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Making a (colloidal) liquid: A van der Waals approach
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The relation between the nature of the phase diagram and the pair potential is investigated on
the basis of a recently introduced van der Waals theory. Both simple Huids and colloidal dispersions
that admit a simple Quid description are considered. A necessary and sufBcient condition for the
occurrence of a liquid phase is formulated and studied for four specific cases. The results compare
favorably with data obtained from other sources.

PACS number(s): 82.70.Dd, 64.70.Fx, 64.70.Dv

I. INTRODUCTION II. THE van der WAALS APPROXIMATION

The relation between the phase diagram and the nature
of the interparticle forces is the central theme of equilib-
rium statistical mechanics [1—3]. When the particles are
spherical atoms interacting with pairwise additive cen-
tral forces, this relation is fairly well understood [4,5].
Recent advances in the study of colloidal dispersions sug-
gest that most of this knowledge can be applied to the
study of colloidal dispersions by exploiting the analogy
between a spherical colloidal particle and an atom [6—9].
Because of the complexity, compared to the atomic sys-
tems, of natural colloids, the use of this analogy usually
requires consideration of carefully prepared monodisperse
suspensions of synthetic spherical colloidal particles [10].
Henceforth we will consider only dispersions for which
this analogy can be expected to hold and describe them
as a simple fluid of colloidal particles. Even so, some im-
portant difFerences will remain because of the dramatic
change in length scale and because the forces between the
colloidal particles are mediated by the solvent and hence
depend on the therxnodynamic state of the suspension
medium.

The interplay between the repulsive and attractive
parts of the pair potential was already the central theme
of the van der Waals theory for the equation of state of
simple fluids [4,5]. Recently, a proposal has been made to
extend this theory to the solid phase [11]. This is essen-
tial for the discussion of phase diagrams where the dense
fluid phases always enter into competition with the solid
phases. Although the combined van der Waals theory
for the fluid and the solid phases used here is very simple
and approximate, it is nevertheless suKciently flexible to
capture the essential features of the problem. For con-
venience, we first slightly rephrase and summarize the
theory of [ll] in Sec. II. Next we review its predictions
for the particular case of purely hard-sphere interactions
in Sec. III. In Sec. IV we formulate a necessary and
suKcient condition for the attractive forces that guaran-
tees the presence of a liquid phase in the phase diagram.
This condition is analyzed for four specific cases in Sec.
V and the results are compared with data available &om
other sources. Our conclusions are gathered in the final
Sec. VI.

We consider a (atomic or colloidal) simple fluid com-
posed of N spherical particles enclosed in a volume V at
the equilibrium temperature T and interacting via a pair
potential V(r) consisting of a hard-sphere (HS) repulsion
and an as yet arbitrary attraction (A),

V (r) = V~g(r) + V~ (r), (2.1)

with

Vms(r) =
( 0 ), V~(r) =

( ~(„) )

where P~s is the &ee energy of the HS system and I"~
represents the "cohesion energy" due to the attractions.
In agreement with [11],we will approximate FHs in terms
of the free energy of an ideal system, say, F;g(N, V, T),
as

F~g(N, V, T) = F;g(N, nV, T)

= F,d(N, V, T) —NkgyT inn
= F,d(N, V, T) + Fgq(N, V, T), (2.3)

where k~ is Boltzmann's constant, A = ", the
(2n.mA:~T) &

thermal de Broglie wavelength, p = & the number den-
sity, and n = n(p) the fraction of the total volume V
that is &eely accessible to the hard spheres, i.e. , o.V is
the "free" volume and (1 —n)V the "excluded" volume
or co-volume. Moreover, for E~ we write

N
F~(N, V, T) = — drV~(r) p(r),

V
(2.4)

where r is the center-to-center distance, 0. the HS diam-
eter, and e the amplitude of the attractions described
by the dimensionless potential $(T) ) 0, with x =
Within the van der Waals (vdW) approximation, the
(Helmholtz) free energy E of this system can be writ-
ten (see [11]),similarly to (2.1), as the superposition of
a repulsive (HS) and attractive (A) contribution:

E(N, V, T) = Furs(N V T) + Ex(N, V, T), (2.2)
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fJ: (p, T) = t[ln(pA ) —1] —t ln(l ——)
po

27r per — dxx P(x)
1

(2.5)

where p(r) is the distribution of sites in the phase under
consideration (see [11]). Note that by combining (2.2)
and (2.4) we have F, = F—F2g = Fg&+F~, so that the
excess (ex) &ee energy F, consists of an excess energy
(E) term entirely due to the attractions, F~ = F&*, while
the excess entropy (S) term originates entirely from the
HS potential, E~& ———TS~S, or E, = E& —TSHs.

