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Hydrodynamic interaction of particles with grafted polymer brushes and applications to rheology
of colloidal dispersions
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We calculate the lubrication force that acts in the normal direction between spherical surfaces bearing
grafted polymer brushes and immersed in a viscous fluid. Brinkman’s equation is employed to describe
the flow in the brushes. For noncompressed brushes we include a slip approximation that applies to
poorly permeable brushes of arbitrary density profile. For the step-function profile we present an analyt-
ical representation of the force valid for any separation. For compressed brushes we assume the density
to increase homogeneously through the gap depending only on the local separation and derive an in-
tegral representation for the force along with analytical approximations valid up to rather strong
compression. Our results generalize earlier estimates, providing convenient representations for analyses
of hydrodynamic interaction between polymerically stabilized colloidal particles. As the simplest appli-
cation we calculate the viscosity of a non-Brownian suspension of such particles for comparison with the
measured high-shear viscosity for polymerically stabilized lattices.

PACS number(s): 36.20.—r, 81.60.Jw

I. INTRODUCTION

In recent years growing interest in the properties of
grafted polymer layers (brushes) on solid-liquid surfaces
has produced a considerable amount of published work
dealing with the static properties of brushes (see, e.g.,
[1,2]) and some addressing hydrodynamic properties.
Milner [3] investigated the penetration of flow into an
isolated brush. Fredrickson and Pincus [4] and Kotov,
Solomentsev, and Starov [5] considered the hydrodynam-
ic interaction of particle-bearing brushes in the lubrica-
tion approximation. However, these results remain in
some respects incomplete, which hinders their applica-
tion to calculations of the dynamics of dispersions.
Indeed, these authors confined themselves to non-
compressed, H>2L, and deeply compressed, H <<2L,
brushes with step-function density profiles ¢(z) (here H is
the separation between solid surfaces, L is the height of
brushes, and z is the distance from the solid surface).
Only in the latter case were the hydrodynamic forces cal-
culated analytically [4]. Several properties of grafted
brushes are important, but in this paper we are primarily
concerned with the viscosity of sterically stabilized
dispersions as investigated recently by Mewis et al. [6]
and Richtering [7].

Our objective is to generalize the earlier results and ap-
ply them to predict the rheology of dispersions. Let us
first recall the principle equations of lubrication theory,
rewriting them in a way convenient for two spherical sur-
faces with radius a separated by the gap H <<a. Then
the gap between them is locally
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where r is the radial coordinate (see Fig. 1). In cylindri-
cal coordinates (7,z) centered in the middle of the gap
the equations for the velocity v and the pressure p are
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which should be solved with sticking boundary condi-
tions on the surface of the particles and the continuity of
the velocity and its derivative on the interface between
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FIG. 1. Schematic of the interacting particle.
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the brush and pure liquid. Here u is the viscosity of the
medium and 82 is the permeability, which is infinite out-
side the brushes where Eqs. (3) and (4) reduce to the
Stokes equations and finite inside them where Egs. (3) and
(4) represent the Brinkman equations [8]. For H <<a the
lubrication approximation permits Egs. (3) and (4) to be
simplified, since from Eq. (1) r scales as (ah)!/2, while z
scales as H. Hence, the second term in the left-hand side
(1hs) of (4) and the second and the third terms in the lhs
of (3) can be neglected relative to the first term. Then,
according to (3) we write
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while the two remaining terms in the lhs of (4) are negli-
gible since
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with Eq. (2) relating v, to v,. Thus to highest order in
H /a the lubrication approximation sets the lhs of Eq. (4)
to zero, finally reducing the equations to

gaz—p =0, (7
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If 6=const, 6 gives the depth that flow penetrates into
the brush (see below). In general, 8 is a function of the
local density of polymer segments ¢. A power law depen-
dence is mathematically convenient,

n
1 _s %o
¢" ¢
and describes a dilute porous medium with n =1 and §,
characterizing the size of the structural units (mono-
mers). For swollen polymer brushes & is usually

identified by the characteristic “mesh size” of the poly-
mer solution and

86=08,—=§, , 9)
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where v is the exponent in the relation R, ~N" between
the radius of gyration of the molecule R, and the number
of segments N. Thus, n =1 for linear molecules (v=1),
n=1 for Gaussian coils (v=1), and n=2 for swollen
molecules in good solvent (v=2). In (9) we introduce for
convenient 8, and ¢, as values of 8 and ¢ for an
equivalent step-function density profile.

