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Alignment tensor versus director: Description of defects in nematic liquid crystals
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The core structure of nematic defects cannot be represented by the usual director field, but
requires the description by the full alignment tensor. We have developed an algorithm which solves
a dynamic equation for the alignment tensor in three dimensions (3D). This algorithm is applied
to a capillary (2D) and to a spherical droplet (3D), both with perpendicular anchoring. We pre-
dict symmetry-breaking, temperature-dependent, first-order configuration transitions both for the
capillary and for the droplet geometries as results. These results are compared to known solutions
obtained with the standard vectorial calculus.

PACS number(s): 61.30.3f, 64.70.Md

I. INTKODU OTIC)N

The state of alignment of nematic liquid crystals is
characterized by the (symmetric traceless) alignment ten-
sor, sometimes referred to as the Q tensor [1]. It can be
measured by birefringence. It is a well defined quantity
both in the isotropic and nematic phases and can be used
to describe pretransitional efI'ects and strong light scat-
tering [1,2] as well as the phase transition isotropic ne-
matic. The alignment tensor has Gve degrees of freedom,
two of which specify the degree of order, the remaining
three are the angles needed to specify the principal di-
rections.

In a uniaxial state only one order parameter (Maier-
Saupe) and two angles are needed. The more common
director description, which sufFices in many but certainly
not all applications in nematics, can be used when the
order parameter is constant.

The core of a defect in nematics cannot be represented
by the director Geld because biaxiality can occur and the
magnitude of the order parameter changes. For this rea-
son it is of interest to apply the alignment tensor theory
to physical situations which involve defects in the direc-
tor description.

As a two-dimensional example, the core of an s = 1/2
disclination line has been calculated [3] previously (s =
1/2 means that the director field rotates by m when the
disclination line is compassed on an arbitrary path). Fur-
thermore, a one-dimensional illustrative example for "bi-
axial escape" has been presented [4]. In this paper, we
look for more examples in two and three dimensions. For
simplicity, we will consider untwisted nematics only.

At constant temperature, differences between both
formalisms can only be expected when the material is
strained. Therefore, we examine geometries that enforce
defects: a circle (2D) and a sphere (3D). The circle rep-
resents a capillary which is homogeneous along its axis,
and the sphere represents a droplet. We restrict ourselves
to rigid boundary coupling and perpendicular anchor-
ing (homeotropic). The more complicated "planar-free"
boundary conditions [5], which would be appropriate for
planar surface alignment, are not considered.

This paper proceeds as follows: in Sec. II, the align-
ment tensor and its connection to the director are re-
viewed and the numerical algorithm is described. Sec-
tion III presents the results, and Sec. IV is devoted to
the conclusions.

II. DYNAMIC EQUATIONS AND NUMERICAL
ALC OB.ITHMS

A. Alignment tensor and director equations

Phenomenologically, the alignment tensor can be in-
troduced as a quantity proportional to the anisotropic
(symmetric-traceless) part of the electric permittivity
tensor, i.e.,

6=6" 6+6 G.

Here e is proportional to the difIerence e~~
—e~, where e)~

and ~~ are the permittivities parallel and perpendicular
to the molecular symmetry axis for a perfectly oriented
sample.

Alternatively, in the IIramework of statistical physics,
the alignment tensor can be deGned microscopically via
the second moment of the orientational distribution func-
tion for the figure axis parallel to the unit vector u,

a:= v/15/2 (uu),

a = a+3/2 uu. (3)

In this scaling the relation a = tr(a2) holds and a

of efI'ectively uniaxial particles. The symbol ++ denotes
the symmetric-traceless part of a tensor, e.g. , uu = uu-
sb, where h is the unit tensor. The brackets () indicate
an orientational average.

In experiments, the dielectric permittivity tensor of
thermotropic nematics is usually uniaxial. In this case, a
can be written in terms of a unit vector n and the scalar
order parameter a as
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—(p Aa+ C(a) = 0,Oa

Ot
(4)

where 4' is the derivative of a generalized dimensionless
Landau —De Gennes potential

P = —A(T) tr(a ) — H tr(a ) + —C [tr(a )] . (5)
2 3 4

~5S, where S = (P2(u n)) is the Maier-Saupe scalar
order parameter.

If, for calculations at constant temperature, the scalar
order parameter a is further presumed to be constant,
the usual director calculus is obtained. It should be noted
that the uniaxial alignment tensor (3), which is mathe-
matically a projector, reQects the nematic symmetry, i.e. ,
the physical equivalence of n and —n.