For a fluid phase (F) we have, according to [11],n =
(1—~ ) and p(r) = p, yielding for the reduced &ee energy

per particle ( ~ ' ) ——f(p, T)

III. THE HARD-SPHERE TRANSITION

It is well known &om simulations [13], theory [14], and
experiments with HS colloids [15] that a system of HS
does exhibit an order-disorder transition between a Quid
phase (F) and a crystalline solid (S). It is thus natural
to inquire, first of all, how well the vdW theory for the
E and S phases put forward in Sec. II can describe this
transition. In the particular case of a purely HS system,
i.e., P(x)—:0, the &ee-energy difference between a phase
(1) = (E or S) and a phase (2) = (F or S) is seen
from (2.5) and (2.6) to be determined by the ratio of
their &ee volumes V(i) ——n(~)V and V(2) = o;(2)V, with

a(p) = (1 —~
) and o.(s) = [1 —(

~
) 2], according to

where t = "~ is the reduced temperature and po is the
maximum density for which the fluid phase can exist (see
[11]and Sec. III below).

For a (crystalline) solid phase (S) of lattice sites (rz)
we have, according to [11],n = [1 —(

~
) 2] and p(r) =

b(r —rz), yielding within the nearest neighbor ap-
proximation [11]

f~(p, T) = t[ln(pA ) —1] —tin 1—

(p.„l '

.& p)
(2.6)

t 3ys = ep ~
—2vrpo Chx —[pd(T)[) (2.8)1 —~ 19ppo

and in the solid phase [12]

t ng 8 (p,„)'

(2 9)

while the chemical potential can be obtained &om [cf.
(2.7)l

where p „ is the maximum density for which the solid
phase can exist, i.e., the density at (crystal) close packing
(cp), while nq is the number of nearest neighbors or the
coordination number of the given crystal structure.

For the study of the phase diagram we also need to
know the pressure p and the chemical potential p. These
are given in terms of f by the usual thermodynamic re-
lations

p = ep, )[J, = e (pf). —(2.7)
28f )9

gp Bp

Using (2.5) and (2.6) we obtain for the pressure in the
fluid phase [12]

f(i) (p, T) —f(2) (p, T) = tln, P(x):—0
o.(,)

(3.1)

3p.~& = v2 4"& = (3.2)

where P = sPos denotes the corresPonding HS Pack-
ing or volume &action. Moreover, for low densities we
have o.(~) & o.(s), whereas for high densities we have
o.(s) ) o.(~), whatever the value of po & p „.The present
vdW theory predicts hence always a E-S transition en-
tropically driven by &ee-volume considerations. This sce-
nario is in qualitative agreement with the experimental
observations of a HS-transition between a Quid phase and
a compact crystal composed of a random stacking of com-
pact lattice planes [15].

Within the present vdW theory the precise location
of the HS E-S transition is monitored by the value of

being the largest value of the packing
fraction P for which the fluid phase can exist. In many
approximate theories, e.g. , the Percus-Yevick theory [4],
one has that Po equals one. This, however, is unphysical,
since spheres are not space filling. Physically, the value
of $0 is certainly bounded &om above by P,„of(3.2). At
the other extreme, $0 will also be bounded &om below
by 4, which is the value of P() for which the low density
(second order) virial expansion is recovered &om (2.8).
Hence, physically, 4 ( $0 ( P z, and as a rule of thumb
we will henceforth put P() equal to

so that phase (1) will be the stable phase (for all T), i.e. ,
f(q) ( f(2) for all values of p for which phase (1) has
the largest &ee volume, i.e. , a(q)(p) ) n(2)(p). Hence,
within a HS system no fluid (Fq)-fluid (F2) transition can
occur because all Quid phases of the same density will
have the same &ee volume, i.e., po —po . Similarly,(~) (2)

no solid (Sq)-solid (S2) transition can occur because if
o.(z) ) o.(2), i.e., p „)p „,for one density then this will