There are several simplifications involved in the appli-
cation of the Brinkman model to the dynamics of
brushes. The power law (9) neglects the finite volume of
polymer segments, which becomes important as ¢— 1.
One can introduce a more complicated 8(¢) (see [9] and
the following discussion), but the validity of Brinkman’s
equation is dubious for ¢=0(1), since 8 becomes compa-
rable to the monomer size. So we use Eq. (9) as the sim-
plest approximation. Here we also confine ourselves to

(10)

the static problem, assuming the brush to be unperturbed
by the liquid flow. This implies that the characteristic
time for particle displacement is much larger than the re-
laxation time, 7~ uH?8/kT [4] estimated as the time for
a blob of size & to diffuse a distance H.

Solving (8) determines the velocity profile in the gap,
v,(z). The continuity equation then is employed to calcu-
late the pressure distribution from which the hydro-
dynamic force on a particle follows as

F=[Tn d2r+f-g'7(v—u)d3r , (11)

where T is the stress tensor, n is the vector normal to the
particle surface, and u is the velocity of the particle. The
first integral is over the surface of the particle, while the
second is over the internal volume of the brush. The
second term, however, contributes as O(uav, ), which can
be neglected. In the first integral in (11) the second term
in the normal stress (T-n),=—(p—p,)+2u(dv,/0z)
also contributes as O(uav, ), leaving for the z component
of the hydrodynamic force,

Fzzqrfo‘”(p —po)rdr, (12)

where p , is the value of p outside the gap. The integral
in (12) can be written in a rather simple general form by
introducing the dimensionless coordinates

—_ h z
=—, Z=— 1
h I zZ I (13)
and velocity
_ v,(h,z)
v(h,Z)=E——s— . (14)
H” dp
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Integrating the continuity equation (2) over z from O to
h /2 and employing (14), yields an equation that relates p
tovas

_ . _pba - dh' 15
PP In (15)
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0
where V= —dH /dt is the relative velocity of the parti-

cles. It is convenient to define the dimensionless pressure
as

H> _ 1 r=_di’
uva 129F Q(n")’
where Q is the dimensionless flux through the half-gap,

P(h)=X(p—p,) (16)
= (2 =,
Q= [ u(h'2)dz . (17)

Substituting (16) into (12) provides the integral represen-
tation for the hydrodynamic force

_3mpva® ro mpn
Fun="2E2 [ Tdh p(r) (18)

For bare particles, v=[(h /2)>*—Z*]/2 and Eq. (18)
yields
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_3m a’
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a widely used formula sometimes attributed to Reynolds
[10]. [In actual fact, Reynolds considered parallel sur-
faces and did not state Eq. (19), although it follows from
his equations. The history of Eq. (19) is rather obscure.
Deryagin argued that Taylor first wrote this equation in
1924 (see [11], p. 346). The first complete solution to the
problem was given by Brenner [12] for arbitrary H /R,
from which (19) follows in the small gap limit.] For the
more general case rewriting Eq. (18) as

_3m ,a’
FUH)="TuV e k(H) 20

defines the factor
k(H)= [ “P(h)dh , @1
1

e.g., to account for the additional force due to brushes.
Now the problem is reduced to deriving the radial veloci-
ty v from which k(H ) follows through the triple integra-
tion in (17), (16), and (21).

