearest-neighbor algorithm, starting
with step (2). If k &j+ 1, proceed as follows.

The block consists of columns j, . . . , k. Before flip-
ping the block, the number of breaks involving columns
j —1,j and columns k, k+1 is

M 1 —s ls.
Bb««(1)= yjk j 2q=1

(2.&)
1 S S k++(1—Sk, N 2

(2.14)

M

B,k(2) = g (1—|1, 1)
q=l

1 —
sq j 1s«1—

sqksq j+
'2 + 2'

+ q, k —1 qj +(1 ~ )
qj q, k+11 s s 1 —s s

2 k, N 2

(2.9)

After interchanging spin values s; and s;k for
i = 1,2, . . . , M, the number of breaks is

Bblock Bblock( 2 ) Bblock( 1 )jk jk jk

Now Aip the block with probability

exp( —PBjk'«/M)

2 cosh(PB&z""/M)

(2.15)

Then the change in the number of breaks is denoted by
8 "'" wherejk

Then the change {in the number of breaks) resulting
from the interchange is denoted by 8 k, where Do not Qip the block with probability

(2.16)

Bjk =B,k(2) Bjk(1) . — (2.10) W
block 1 W

block
WZjk W 1jk (2.17)

(2.11)

Do not interchange DNA marker column assignments
and the associated spin values for columns j and k with
probability

w2jk =1—w (2.12)

C. Block-Sip algorithm

As in the preceding algorithm, remove two numbers at
random from the set I 1,2, . . . ,Xj. Denote the smaller

Now interchange DNA marker column assignments
and the associated spin values for columns j,k for
k )j +1 with probability

exp( PB k/M—).
The preceding method is similar to the block inversion

algorithm used by Boehnke et al. , but our transition
probabilities differ from theirs.

D. Unknown site content

In any clone one may have strings of one or more sites
where the DNA marker associated with each site in a
string is unknown. Thus, the spin values are unknown
for the string. In the above algorithms such unknowns
are dealt with in the following way.

Consider the case where the left and right ends of a
string connect, respectively, to known spin sl,f, and to
known spin s„,h, . If Sl ft s„.~h„ then all spins in the
string are replaced by s„b,. If sl, z,&s„b„ then a fair
coin toss is simulated. If the coin shows head (tail), then
all spins in the string are replaced by + 1(—1).

If a string (of unknowns) contains an end spin, then re-
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TABLE I. Fourteen chromosome-21 markers used in the examples. All numbered loci have a prefix
of D21, APP denotes amyloid precursor, and SQD denotes superoxide dismutase.

APP S1 S4 S8 S11 512 S16 S18 S46 S47 S48 S52 S111 SOD

place all spins in the string by the value of the connecting
spin (st,«or s„h,), as appropriate.

With all spin values now specified, the number of
breaks can be calculated for any of the above algorithms,
and the relevant transition probability can be evaluated.
The simulated annealing proceeds one step. After that
step, all of the previously unknown spin values are again
regarded as unknown. (Note: Due to a possible column
interchange or block Aip, those unknown spins, which
previously belonged to particular strings, may now be-
long to diFerent strings. ) The above prescription for re-
placing unknown spin values by + 1 or —1 is now repeat-
ed, and the transition probabilities are reevaluated. The
simulated annealing proceeds another step, etc.

III. APPLICATION

As an example, consider the data presented by Cox
et al. [3] relating to 14 markers on chromosome 21 that
were tested in 99 RH clones. The 14 markers are given in
Table I. These are the same data used by Boehnke et al.
[5] and presented in detail in their Table 1. For our algo-
rithms an entry of 1 in their table becomes +1, 0 be-
comes —1, and a "?"remains unknown and is treated at
each step as described above.

All three algorithms were applied to the data in the
99X14 matrix for 200000 iterations. Initial values of P
and incremental steps for increasing P were chosen. This
produced a set of permutations with acceptably small
values of B, the total number of breaks for a particular
configuration. For each run, a ranked set of marker per-
mutations with the smallest values of B was retained.

Table II lists the two distinct "best" orders found by
each algorithm in a representative run. As can be seen,
the first algorithm, where two nearest-neighbor columns
are transposed, does not result in permutations with
values of B that are as low as those reached by algorithms
2 and 3. Although in principle, the nearest-neighbor
transposition should allow for visiting all possible permu-
tations of the columns, in practice, such exploration is
not efhciently accomplished here. The large
configuration space, and the empirical nature of selecting
P to implement simulated annealing, provide a computa-

tional challenge for the first algorithm. The other two al-
gorithms display improved ability to achieve low B values
with the chosen set of parameters. Additionally these al-
gorithms reach the same optimal order as that attained
by Boehnke et al. (see their Table 2), with the same num-
ber of breaks. The only difference is that we have re-
tained all 14 markers, whereas they combined markers
512 and S111, since the latter markers were indistin-
guishable in the data matrix. Hence for each marker or-
der in their Table 2, we would have two orders.

