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Viscosity of a one-component polarizable Rnid
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The viscosity of a one-component polarizable Quid in an electric field is studied by computer simula-
tions. The Quid viscosity increases with the field through three stages. In a weak field, the Quid remains
Newtonian, although its viscosity increases. At this stage, while drifting in the Qow direction, particles
diffuse in the direction perpendicular to the Qow. In an intermediate electric field, the Quid has tilted
and broken chains moving with the Qow and the Quid becomes non-Newtonian. The viscosity g and the
shear rate j have the relationship q =goe ~, where ~ is the relaxation time and go is exponentially pro-
portional to the dipolar interaction energy and the volume fraction. In a strong electric field, the Quid

contains condensed chains that provide yield stress and hysteresis.

PACS number{s): 82.70.Gg, 61.90.+d, 64.90.+b

I. INTRODUCTION

One-component polarizable fluids are interesting phys-
ics systems which have important applications. We can
define these fluids as aggregates of particles which can be
strongly polarized in an external electric field. If the par-
ticles have a permanent dipole moment, the polarization
can be a result of alignment of the dipoles in the field
direction. If the particles have no permanent dipole mo-
ment, the polarization can be induced by the electric
field because of the dielectric-constant or conductivity
mismatch between the particles and the medium.

The early work of Andrade and Dodd showed that
one-component polarizable liquids placed in a strong
electric field would have a significant increase of viscosity
while nearly no effect was seen on the viscosity of nonpo-
lar liquids [l]. A recent discovery of the electrorheologi-
cal (ER) eft'ect of liquid crystal polymer solution greatly
enhances the interest of research in this area [2].

A conventional ER fluid is made of fine dielectric par-
ticles suspended in a liquid of low dielectric constant
[3—7]. The large contrast of dielectric constant between
the particles and the liquid makes the system easily polar-
izable in an electric field. The electric-field induced
change of viscosity in ER fluids has provided opportuni-
ties for many new technological applications [3]. The
crucial point of ER application is now in materials tech-
nology. Because of the density mismatch between the
particles and the liquid, settling is a problem in some con-
ventional ER fluids. Some applications, such as ER
clutch, require ER fluids with a much stronger yield
stress. The strong ER effect of liquid crystal polymer
solutions has broadened our horizon in search for good
ER fluids. Especially, since one-component polarizable
liquids have no problem in settling, they may be suitable
for applications which cannot tolerate any settling.

In this paper, we will investigate the viscosity of one-
component polarizable liquid in Couette geometry via
computer simulations. Our model and the details of
simulations are presented in Sec. II. In Sec. III, we dis-
cuss our results. Our findings indicate that the viscosity

of one-component polarizable fluid increases with an elec-
tric field through three stages. In a weak field, the fluid
remains Newtonian although its viscosity increases with
the field. At this stage, while drifting in the flow direc-
tion, particles diffuse in the direction perpendicular to the
flow. In an intermediate electric field, the fluid has tilted
and broken chains moving with the flow and the fluid be-
comes non-Newtonian. The viscosity g and the shear rate
y has the following relationship g = aloe, where ~ is a
relaxation time and qo is exponentially proportional to
the dipolar energy and the volume fraction. In a strong
electric field, the fluid contains condensed chains which
produce a yield stress and hysteresis.

II. MODEL AND SIMULATIONS

Our three-dimensional system is based on the dipole
model frequently used in the study of ER fluids [8]. This
model is reasonably good when the particle concentration
is low, although it has limitation when the concentration
is high. We have X particles placed between two parallel
electrodes which are planes z =L/2 and z = L/2 (see-
Fig. l). The motion of each particle is determined by a
classical motion equation. The electric force on each par-
ticle is the sum of dipolar forces exerted by other parti-
cles as well as by images. Experiments have shown that
an electric field parallel to the flow direction has little
effect on the liquid viscosity. Therefore, we examine the
case in which the flow is moving along the x direction
while the applied electric field is along the z direction. In
both x and y directions, a periodic boundary condition is
imposed. Thus, a particle in Fig. 1 moving out of the box
returns to the box from the opposite side with the same
velocity.