In Sec. II we will consider a step-function density
profile for noncompressed (and nonoverlapping) brushes,
extracting an exact solution of Brinkman’s equation and
an analytic form for k(H). In Sec. III we will turn to
noncompressed brushes with ‘“‘smooth” density profiles
(e.g., parabolic) and estimate k(H ) within the framework
of a slip-approximation valid for slightly permeable
brushes. In Sec. IV we analyze compressed brushes as-
suming the local density to be independent of radial posi-
tion and dependent only on the local separation, and ex-
tract an integral representation for the force along with
some analytical approximations valid up to rather strong
compression. Finally, in Sec. V we employ our results to
calculate the viscosity of a suspension of spheres with
grafted polymer brushes and demonstrate good agree-
ment with the high-shear viscosity measured for polymer-
ically stabilized lattices.

II. NONCOMPRESSED BRUSHES
WITH THE STEP-FUNCTION DENSITY PROFILE

Let us consider the step-function density profile with
¢=¢, and 8=§, inside the brushes for separations
H >2L. For simplicity of notation, from here onward we
write all equations for the upper brush, i.e., z>0. Thus,
the solution of Brinkman’s equation yields

- h L 72
<t |=—2 4
vih,zZ< 5 5 C (22)
outside the brush and
Rzstoa|=L 1B Fip,en 3
v |h,Z> ) 3 e se (23)

inside it, where K =H /§;,, A=L /§,. The constants in
Egs. (22) and (23) follow from joining these solutions and
their derivatives at the brush interface and requiring no
slip at the particle surface:

B,= ?li%e_"”A , (25)

c—h—f»+#—31e—"—‘ﬁ—32e"“ : 26)
where

‘Lzh;L, ”Ehz_azL . 27)
Now the flux follows as

Qh)= 311@ (*+3n2sy+6ms, +s,) , (28)
where

so=tanh(A), slz%, s,=3(A—sy) . (29)
Making use of (17), (21), and (28), we find
k(E)y=Ks=8),  s—¢

28 —r  (s?+E&s—r)'?
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where

sEg—A+so,
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3
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(32)
c,=3s3—6s,, d=—E—4r, r=c, /€.

Egs. (30)-(32) are general, although the definitions of pa-
rameters S,s,,5; depend on the assumptions employed in
calculating the flux Q. Equations (29) pertain to the
step-function density profile, which permits the exact cal-
culations as presented in this section.

For other profiles complete analyses of the intrabrush
flow can be rather involved, except for poorly permeable
brushes. Then, as noted by Milner [3], one can estimate
the penetration length a of the liquid flow into the brush
and collapse the mechanics of this region into a boundary
condition as
Ll o O a=hL, (33)

a az
where v, is the pressure-driven flow deep inside the
brush. For very poorly permeable brush with v, =0, (33)
becomes the slip boundary condition for a solid sphere,
for which solution of the lubrication problem yields [13]

H
3a

H—2L
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This follows from Egs. (17), (21), and (28) if one sets
a=5y,8p, s;=s5,=0, thus completely neglecting intra-
brush flow. Equation (34) predicts a certain weakening of
the hydrodynamic force, but does not eliminate the diver-
gence at H =2L. In the next section we adapt the slip ap-
proximation by properly accounting for intrabrush flow
for poorly permeable brushes, which removes the diver-
gence.

III. SLIP APPROXIMATION FOR
NONCOMPRESSED POORLY PERMEABLE BRUSHES
WITH PARABOLIC DENSITY PROFILE

In this section we consider the brushes with parabolic
density profile as predicted by Milner, Witten, and Cates
[1]:

2
Zy,

2L

73

2L
=3—
L

L

1— , (35)
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¢ 2
where z; =z—(h; /2) is the distance from the brush-
liquid interface, and the numerical coefficient has been
chosen in such a way that the averaged density is identi-
cal to ¢,. Since the liquid velocity close to the interface
J

of the poorly permeable brush scales with the penetration
length a, it is convenient to rewrite the Brinkman equa-
tion (8) inside the brush in the following form:

2n 2

v, £ a
g |1- =— |1 (36)
€2 § 2%, | ° H
where
V4
gE_é:_, goE_i_‘, aES_”/(H")(SOL”)l/(H"). 37)