~ (~) (2) ~ ~

remain so for all densities. Hence, the stable S phase is
always the one with the largest possible p,„value. This
corresponds to any compact crystal structure for which
we have

(2.10)
Qo = 2(Q,„+4) = 0.4952...,

using (2.5)—(2.9). i.e. , the HS Quid will become unstable halfway between
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the lower and upper-bound value of P. Physically, (3.3)
is acceptable because Po is expected to lie well below
the value of P corresponding to a random close packed
(rcp) configuration, $„p 0.64, which corresponds to
the upper limit of stability of the HS glass (G) phase
[16]. Although the G phase is not strictly speaking an
equilibrium phase, it can be incorporated into the present
vdW theory by adopting the following value for its kee
volume [16]:

( p l'
~(~) =

(prep)
3

4'rcp = 0' prep —0 64.

(3.4)

1
4'(r) cp

O'F S(G) 4'(r)-cp & (3.5)

Since p„p ( p p we have, o, (~) ) o.(G.), so that the glass
phase is always metastable compared to the solid phase,
but since po & p„„,we 6nd that for high enough densities
the glass phase can become stable compared to the Quid
phase, i.e., o.'(G.) ) cx(p) (see Fig. 1). The E-S exchange
of stability will occur [see (3.1)] when n(p) = n(~) and,
similarly, o.~~~

——o.~G, ~
for the E-G exchange of stability.

Using the above expressions, we find for the values of P,
say, Pp ~ or (tp ~, for which the E Sor P G-exchan-ge
of stability occurs,

Adopting (3.3), we find Rom (3.5) Pp s 0.4942 and
0.4950. The sequence Pp g ( Pp ~, i.e. , the S

phase becoming stable before the G phase, is again in
qualitative agreement [17] with the findings of [15,16].

Notice that in [11] we did use Pp = 0.5157 instead
of (3.3). This value of Po was found by adjusting the
vdW value of Pp ~ given. by (3.5) to the value of Pp ~
found in the theory of Lutsko and Baus (see [14]),namely,
Pp g = 0.515. Here we prefer to use (3.3) because it keeps
the present vdW-theory self-contained, whereas the pre-
sentation of [11]relied on the extraneous and much more
sophisticated theory of Lutsko and Baus [14]. In Fig. 2
we show how the HS F-S coexistence densities, obtained
by solving p(p) = p(~) and p(p) = p(s) (see Sec. II),
depend on the value of Po. It is seen there that the dif-
ference of Po value between (3.3) and Po ——0.5157 as used
in [11] has only a minor effect on the E Scoex-istence.
In either case, we And that the experimental coexistence
region corresponding to Pp = 0.494 and (t~ = 0.545 is
contained within the vdW prediction but that the latter
is too large due to an overestimation of P~ by about 8%
while the value of Pp is underestimated by about 2%.
On this basis one can expect that the predictions of the
present vdW theory will be quantitatively superior on
the Quid side of the F-S transition, whereas the solid
side may indeed involve appreciable overestimations. We
will nevertheless continue to use (3.3), since it yields a
simple and self-contained vdW theory for the HS transi-
tion that is in full qualitative and even semi-quantitative
agreement with the findings of [13—15].

N

0.640
0.626

0.4 0.5 0.6 0.7

0.497

0.475

F

FIG. 1. The reduced (P = z r) Helmholtz free energy (F)
per particle versus the number density p or packing fraction
P = —o p for hard spheres of diameter o as obtained from the
present van der Waals theory. Only the high-density region
is shown for the fluid (F), glass (G), and solid (S) phases.
The full lines correspond to the stable phases (lowest free en-
ergy), while the dashed lines indicate the metastable F and S
phases. The G phase (dashed-dot curve) is always metastable
relative to the S phase. If the S phase is suppressed (by-
passed), the G phase is seen to become stable relative to the
F phase for P ) 0.4950, whereas the F Sexchange of stability-
corresponds to P = 0.4942.