%'e introduce two wall layers which are adjacent to
each electrode, respectively. The particles in the wall lay-
ers are distinct from the particles in the Row (bulk parti-
cles). While the bulk particles are allowed to move in all
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FIG. 1. A sketch of our model.
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where I; is the total force acting on it.
The dipolar force acting on the particle at r; by a parti-

cle at r is given by

f ~
=

4 [e„(1—3 cos 8,J ) —ee sin(28; )],
E'f rij

(2.2)

where r; =r; —r and 0~0; ~m/2 is the angle between
the z direction and the joint line of the two dipoles. We
use e, as a unit vector parallel to r; and e& as a unit vec-
tor parallel to e„X(e„XEo ).

A dipole p inside the capacitor at r;=(x, ,y, ,z, ) pro-
duces an infinite number of images at (x;,y, , —z, ) and
(x;,y;, 2Lk+z, ) for k =+1,+2, . ... The force between a
dipole and an image has the same form as Eq. (2.2). The
jth particle and its infinite images produce an electric
force on the ith particle [8,10],

three directions, the wall-layer particles are only allowed
to move in the x and y directions and are not allowed to
exchange with the bulk particles. Thus, the wall particles
cannot leave the electrode they attach. In addition to the
dipolar interactions, the wall particles adjacent to the top
electrode experience an external force in the x direction
and the wall particles adjacent to the bottom electrode
experience an external force in the opposite x direction.
As these shear forces act on the wall particles, a velocity
gradient in the z direction is established.

Our wall layers are based on observations made in ER
fluid flow experiments which find two layers of dielectric
particles cumulated on the two electrodes, distinct from
the particles in the flow. Ashurst and Hoover also used
similar wall layers in their simulation of dense fluid shear
fiow [9].

In an electric field, each particle obtains an induced
dipole moment, p =ae&(o /2) E„, where a = (e

&e) /( ep+2 eI) and El„ is the local field. The motion
of the ith particle is described by a classical equation

Xcos
S&Zj

L

where p; =Q(x; —x ) +(y, —y ) and Ko and IC, are
modified Bessel functions. The force on the ith particle by
its own images is in the z direction and denoted as f;"',

fself 3
lsZ 8~f

1

(z, +sL)
1 1

z, ,=l (z; sL)—4+& 4

(2.4)

In addition to the dipolar interactions, two spheres re-
pel each other strongly whenever they are colliding with
each other. This short-range repulsive force is important
in preventing particles from collapsing. There have been
several forms of this short-range interaction in the study
of ER fluids, ranging from a hard-core interaction, soft-
core, to a power rule [8,11]. In our model, we follow
Melrose [12] to use a power rule,

p r /m+2
EJ /J V (2.5)

F g (f +f rep
) +fself

jxi
(2.6)

As mentioned earlier, the wall particles are experiencing
additional external forces in the x direction which pro-
duce the shear flow.

A viscous flow always produces heat which may cause

where r; =r; —r . It is clear that as n increases, the
short-range force becomes stronger. The results reported
here are related to n =23, a value large enough to
prevent the particles from collapsing. We have checked
the situation of a different n and found that although the
value of n affects the initial motion of the particles be-
cause of collisions, it has little effect on the final value of
viscosity which is measured after a dynamic equilibrium
is established.

When a particle in the low collides with an electrode,
we take the collision as a complete elastic collision which
maintains the particle's speed but reverses the sign of the
z component of the velocity. This arrangement prevents
any particle in the flow from moving out of the elec-
trodes.

Now for the bulk particles F; in Eq. (2.1) is given by
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temperature increase if the heat is not removed. In our
simulations, the temperature in a layer is defined by the
following equation:

TABLE I. Shear flow at A, = 55 and y =0.0947+k~ T/ma .