The redefined penetration length a turns out to be much
larger than the value §, for the step-function profile. An
analytical solution of (36) is possible for & <<&,, where
(36) reduces to

azvsurf g

3E?

a

—gznvsurfz - lE (38)

and v, s distinguishes the solution from the complete v.
Now we solve (38), join it with the solution (22) outside
the brush, and apply the boundary -condition
Vgurr(§= 00 )=0, implying negligible flow deep in the lay-
er. We find

—__h 1 . 1
VUsurf h,z>?—A =v0;l‘(1—p)p”sm(1rp)Kp 2p§5|
2 1
2-3p | & 172 IpE—— -1k d
+(2p) | € ‘11, PE fngu/z,,)“’ L(@)do
1 2p&(1/2p) 3,4
+K, 12065 | [ ¥ (0o |, (39)

where p=1/(2n+2) and v, is the liquid velocity at the
interface:

o= Ll=p) ahL+r(2p)r(p)r<1~p) a
o7 2p¥r(1+p) H pP[T(1+p)T? H
(40)
Outside, the brush (22) takes the form
— 72
Fo h_xl__z ko
v|hz<>—A 5+t o (41)

The asymptotic representation v g, for vy, follows from
(39) as

V(Eg>>E>>1)=vg (E>>1)=v5(&)

2
g-2n R 42)

a
H
while the correct asymptotic solution deep inside the
brush, easily seen from (36), is

—2n
£

2
V(Eg>E>>1)=v™(£)= % g2n o (43)

f
Both Egs. (42) and (43) correspond to the Darcy approxi-
mation for the Brinkman equation but the density profile
is assumed linear in (42), as opposed to the full parabolic
profile in (43).

Let us write the liquid velocity in the brush as

v(E)=vg (&) +Av(E) , (44)

where Av(£) is the difference between the solutions of
(36) and (38). The corresponding representation for the

flux

Q :Qout + qurf+AQ ’ (45)
with

hy /2 hi koo
= = — —_ 4
Quu=[ = vdr=—r+——, (46)
a b
qurf= —I; fO vsurfdg ’ (47)

includes contributions from the flow (41) outside the
brush and (39) within it plus

a b
= 48
AQ Hfo Avd§, (48)
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the correction that arises from approximating v by vg;.

Now we will express the solution in a compact form
valid for L <n <1. The first inequality guarantees that
the upper limit of the integral in (47) can be set to
infinity, i.e., the dominant contribution to this integral
comes from the surface layer of the brush (see below).
The second inequality permits us to substitute into (48)
the difference between asymptotes v * —v g ¢ instead of
the difference between complete solutions v —vg,¢. This
procedure is justified if the dominant contribution to (48)
is the deeply penetrating Darcy flow at £=0(&,) rather
than the flow in the viscous surface layer at £ <<§,. Ex-
panding v * —v ¢ at & << &, one finds

2 1—2n
. w |l O —2n
UV " Vsurf = E 3 °|n _é%‘
R ES N
4 &o
+ .- (49)

Substituting into (48) is justified for n <1 since (48)
reduces to

3

AQ=— fog"(u " —vaadE=C, |5 | &7, (0
with the numerical coefficient

—2n
c.=['||1-%| —1|%- (51)
The formula for the flux follows as
2 3

Q=Lh} +%Co%_f +cC, % h+1c, % , (52)
with
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a
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The latter integral converges for n > 1. The contribution
of the deeply penetrating Darcy flow, represented by the
second term in the square brackets in (55) is small in the
limit @ << L. The flux Q can be written in the form of (28)
with

SQECOQ/S(), leCI(a/SO)Z, 52£C2(a/80)3. (57)

Equations (30)-(32) still apply, with (57) substituting for
(29).