0.5157

FIG. 2. The packing fraction @ of the fluid (F) and solid
(S) phases of a hard-sphere system at F Scoexistence ver--
sus the packing fraction 4)s at which the F phase becomes
unstable in the present van der Waals theory. The dots cor-
respond to the value (0.4952) of 4)0 used here [see (3.3)] and
the value (0.5157) of $0 used in [11].The arrows indicate the
corresponding experimental values (Pp = 0.494; Ps = 0.545)
of [13,15]. It is seen that while Pp is fairly well reproduced,
the value of Ps is overestimated here by 8%.



52 MAKING A (COLLOIDAL) LIQUID: A van der WAALS APPROACH 865

IV. WHAT DOES IT TAKE TO MAK E A LIQUID? 0.8

In the presence of attractions, i.e. , when P(x) g 0, the
vdW Bee energies are not always monoto

temperature as discussed within the present context in
[11] for both the E and the S phases.

the F
Here we wi ocus our attention o th tn e cri ical point of
e E phase only (see [11] for the S phase). The critical

phase can be found by solvin th ting e equations

0.6- W+
/

/
/

FI / F
/

2

/04- '
I

[

p (p. , T. ) =o, ,p (p( ), T.( )) =0 (4.1)
|9p Q.Q Q.2 Q.4 Q.6

= 34o
(~) g(&)

27
(4.2)

va ues of the packing fraction and reduced temperature
whereas I is given by

pera ure,

or similar equations in terms of ~&fpF (c . &
——p& ), where

expressions of Sec. II, one finds (see also [ll])

FIG. 3. The Quid (Ei)-fluid (E2) coexistence (dashed
curve) and the fluid (E)-solid (S) coexistence (full curves

ensi y = —a p pane for a
cri ica po ential. For such a potential th d 't fe ensiyo t e

ui ( ) that coexists with the solid (S) at the E Ecr' -'-

cal tern eratur
a e q- 2 criti-

(full dot cf. 4.4
p ure open dots) is larger than the t' l de cri xca ensity

u o ) [c . (4.4)]. This corresponds to a situatio hsi ua ion w ere
ense ui

& 2j or liquid is stable relative to the I"-S
transition. Thehe case shown here corresponds to the results
of the resent v
(5.1)] of index n = 6.

p v theory for inverse-power att t'r a rac ions see

I' = 12$p dxx P(x)
a

(4 3)

p(&) ( p+(T(&)) (4 4)

where andp, and T, are given by (4.1) or (4.2) and (T)
and ps(T) by

an pp(

at least for the case where P(x) does not depend on the
density [12]. Hence, for T ( T th E he p ase will phase
separate into a dilute Quid pha ~~F jse a '

ase ~ ij or gas c aracter-
ized by (t values smaller than P( and a dense ffuid phase

(E2) or liquid with P values larger than &j&, . The pres-
ence of attractions, P(x) g 0 or, better, I' g 0, is there-

ear. It is
ore a necessary condition for a liquid h ~F '

is iqui could still be metastable w'th t he wi respect to the
p ase, since the F-S transition d toes no even require

attractions to be present (see Sec. III) Iee ec. ~j. n other words,
e z- 2 transition can still be preempted by the F-S

eno e t e density oftransition. Let, therefore p (T) d t h

the S hase of
t e phase w ich, at a temperature T t, coexis s with

e p ase of density ps(T). The necessary and suffi-
cient condition for a stable liq d h tiqui p ase to appear in the
phase diagram is then (see Fig.3)

e seen by considering the limiting case p, + T )
determined by

case p, w p~

(p(&) T(&)) & (p T(&))

(p( ) T( )) —~ (p T( )) (4.6)

0.8

0.6-

0.4-

0.0 0.2

~F,

0.4 0.6

which constitute a set of two equ t fa ions or on y one un-

»(p~ T) = ps(ps T) I ~(p~ T) =»(p~ T) (45)

where andp~(~) nd p~(~) denote, respectively, the pressure
and chemical potential of the E(S) phase (see Sec.
Equation ~4.4~~stn ~ . ~~s ates that the critical density of th Q d

e p ase (see Sec. II).