The results presented in this paper are based on the
dynamic equation for the alignment tensor [2,6]

B. The numerical algorithm
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Since a symmetric traceless tensor of rank 2 has five
degrees of &eedom, it is useful to represent a in an ap-
propriate base. We choose

The parameters 7 and (p are a phenomenological re-
laxation time and a correlation length. They are related
to the rotational viscosity pq and the Frank coefBcient K
(one-constant approximation) by

( o o 0)
T = 0 0 1

~2
~ 0 i 0

p]. —&~BT3aeq+ (6)
and use

K = nk~T3a, gp. (7) a =) a;T'.

In order to get rid of the material specific constants B
and C, the transformations The five coefBcients a; can be calculated using the or-

thogonality
3|
2B (s) tr(T' T") = b;i, . (i6)

(p .——QQC/2B2(p

where

4 = 8 a —3~6a + 2 tr(a ) a,

for all lengths, and

~. := (9C/2B') ~.
for the time are applied to (5), which leads to

(io)

With this representation, Eq. (4) is a system of five
coupled equations [7] which we solve numerically on a
rectangular grid. The algorithm is described in detail
in [8]. Here we give an outline for the time-independent
algorithm.

We start with a finite difFerence approximation to the
stationary version of Eq. (4). The Laplacian is replaced
by

ol2

,a(x, y, z)

T*l & T'&
~ = (9t-"/»') &(T) =

I

i—T) ~
(i2)

is used as the temperature variable. In these units the
clearing point T and the pseudocritical temperature T'
correspond to 8 = 1 and 6 = 0, respectively. The tildes
are dropped for brevity in all subsequent formulas.

The dimensionless &ee energy density of the liquid
crystal is given by

a(z + h, y, z) + a(x —h, y, z) —2a(x, y, z)
62 (i7)

and similar rules for the derivatives in the y and z direc-
tion.

A simple iterative fixed point algorithm is obtained by
defining a" via

2

2
V'a V'a + P(a). (i3)

(&(o l)
gh) ) ai 6anew O(aold)

The Euler-Lagrange equations of this energy coincide
with the stationary form of (4).

where the sum is over the nearest neighbors. This al-
gorithm yields convergence only for values of (p/h + 2,
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(((pl
'

qh) ) a' —6a"' = 4(o,"' ).

In this case the value for a at each grid point is obtained
by Newton's method. The resulting linear system of or-
der 5 is solved directly by L U decomposition [10] (where
L is a lower triangular matrix and U is an upper tri-
angular one). Performing these steps iteratively for the
whole grid yields the desired solution. This algorithm is
very robust and suitable for any grid size. The price is
the computational work which is increased by a factor 3
compared to an explicit method based on (18).

which is suitable only for small length scales, because it
requires the mesh size h, of the discretization grid to be
of the order of (p, which in turn is on a molecular scale.

In order to achieve convergence for arbitrary ratios of
(p/It, we used an algorithm known as the one-step SOR-
Newton method [9]. It arises from a prescription of the
form

the cross section through an s = 1/2 disclination line.
Schohpol and Sluckin have previously calculated this so-
lution [3]. We have reproduced it in order to visualize
it with our above described scheme, because this type of
disclination is an essential part of the symmetry-breaking
configurations presented below.

The notion of a disclination may be misleading here,
because it implies that there may be a defect, i.e. , some-
thing discontinuous. This, however, holds only if the
disclination is described by the director; the alignment
tensor always yields a smooth solution. We will never-
theless speak of disclinations, since we refer still to the
same physical object.

A typical feature of the s = 1/2 disclination is the
"biaxial escape, " that is the sequence planar uniaxial ~
biaxial ~ uniaxial with positive S. Note that the 1D
example considered in [4] is contained as a special case
by the horizontal section through the center.

B. Capillary

III. RESULTS

A. Visualization and s=l/2 chsclination

Since the alignment tensor has five degrees of freedom,
a comprehensive presentation is not as straightforward as
for a director field. In order to present the results of our
computations, we calculated the alignment tensors eigen-
system and the norm of the order parameter according
to ~]a~~

= gtr(a2). The alignment tensor is visualized by
a rectangular box which is built &om the eigensystem of
the tensor. The eigenvalues augmented by g2/3 ~~a~~ to
ensure positivity are used as the edge lengths of the box.
Thus it is possible to distinguish between uniaxial (two
edges have the same length) and biaxial (all three edges
are of different length) alignment. This scheme implies
that the size of the box reHects the magnitude of the
alignment, e.g. , an isotropic tensor would be represented
by a very small cube. As an aside, the more natural
method to visualize the tensor by an ellipsoid instead of
a rectangular box turned out to be less instructive be-
cause it is hard to distinguish uniaxial ellipsoids &om
biaxial ones.