Thus, in this section we have derived estimates for the
lubrication force valid for poorly permeable brushes
(89 <<L) with a parabolic density profile and 1 <n <1.
Hence, our results apply to the most important case of
swollen brushes in good solvent with n =2 [see the text
below Eq. (10)]. The validity of our approximation also
depends on the applicability of the Brinkman equation at
the length scale a. Recall that our model implies that the
brush is spatially homogeneous, which holds for
¢>¢*~N'173" [14]. Estimating ¢ at z; ~a <<L by (35)
and setting L ~ R, ~N" converts this inequality into

N(1—3v)v/(4v—l)>>N1~3v , (58)

which is satisfied at least for N >>1 and v> 1, i.e., our
calculations are indeed justified.

IV. COMPRESSED BRUSHES

At h <2L the brushes come into contact, which results
in either compression or interpenetration. One can show
that in the mean field approximation for good solvents in-
terpenetration produces lower free energy only below a
particular separation [2]. A constant density of polymer
segments between solid surfaces, i.e.,

b _2L 5 _5_ |

¢ h’ T8 |2L

n

(59

is confirmed by computer simulations of interacting
brushes in good solvent [15].
The velocity profile in compressed brushes at 7 <2L
follows from (8) as
z
6

2 cosh

Kl

v(h<2L)= (60)

h
cosh | ¢

Combining (60) with the solution outside the compression
area [which is still given by Egs. (22) and (23) or (39) and
(40)], we subsequently calculate the integrals in (17), (16),
and (21). Since the integral in (16) is calculated from 4 to
infinity, it is convenient to separate the part arising from
outside the compression zone (A’ = 2L ) and the one from
the compression zone (2L >h’'>h). The former is iden-
tical to P(h=2L) for noncompressed brushes and hence
follows from the results in Secs. II and III. The latter re-
quires integration of (60), which yields

2 L/§
Ph<2L)=P(h=20)+ 5 [0 L dn
6 h/28, 83
r ﬂ-—tanh

8 5,

r

1]'

(61)
Integrating (61) with (59) and substituting into (23) deter-
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mines k(H). Again we distinguish the portion of (23)
from the noncompressed zone, which equals
ko=k(H=2L) calculated for noncompressed brushes in
Secs. II and III. We also distinguish the part that comes
from integration of the first term in (61) over H <h <2L,
which we denote k;(H ). The remaining part, k,(H ), in-
volves exclusively the integration over compressed zone.
For a strongly compressed brush, H <<L, k =k,, as as-
sumed in the earlier work of Fredrickson and Pincus [4].
Here we obtain a more general result:

k(H)=ky(H)+k,(H)+k,(H) , (62)
where
K
K|—A
ey (H)=—L So—§
U 28— |7 [s3+Eso—r]'?
3 |7 _ 250+§
+\/E > arctan Va ,
(63)
K A A 2n/(1—n)
kalH)= 3(1—n) fx/zdan"n‘—"dn ;77
1
Xn’—tanh(n‘)’ (64)
for n+#1, and
1A | _K_ |K
kz(H)_3A—tanh(A) =2 2a (63)

for n=1. One can see that only for n =1 are all integrals
calculated analytically. However, some useful analytical
approximations apply more generally.

Let us consider poorly permeable brushes, A >>1, with
weak compression, A"K!7">>1 (e.g., K>>1/A3 for
n=3), such that tanh(7) in the denominator of (64) can
be neglected, leading to

2n—1
1 A 2A K

k =gl ||£2 - s

L(H) 6nK o —1 X 1+2 A}
(66)

for n#L, n#1;
2A K
=1 —_— —_
k,(H)=31KA an +2A 1 (67)

for n =1. For K <<A, Egs. (66) and (67) simplify further;
e.g., (66) reduces to

2(1—n)
2n | AN
k,(H : 2 68
R T PR I 8
Comparing this with (34) we conclude that, at

K >>AU73m/307m) g provides a dominant contribution
to k. Thus, Eq. (68) comprises a simple estimate for k

300 =
100 ¢
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6rnipaV
10% 1
1 +
0.1 1 4

H/L

FIG. 2. Force is plotted vs gap width for step-function densi-
ty profile. The thick curve represents the complete solution.
Also shown are the approximations (67) (— — —) and (68)
(—+-). The thin solid line corresponds to bare particles. The
dashed vertical line represents the point of contact of the
brushes A=10;n=3;a /L =5.

and, for n =2, reduces to that of Fredrickson and Pincus
[4], kK ~A3/2K 172, However, the applicability of this esti-
mate is limited, e.g., to A>>K >>1/A%"? for n=2, ac-
cording to the conditions mentioned above.