Layer Average no. of particles Average U„Temperature

ÃI

2kii(NI —1),. (2.7)

where N& is the number of particles in the layer and the
average velocity U, is given by

19.3
19.2
19.2
19.2
19.5

—0.383
—0.172

0.023
0.199
0.379

1.000
1.048
1.057
1.047
1.000

Ni

u, = Qu;/Ni (2.8)

In Eq. (2.7) the denominator has N&
—1 rather than N&

because the center of mass is also moving. To maintain
the temperature at a constant To, we apply a renormal-
ization procedure to the wall layers and the two layers
immediately adjacent to the wall layers.

iI=S/y . (2.11)

III. RESULTS AND DISCUSSIONS

we find a laminate flow. If the total force acting on one
wall layer is F, then the shear stress S =F/(L L~ ). The
effective viscosity is determined by

v, =u, +(v, —u, )+To/T, (2.9)

where T is determined by Eq. (2.7) and u, is given in Eq.
(2.8). This is equivalent to removing heat in the system
from the two electrodes.

In our simulations, the electrodes have L =I. =16a
while the distance between the electrodes is I. =14a. We
denote a as the particle radius. Each wall layer has 20
particles. There are another 100 particles in the bulk.
The volume fraction is thus 16.4% which is quite low and
makes the dipole model valid. Our theoretical calcula-
tion has already shown that when I., ~ 12a, a single-chain
structure is the preferred solid structure in ER fluids;
only when I., &12a, ER fluids are able to have thick
columns [13]. In real experiments, a has the order of mi-
crometer, while L,, has the order of millimeter. There-
fore, we take L,,= 14a to satisfy the above condition.

Initially, the particles are distributed randomly into the
space with a velocities distribution corresponding to To.
The applied forces on the wall-layer particles drive them
to flow. The parameter A, measures the dipolar energy to
the thermal energy and also indicates the strength of the
electric field [14],

A, =p /(a kiiTO) . (2.10)

In our simulations, we use Qmk~T/a as the unit of
viscosity, +ma /kii T as the unit of time, and

+kii T/ma as the unit of shear rate.
We have applied a fourth-order Runge-Kutta method

of a fixed step size to integrate Eq. (2.1). The step size is
0.02+ma /(k&T&). If To=300 K, a =1.0 pm, and the
particles have density p=1.2 g/cm, then one step is
about 2X 10 s.

For one value of A, , we vary the shear stress to obtain
the effective viscosity as a function of y and A, . The varia-
tion of shear stress is as smooth as possible. After the
shear stress changes, we run the system at least 20000
steps to establish a dynamic equilibrium state. For the
above example, 20000 steps correspond to 0.4 s. In the
dynamic equilibrium state, we measure the velocity dis-
tribution and determine the shear rate y. In most cases,

A typical velocity profile and average temperature in
each flow layer is listed in Table I. As mentioned in Sec.
II, at each step, we extricate heat from the two wall lay-
ers and the two layers immediately adjacent to the wall
layers. Table I shows that this approach works well in
keeping the bulk nearly uniform in temperature although
the rniddle layer still has a slightly higher temperature.
This situation is normal because we assume that the heat
dissipates from the two electrodes. In Fig. 2, we plot the
velocity distribution. It is clear that the system has a
laminate flow and the slope of the velocity line is related
to the shear rate. When the external shear force is small,
the velocity distribution may deviate from a straight line.
The example in Fig. 3 shows that the middle layers have
a lower shear rate than the layers close to the electrodes.
It is also understandable that there are more fluctuations
when the average shear rate is low.

A. Newtonian Sow

At a low A, , i.e., a weak field, our simulations find a
good Newtonian flow. In Fig. 4, we plot the effective
viscosity as a function of shear rate at A, =10 and 35. As
shown there, the effective viscosity is independent on the
shear rate. The parallel line is a clear indication of a

~ ~

0

tV

—O. 6 —0.4 —0.2 0.0 0.2 0.4 0.6
v, (unit:/kgT/m)

FIG. 2. Velocity profile of a laminate How at X=35 and

y =0.095+k~ T/ma .
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FIG. 3. Velocity profile at A, =90 and y =0.004+k~ T/m&2.
When the external shear force is small, the middle layers have a
lower shear rate than the layers close to the electrodes.
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FIG. 5. Viscosity versus shear rate at large A, (A, =55, 70, and
80).