has to be smsmaller than the density of the Quid, which,
at the critical tern (~)

That E . 4.4
mperature T, coexists with th l de sol

q. ( . ) imphes a condition on the potential can

FIG. 4. The same as Fi . 3
~ 4

ig. ut for a critical potential,
i.e. , a potential for which the (E E't'-critica uid satisfies,
moreover, the I"-S coexistence. Th'is corresponds to a sit-
uation where the dense (E fl d 1'ui or squid phase becomes
marginally stable relative to the I'-S
s own here corresponds to the results of the present vdW the-
ory for an inverse-power attraction [see (5.1)] with the critical
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ranged potential, although (5.1) is, strictl s ea

Il 12
( 3) j provided n ) 3. In [11] we constructed

the phase diagrams for (5.1) and found em ian ound empirically that
c ange i occur in the

7(n(8 H
e p ase diagram for

ereweuse 5 1 in 46
an t' f

( . ~ ~ . , w ic now becomes
an equa ion or n and

n = n with

n(~~ = 7.6 ) (5.2)

0.0 0.2 0.4
I

() 0.6

FI . 5. The same as Fig. 3 but fu or a supercritical oten '

i.e., one for whic} the (F -F )
' ' i eye q- 2 critical densit e

e ui that coexists with the solid (S) at
e i-Pq) critical temperature.e - p ure. In this case the dense (F

ui or iquid hase is
2'

transition. The case shown here corres onds to
y inverse-power attraction (5.1)v eory for an inve

o xn ex n = 9, as suitablbie for fullerene molecules (see [19]~

(T(&)) ( p(&) (4.7)

holds. The nnecessary and sufIicient condition ~

a give rise to a (stable) liquid is hence th t 't
e subcritical.

a

known, namel &Ty, ps(, ). Eliminating (formall
om 4.6 there

ma y~ pg

air
re remains a relation to b t fi

p
' potential. This relation st t th h -F

esais e''ythe
~ ~

s a es en that the F -F
critical point satisfies the F-S ces e - coexistence. Henceforth
we wi call any potential that satisfies ~4.6~

potential" with res ect t
s ~&. ~& a critical

wi respect to the critical point of the fl 'd

will hkewise be ca " ' ' o ecalled a subcritical potential, " whereas
a "supercritical potential" is one f" is one or whicn see Fig. 5)

B. Yukawa potentials

A potential that by itself may not be ver ray not e very realistic but
more realistic potential

—~(z, —1)
(&) = (5.3)

while for n ( n, the IP oe potentials are subcritical.
e necessary and sufFicient condition to obta'

an attraction is therefore 3 & n & 7.6.
is is consistent with thehe current observation 2 that

atomic systems with nonretarded n =

ee y rotate) and sum-

over the spherical surfaces leads then to an int

e y an attraction (5.1) with n 9 see

liquid phase, although this is still a somew
sial m tta er 'see 21]).

is is sti a somewhat controver-

V. FOUR CASE STUDIES

vdW theor
e will now anal ze they e condition (4.6) within the

v t eory of Sec. II for a few specific cases

A. Inverse-power potentials

Let us Grst reconsider the caser e case of the inverse-power
a ractions already considered in ]11' F

we have
in

L J. or this case

=1 —r
(t(x) = —, x =— (5.1)

when adopting the amplitude of the attractions as

is family of potentials hence de en

or n large (small) one usually speak f ha s o a s ort (lang)

which, just like (5.1), depends on a sin le
controlling its deca ra

on a sing e parameter, v,
g i s ecay rate. Substituting (5.3) into 4.

ecomes now an equation for r (and ps) that defines the

with
rrespon ing to ~ —K~

„(~)
) (5.4)

sa that the phase diagram of (5 3 'll exhibit

s u y ~&

' ased on a variational a roach
li 'd h fo = 27bor ~ = . ut not for K = 14and 398 a
in agreement with (5.4 . This

8, again

the
i . . is should be contrasted with

e recent much more so histice p is icated theoretical study of
an t e mixed theor -simy-simulation results of [23], both

o w ic still predict a liquid for ~ = 7.
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C. The Hamaker-vdW potential