Now let us consider the predictions from Egs.
(62)—(68). First we assume noncompressed brushes to
have a step-function profile and employ Egs. (31)-(34) for
k(H), etc. Results of calculations with n =2, a=5L, and
A=10,100 are plotted in Figs. 2 and 3, along with ap-
proximate solutions according to Egs. (67) and (68).
While the former approximation turns out to be very
good over practically the whole range of gap widths, the
latter is valid only at high A and very small gap width.
The failure of the Fredrickson and Pincus approximation
(68) at low compression is essential to the rheological
problem considered in the next section. In Fig. 4 we
compare solutions with different n for the step-function
profile. One can see that the curves deviate from each
other as the brushes become compressed, with hydro-
dynamic resistance increasing with n.

For a parabolic profile the slip approximation for
A=10 and 100 is shown in Fig. 5, along with the com-
plete solution for the step-function profile with the same

100000 ¢

10000 ¥
——I—:— 1000 ¢
6rnpaV

100 %

10%

0.02 0.1 1 4

H/L

FIG. 3. Same as in Fig. 2, but for A=100.
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1 ot —

0.1 1
H/L

FIG. 4. Force is plotted vs gap width for A=10 and
n=1(1), 3(2), and 103

L. One can see that the hydrodynamic resistance is
somewhat lower for a parabolic profile of the same thick-
ness and the same average density, especially near the
point of contact (H =2L).

V. APPLICATION: VISCOSITY
OF COLLOIDAL DISPERSION

In this section we consider a colloidal dispersion stabi-
lized by grafting polymer chains to the surfaces of parti-
cles. Without brushes this system reduces to the hard
spheres (HS) studied widely in recent decades. Of the
two principal contributions to the stress tensor, hydro-
dynamic and thermodynamic, we address the former,
which determines the high-frequency viscosity 7, and
the high shear viscosity 1,,. These two limits differ since
steady shear perturbs the structure, substantially making
the high shear viscosity somewhat higher than the high-
frequency one (see, e.g., [16]). In this paper, however, we
neglect this difference as insignificant compared to the
effects of the brushes on the viscosity considered below.

Earlier Frankel and Acrivos [17] noted that at high
volume fractions of particles ¢ close to the random pack-
ing limit ¢,,, the hydrodynamic contribution to the

100000 it "
10000 3
_fi_ 1000 3
6ripaV

1007

1o§

FIG. 5. Force is plotted vs gap width for step-function (solid
thick curves) and parabolic (dashed curves) density profiles for
n=%, a/L=5, A=10(1), and A=100(2). The thin solid line
corresponds to bare particles.

viscosity is dominated by lubrication forces. By calculat-
ing the dissipation due to lubrication in a specific
configuration of particles subjected to elongation flow,
they derived

Mo _ 3 F(Hy,)

72 47 upVa

(69)

with the lubrication force F(H,,) estimated via Eq. (19)
by setting H equal to the average value H,, related to the
volume fraction as

173
H,, Pm 1
2a é )

Many authors criticized the derivation of Eq. (69) pro-
posed by Frankel and Acrivos (e.g., [18,19]), although
certainly lubrication forces dominate at high concentra-
tions for HS. Indeed, Frankel and Acrivos found that
Eq. (69) agrees well with considerable experimental data
at 0.55> ¢ > 0.20 with ¢,, =0.6010.03.