Although algorithms such as these do not assure that
the marker order with the smallest number of breaks is
the correct order, inspection of a set of low-lying states
leads to some useful information about the stability of
clusters of markers that retain their local ordering. For
example, consider the set of unique per mutations
representing the 24 "best" orders obtained from a series
of runs of the three algorithms (Table III). We see, e.g. ,
that 547 and SOD are nearest neighbors in all 24 permu-
tations and appear as the last two markers in 16 permuta-
tions. Similarly, the triplet 546-S4-552 is preserved in 21
permutations and of these, positions 2, 3, and 4 contain
S46, 54, and S52, respectively, 15 times. Based on obser-
vations such as these, we looked for a general ordering
property associated with sets of low-lying configurations.

A. Markovian-like property of low-lying configurations

Let the DNA marker at site j be denoted by f, where

f is a member of the set [S16,S48,S46,54,S52, . . . J.
A configuration of sites is denoted by the ordered S-tuple
(f&,f2, . . . , f&). We have used underlining to distin-
guish a DNA marker such as S11 from a spin variable
such as s».

For any configuration of sites, one can define strings
(f;,f;+„.. . , f;+ ) withi =1, . . . , N;0~m ~N i-

Consider a collection C of distinct configurations. In
the collection the probability of a string
(f, ,f, +„.. . , f;+~ ) .is denoted by

~;, . . . , ;+ (f; f;+i . . f;+
Now consider the Markovian-like approximation

TABLE II. Minimum-break orders for representative simulations. See Table I.

Algorithm Breaks Marker order

205 APP S8 S1 S11 S16 S4 S12 518 S48 S46 S52 5111 S47 SQD
207 APP S8 S1 S11 S16 S4 S12 S18 S46 S48 S52 S111 S47 SQD

123
123

S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S111 512 S47 SQD
S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SQD

123
123

S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S111 512 S47 SQD
S16 S48 S46 S4 S52 S11 S1 S18 S8 APP S12 S111 S47 SQD
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Breaks

TABLE III. 24 unique marker orders with relatively small numbers of breaks. See Table I.

Marker order

123
125
126
126
127
127
127
128
128
128
128
129
129
129
129
130
130
130
130
.130
130
130
130
130

S16
S16
S48
S48
S11
S16
S46
S11
S11
S16
S16
S11
S11
S16
S16
S16
S16
S16
S16
S16
S16
S48
S52
S52

S48
S48
S16
S16
S1
S48
S48
S1
S1

S48
S48
S1
S1
S48
S48
S48
S48
S48
S48
S48
S48
S16
S4
S4

S46
S46
S46
S46
S16
S46
S16
S52
S52
S46
S46
S16
S16
S46
S46
S46
S46
S46
S46
S46
S46
S46
S16
S46

S4
S4
S4
S4
S48
S4
S4
S4
S4
S4
S4
S48
S48
S4
S4
S4
S4
S4
S4
S4
S52
S4
S48
S48

S52
S52
S52
S52
S46
S52
S52
S46
S46
S52
S52
S46
S46
S52
S52
S52
SS2
S52
S52
S52
S4

S52
S46
S16

S11
S11
S11
S11
S4
S11
S11
S48
S48

SOD
SOD
S4
S4
S11
S11
APP
APP
SOD
SOD
SOD
SOD
S11
S11
S11

S1
S1
S1
S1
S52
S1
S1
S16
S16
S47
S47
S52
S52
S1
S1
S8
S8

S47
S47
S47
S47
S1
S1
S1

S18
S18
S18
S18
S18
S18
S18
S18
S18
S12
S111
S18
S18
S18
S18
S12
S111
APP
S12
S111
S12
S18
S18
S18

S8
APP
S8
S8
S8
S8
S8
S8
S8

S111
S12
S8

APP
S12
S111
S111
S12
S8

S111
S12
S111
S12
S8
S8

APP
S8

APP
APP
APP
APP
APP
APP
APP
APP
APP
APP
S8

S111
S12
S47
S47
S12
S8
S8

APP
S111
APP
APP

S111
S12
S12
S111
S111
S12
S12
S12
S111
S8
S8
S12
S111

S8
S8

SOD
SOD
S111
APP
APP
S8

APP
S12
S12

S12
S111
S111
S12
S12
S111
S111
S111
S12
S18
S18
S111
S12
APP
APP
S18
S18
S18
S18
S18
S18
S8

S111
S111

S47
S47
S47
S47
S47
S47
S47
S47
S47
S1
S1
S47
S47
S47
S47
S1
S1
S1
S1
S1
S1

S47
S47
S47

SOD
SOD
SOD
SOD
SOD
SOD
SOD
SOD
SOD
S11
S11
SOD
SOD
SOD
SOD
S11
S11
S11
S11
S11
S11

SOD
SOD

, SOD

P, . . . , + (f; f+i,f +

i, i+i, i+2 fi ~fi+1)fi+2) i 1+, 52+i 3+(fi l+~fi 2+&fi 3+) Pi+m —2i+m —i, i+m(fi+m —plfi+m —itfi+m ) (3.0)