Dispersions of spherical mesoscopic objects can often
be described as simple fiuids of colloidal particles (see
[7—10]). In this case the sum over the London-vdW at-
tractions between atoms distributed uniformly over the
volume of a sphere leads to the following Hamaker-vdW
potential between the colloidal particles [3,7,8,10]:

4'(~) = —,~(»)A
(5 5)

where

1 1 ( 11
h(x) = + —+21n~ 1 ——

~x2 1 x2 (5.6)

while the Hamaker constant A of (5.5) can usually be
approximated by

A—= m(I+ t), (5.7)

with m a dimensionless measure (m & 0) of the difFer-
ence (mismatch) in refractive index between the material
making up the colloidal particle and the material making
up the solvent, and t = ~ the dimensionless temper-
ature resulting from choosing the energy scale ~ to be
proportional to the main ultraviolet electronic absorp-
tion frequency (see [7,8] for details). The dispersion can
then be stabilized against the flocculation induced by the
singularity of h(x) of (5.6) when x -+ 1 by using a steric
stabilization mechanism which will lead to an effective
HS diameter o somewhat larger than the Hamaker-vdW
diameter, say, o.o, of the colloidal particle and, hence,

& 1 in (5.5).
The resulting potential (5.5—5.7) depends now on two

dimensionless parameters, m and p. Because of the tem-
perature dependence of the Hamaker constant (5.7), we

have, for (4.3), I' = (1 + t)t', with

to prevent flocculation. We have performed only a lim-
ited search but could find no solution to (4.6) for (5.5)
with physical values of m and p. This seems to imply
that the present potential is always subcritical or, more
precisely, if the system does not flocculate it will always
admit a liquid phase for t & t

D. The depletion potential

~o', f 2:
0(*) = 11 ——(I+ ()'~

I I+&) (5.12)

where ( = —e is the polymer to colloid diameter ratio,

is the normalized overlap volume of two deple-

tion spheres,

When the colloidal dispersion is index matched [i.e.,
m = 0 in (5.7)] we can neglect the Hamaker-vdW at-
tractions and the (uncharged) colloidal particles will be-
have essentially (see [7—10]) as the HS system of Sec. III.
Assume now that we add to such a HS colloid a poly-
mer that does not adsorb onto the colloidal particles.
To a erst approximation we can assimilate the polymer
molecules to spherical particles with a diameter, say, o.z,
equal to the radius of gyration of the polymer. When
this efFective diameter o~ of the polymer is much smaller
than the diameter o of the colloidal particles we may
invoke the depletion picture [7,8,10,25]. In this picture
the (colloid + polymer) mixture is described as an ef-
fective one-component system of colloidal HS interacting
moreover with an efFective, polymer induced, attraction.
The interest of this situation stems from the fact that
it provides us with an experimentally realizable system
for which the attractions can be tuned by changing the
length and/or concentration of the polymer for a given
HS colloid [7,8,10]. Indeed, when the depletion picture
holds, the effective attraction between the colloidal HS
particles reads [7,8,10]

or

8-
1+t( ) 27

(5.9)

(5.10)

so that the two parameters m and p must satisfy the
additional relation (t, & 0)

fq-11
21n

~ ~

—8p —8p ln
I

1 ——
~
(,(5.11)

&~+ Ii 8m/0

which implies that for a given m, p must be large enough

I' = 12mgo dxx h(»)
1

( ll= mgo 21n
~ ~

—8p —8p ln
~

1 ——~, (5.8)&~+1)
while (4.2) becomes:

(5.13)

and II„ is the (osmotic) pressure of the polymer in the
given colloidal dispersion. As our energy scale e we will
take

(5.14)

kgT
(5.15)

so that the control parameter of the phase transition is
no longer the temperature but the polymer concentration

where II„' is the (osmotic) pressure of the polymer in the
absence of colloidal particles, a variable that can be easily
controlled experimentally. In many instances it has been
assumed (see [7,8,10,26]) that van't HofF's ideal gas law,
IIp pp k+T and II& ——pz k~T, holds wel l for polymers
in solvents close to their theta point. In this case the
reduced temperature becomes [see (5.14)]
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p„* or polymer volume fraction P„* = s o sp„'. In the spirit
of this simple vdW theory we can relate p„ to p„* by an
excluded volume argument,