Several efforts have sought a correspondence between
the HS and the dispersion of particles with grafted
brushes (see [6,20]). Obviously, there are two extreme as-
sumptions: either to incorporate the brushes into the
hard core and redefine the volume fraction as
b g=d(a+L)*/a® or to neglect totally the brushes. For
the high shear viscosity at high ¢ neither assumption
works, with the true value of the viscosity lying between
the two extremes. Now we will solve the problem by ac-
counting for the hydrodynamic interaction of brushes via
the approach developed in this paper.

To generalize Eq. (69) for particles with brushes, we
simply substitute into (69) Eq. (20) instead of Eq. (19),
which gives

(70)

a
Hav

k23
u

=9
= kHy) (71)

Figure 6 compares calculations from (71) with the experi-

1000

10F

0.60

FIG. 6. Relative high-shear viscosity is plotted as a function
of volume fraction for PMMA and PS systems. Calculations
(curves) and experiments (points) correspond to the following
a/L. For PMMA, 4.7 (1,+), 7.2 (2,A), 26 (3,0); for PS,
1.52(1', &), 1.75 (2',@). See text for other parameters. The
dashed curve corresponds to HS (k=1).
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mental data for several different polymerically stabilized
dispersions. Mewis and co-workers [6,21] dispersed in
decalin poly(methyl methacrylate) (PMMA) particles sta-
bilized by grafted poly(hydroxystearic acid). The thick-
ness of the polymer brushes was approximately L =9 nm
and the particles’ diameters were 2a =84, 129, and 475
nm (i.e., a/L=4.7, 7.2, and 26). The recent data of
Richtering [7] for polysterene (PS) particles with grafted
poly(vinyl alcohol) involved considerably thicker brushes
with L =100 and 74 nm and particles with 2a =350 and
226 nm (thus a /L =1.75 and 1.52). In all these systems
the particles were highly monodispersed and spherical
and layer thicknesses were determined from dilute
viscometry measurements via Einstein’s equation
N =(1+2.5¢.4)u. For the rather thin polymer layers of
Mewis et al. one must be wary about applying the mean
or self-consistent field theories cited above. However, as-
suming these “brushes” to have step-function profiles
with a permeability §,=2 nm, about twice the segment
length for this type of a polymer [2], produces respectable
agreement with the data for all three systems at high ¢.
The fact that the theory underestimates 7, at low ¢ is
not surprising since lubrication forces rapidly decay at
high separations, while long-range interactions are not
taken into account in this model. For the PS particles we
assumed a parabolic density profile and employed the slip
approximation to calculate k(H,,) with §;=5 nm. In all
calculations we assumed n=23. All the data and calcula-
tion results are plotted in Fig. 6.

An important feature of the 71,(#) curves is that they
have inflection points (second derivative changes sign),
which is associated with similar inflection points in F(H )
curves (see Fig. 5). The origin of such behavior is that
the hydrodynamic resistance strongly increases as the

brushes approach each other. Quantitatively this
behavior can be seen in the experiments of Richtering.

Thus, in our model the agreement with the experimen-
tal data is achieved by adjusting the only parameter, §,,.
Unfortunately, experimental data on §, in polymer solu-
tions are scarce. The only measurements of which we are
aware are those of Richter et al. [22], who found the hy-
drodynamic screening length for poly(dimethylsiloxane)
dissolved in deuterated chlorobenzene to decrease from 2
to 0.5 nm as the polymer concentration increased from
0.15% to 0.5%, with the exponent n somewhere between
2 and 1. In light of these data our choice of §, seems
reasonable.

VI. CONCLUSION

We have extended the earlier treatment [4,5] of the lu-
brication forces between polymer brushes on solid spheri-
cal surfaces. For the step-function density profile we ob-
tained a representation for the lubrication force F valid at
arbitrary gap width H both for noncompressed and
compressed brushes. For the parabolic density profile we
include an approximate analysis of poorly permeable
brushes. We employ our calculations of the lubrication
force to estimate the viscosity of the colloidal dispersions
with grafted polymer brushes, in agreement with the ex-
perimental data for several different sterically stabilized
colloidal dispersions.
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