Newtonian Quid. The result is similar to a neutral dilute
Quid. In our simulations, we also have a low volume frac-
tion 16.4%.

B. Non-Newtonian Aom
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FIG.4 Viscosity versus shear rate at small k {k=10 and 35).

At a high Geld, the Qow shows non-Newtonian charac-
teristics. In Fig. 5, we plot the viscosity as a function of
the shear rate y for X=55, 70, and 80. The e6'ective
viscosity is increasing as the shear rate is reducing. The
changes in the rheological behaviors can be interpreted as
a transition from the streaming type of transport to a po-
tential type of transport where the interchanges of
momentum between layers are mainly accomplished
through potential interaction.

For a Quid with a strong intermolecular interaction,
the dependence of viscosity on shear rate can be
described by the Ree-Eyring relation [15],
g=(go/ry)sinh (ry) where go is the viscosity at zero
shear rate and ~ is the relaxation time of the system.

In ER Quids, a power rule g-y has been suggested
[16]. This suggestion is based on a rotation of induced
ER solid structure in a shear Qow. Therefore, in order to
have the power rule, the ER Quid must have nonzero
yield stress.

However, our system at A, =55—80 still has zero shear
stress for j =0; therefore, it is still a liquid and the power
rule does not apply. The viscosity is plotted in Fig. 5.
From the curve, we have found that the viscosity fits the

following relationship:

g =goe r (3.1)

where ~ can be also defined as a relaxation time. For
A, =55, 70, and 80 we have v=3.0, 7.55, and 14.53 (unit:
+ma /kz T). The relaxation time increases with the in-
creasing of the electric field. This is consistent with the
fact that the stronger the electric field is, the longer is the
time for the system to reach its dynamic equilibrium
state.

The Eyring theory has viscosity of a normal liquid ex-
pressed as [17]

g= 3 exp(b, E/k~T), (3.2)

where AE is the energy barrier required to open up a hole
for the transposed particle to move from one potential
minimum to another minimum. Similar to the Eyring
theory, in our polarized liquid, AE should also be related
to an energy barrier to open a hole to let a particle move
from one potential minimum to another one. The leading
term of this energy barrier has the order of the dipolar
energy p /a . In addition, it is easy to open a hole when
the volume fraction P is low and vice versa. Therefore,
we expect the viscosity at zero shear rate, go, has the fol-
lowing form:

go=co exp[bgp /(a k~T)], (3.3)

where co and b are constants. In Fig. 6, we plot go

~ 5.0

2.5—
C3
Q)~ 2.0VJ

O

~D 1.5—
N

1.0

oQ5
U
N

Q Q ~ . , i I; I~ I t I i 1 ~ I

0 1 0 20 50 40 50 60 70 BQ

P = p'"/(a' kBT)

FIG. 6. Viscosity at zero shear rate versus k. The solid line is
the exponential fitting.
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FIG. 10.. An instant slab of How at X=70, parallel to the x-z
p ane. There are tilted chains and broken chains, well separated.
Length unit is a.

FIG. 11. An instant slab of Aow at X=90, parallel to the x-z

p ane. A number of chains are clinging to each other to form a
thick and stable structure. Length unit is a.

simulations were performed on an IBM vectorized super-
computer; a system of 140 particles in the simulations is
smail in comparison to a real system. However, to tackle
a much larger system on our present computer is almost
formidable. In order to see the finite size effect, we have
done some experiments. For example, we have conducted
simulations under different L and L while L„L„,i.e,~ ~ p

the volume fraction, remains unchanged. Since the
viscosity of the new system has little change, the finite
size effect seems to be insignificant. Therefore, we believe
that our numerical results can provide some insight to ex-
periments and be served as a base for future analytical
wor k.

In addition, the volume fraction 16.4% in our simula-
tions is low. If the volume fraction increases, the dipole

model will be limited. However, we expect that the three
stages in the viscosity change are still valid. However, it
is conceivable that with the Quid at a higher volume frac-
tion it will be easier to show non-Newtonian behavior
and have a yield stress. The relationship between the How
structure and viscosity change should be further investi-
gated.
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