Pp (5.16)

3 —2$o(1+ ()s' ' 27 [1 —Qo(1+ ()s]
(5.17)

where p(1+ () = sp(cr + crz)s is the fraction of the
volume excluded to the polymer because of the presence
of a dePletion sPhere of volume s (0 + 0„)s around each
colloidal particle. From (5.16) it follows that the concen-
tration p„or volume fraction P„= s o„p„ofthe polymer
in the presence of the colloidal particles depends on the
amount of polymer added (P') and on the amount of
colloid present (P). As already observed elsewhere (see
Lekkerkerker et al. [26]), this implies that any phase sep-
aration of the colloid will induce a partitioning of the
polymer between the coexisting phases.

Returning to (4.1), we note that because of (5.16), P(x)
now becomes density dependent so that (4.2) and (4.3)
no longer hold [12]. We can, however, still solve (4.1)
exactly, yielding now for the critical point

then no longer be obtained in analytic form as in (5.17).
In the related theoretical studies of [26], it was found

that (, 0.32, while the simulations of [27] did pre-
dict the still higher value (, 0.45. In the experiments
reported in [28] one did find no liquid for ( = 0.08, while
a liquid was found for ( = 0.24 and 0.57, with ( = 0.24
being very close to, but slightly larger than, (,(&)

When the depletion picture is applied to a binary mix-
ture of very dissimilar HS colloids, as already done in
[29], then the same critical value (5.19) will be found
because the fact that the small colloid no longer obeys
van't Hoff's ideal gas law will acct only the temperature
scale. In view of this, the experimental results of [30] for
( & 0.2 could well have to be reinterpreted in terms of a
F Scoe-xistence, since for such a small ( value the lat-
ter will preempt the Fi F2 tra-nsition predicted in [31].
To close, we would like to emphasize here that it would
be very interesting to investigate, perhaps following the
lines of [32], at what ( value the efFective one-component
description based on the depletion picture breaks down
and one has to use a genuine two-component description
to study this type of (colloid + polymer) or (colloid +
colloid) mixture.

VI. CONCLUSIONS

with I' given by

I' = 12$o dx2: pl+

((I + () —8(1 + () + 9(1 + () —2) (5.18)

and I' & 0 for (' & 0. Since we must have P, & 0,(~)

t, & 0, Eq. (5.17) implies, moreover, that ( & 0.264.
The present theory is therefore limited to 0 & ( & 0.264,
which is consistent with the fact that the original deple-
tion picture assumes ( « 1. Turning now to (4.6) we
find that the depletion potential (5.12)—(5.16) becomes
critical for a size ratio ( = (, , with

0.262, (5.19)

so that for t & t( ) or, better, for P„* & &r~, the

presence of polymer will induce a liquid phase when-
ever 0.262 & ( & 0.264. The depletion potential is
thus almost always supercritical. Note, however, that
the very small region where the potential is subcritical
(0.262 & ( & 0.264) may result from the rough approxi-
mation used in (5.16). Using more elaborate expressions
for (5.16), one will, however, lose the simplicity of the
present vdW theory, since the critical point (4.1) can
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We have formulated a necessary and sufhcient condi-
tion for the occurence of a liquid phase in the phase dia-
gram of a simple Quid (see Sec. IV). Within the vdW the-
ory of [11],summarized in Sec. II, this condition can be
easily analyzed. Before doing so, we have shown in Sec.
III that the HS theory underlying the present vdW the-
ory is consistent with all the known facts. In Sec. V we
have established on this basis the condition for the occur-
rence of a liquid phase in systems governed by four spe-
ci6c potentials of increasing complexity. In each case we
have found a quantitative agreement between the results
of this simple vdW theory and data &om other sources.
From this we conclude that although the present vdW
theory is too crude to answer quantitatively questions
of absolute stability of phases, it may well be reliable
for investigating questions of relative stability such as
the relative stability of the Quid (Fi)-Quid(F2) transition
with respect to the Quid (F)-solid(S) transition that was
investigated here.
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