(f + & f + ) for i =1, . . . , N —2; 2~m ~N i . —

B. Example 1

Consider the collection of 24 distinct low-lying
configurations given in Table III. Let (the number of
markers) N = 14. Look at the cluster (f6 =F, f7

=G,
fs =H, f9 =I, f,p

=J) where F denotes the DNA marker
S11, G denotes Sl, H denotes S18, I denotes S8, and J
denotes AI'I'. This marker assignment corresponds to
the ordering of the first row of Table III.

For the above collection we find the frequency

P6 7 s 9 ip(F, G, H, I,J)=
24

and we also find the frequencies

P„,,(FI G, H) =11/11,
P7 s 9(G~H, I)=7/11,
Ps 9 ip(HiI, J)= 11/11,

P9,p(I, J)= 11/24,

(3.1)

(3.2)

(3 4)

(3.5)

above

so the approximation (3.0) with i =6, m =4 is satisfied by
the observed frequencies.

Similarly, for the configurations
P7 s 9 ip(G H I J)= ,', and—

I

P7 s ,9(pG, HI, J)=P7 s 9 ip(G~H, I)Ps 9 ip(H~I, J)P9 ip(I, J)
= (7/11)(11/11)(11/24)

=7/24 . (3.6)

P2 3 4 ~( CB, D, )E=1 /224,

and we also find the frequencies

Pp 3 g(BiC D) = 12/15

P (C~D, E)=15/16,

Pg 5(D,E)=16/24,

(3.7)

(3.8)

(3.9)

(3.10)

and again, the approximation (3.0) is satisfied by the ob-
served frequencies.

C. Example 2

Consider the same collection of 24 distinct low-lying
configurations used in example 1. Look at the cluster
(f2=B, f3=C, f4=D, f5=E) where B denotes the
DNA marker S48, C denotes S46, D denotes S4, E
denotes S52.

For the above collection we find the frequency
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However, since

P, ,(a~C) =13/17,
S'„(C~D)=15/18,

P„(D~Z) =16/16,
P (B,C,D, E)= 12/24,

(3.11)

(3.12)

(3.13)

(3.14)

0.50%0.425 .

In the context of Markov random fields (Spitzer [13])one
could perhaps find a rigorous basis for the observed
Markov-like property.

The implementation of experimental techniques using
RH data provides a bridge between chromosome map-
p1Ilg data geneI'ated from faIIl111es Rnd phys1cal mapping
data. RH experiments allow for the relative ordering of
genetic markers that are too closely spaced to be detected
by family linkage analysis. Additionally, it is not neces-
sary to have polymorphic markers in order to generate
useful information. Although not providing the level of
resolution of physical mapping, RH mapping can com-
plement and confirm results generated by pulse field gel
electr ophoresis.

Boehnke et al. [5] have presented a full discussion of
the advantages and disadvantages of parametric and non-

ihe frequencies do not satisfy the standard Markovian ap-
proximation

P, „,(a, C, D, Z)WP„(a~ C)P, ,(C~IJ)P„(D~E)P,(E),
12/24M( 13/17)(15/18)(16/16)(16/24), (3.15

parametric ordering algorithms. As they point out, algo-
rithms that search for minimum break configurations do
not allow for estimates of'distances between markers, nor
do they provide relative likelihoods for one marker order
over another. However, as the present work and the
work of Boehnke et al. demonstrate, retention and in-

spection of sets of low-lying configurations yield impor-
tant insight relating to the correlations of markers.

In our study we were interested in. learning what prop-
erties might be present in a set of configurations with re1-

atively few breaks. It became obvious that the set of
low-lying configurations showed the clustering of particu-
lar markers. That was reassuring, since in complex op-
timization problems of the travelling salesman variety,
one typica11y ends up with a set of 1ow-lying
configurations and never discovers the true absolute
mln1mum.

One striking feature which we discovered here is that
the set of low-lying configurations is described by a
Markov-like probability distribution. That distribution
contains all of the observed clustering of the markers. If
one enlarges the set of low-lying configurations to include
configurations with larger and larger numbers of breaks,
the validity of the Markov-like approximation
deteriorates. We are not in a position to judge whether
the relation (3.0) is necessarily a deep or broad result, but
we regard it as interesting.
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