As an example of the visualization of various types
of alignment tensors by rectangular boxes, Fig. 1 shows

uniaxial biaxial planar-uniaxial

We have examined a capillary with fixed perpendic-
ular boundary coupling. This coupling has been rea-
lized by uniaxial alignment tensors with their nondegen-
erate eigenvectors pointing in the direction of the radius
and with a magnitude equal to the equilibrium value at
the given temperature. Using our tensorial algorithm
we have found both solutions with spherical symmetry
and with D2 symmetry. We will use the notations intro-
duced in [11],that is, we will refer to the escaped solution
as "escaped-radial" (ER), to the planar and rotationally
symmetric solution as "planar-radial" (PR), and to the
symmetry-breaking solution as "planar-polar" (PP). The
ER solution is uniaxial everywhere, and therefore in this
case the more accurate tensorial algorithm yields nothing
new. Thus, we will focus on the other solutions, which
contain biaxial regions. In Fig. 2, our PR solution is

c7 w 6& EB

FIG. 1. Core of an a=1/2 disclination. The center is uni-
axial with negative Maier-Saupe order parameter (planar uni-
axial). It transforms via a biaxial ring into a uniaxial form
with a positive S.

FIG. 2. The rotationally symmetric planar-radial solution,
which occurs for very small capillaries close to the nematic
isotropic transition temperature. The center is uniaxial with
negative Maier-Saupe order parameter S. Via a biaxial ring,
the alignment tensor transforms to its usual uniaxial form
with positive S.
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(a) (b)

FIG. 5. (a) Symmetry-breaking alignment tensor solution
for a homeotropic droplet. Around the center is a small discli-
nation loop. (b) Sketch of the corresponding director field as
a supplementary representation.

FIG. 3. The symmetry-breaking planar-polar solution that
occurs for capillaries larger than those which exhibit the PR
configuration. It contains two s = 1/2 disclinations which
undergo the same biaxial escape as the PR solution.

which is not shown, is minimal for diameters larger than
= 40(p.

depicted.
The alignment tensor in the center is uniaxial with a

negative Maier-Saupe order parameter (planar uniaxial).
It transforms via a biaxial ring into its usual uniaxial
form with a positive S (biaxial escape).

We will not present the symmetry-breaking PP solu-
tion using the tensor visualization, because the picture
would be too complicated and therefore not very eluci-
dating. Instead, we show a solution which we previously
obtained using an algorithm which is based on a projec-
tor, cf. Eq. (3) [12]. It shows how our solution obtained
with the alignment-tensor algorithm in principle looks:
in contrast to the PR solution, which is an axial s = 1
disclination [1], we have two s = 1/2 disclinations. See
Fig. 3.

We have calculated a phase diagram that predicts
which of the solutions is stable for a given temperature
and capillary size. It is shown in Fig. 4. The ER solution,

C. Droplet

We have examined a droplet with fixed homeotropic
boundary coupling, which has been realized in the same
way as in the preceding subsection. As a result, we found
that the usually assumed spherically symmetric solution
should only occur very close to the nematic-isotropic
transition temperature, or for very small droplets. In
all other cases, a symmetry-breaking solution is ener-
getically preferred. This solution contains an s = 1/2
disclination loop around the droplet center. See Fig. 5.

If the droplet is large enough (d & 20(p), the loop
has the diameter d~ ~ = 10(p. Figure 6 shows the so-
lution with spherical symmetry. The alignment tensor
is zero in a (temperature dependent) center region, and
uniaxial elsewhere. The Maier-Saupe order parameter
decreases monotonically between the droplet boundary
and the center.

Varying the droplet size and the temperature we have
found the phase diagram shown in Fig. 7.

isotropic
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FIG. 4. Phase diagram which predicts the type of solution
for a given reduced temperature and reduced capillary size.
The depicted solutions are planar-radial (PR), planar-polar
(PP), and isotropic.

FIG. 6. Spherically symmetric alignment tensor solutions
for a homeotropic droplet with d = 10(p. The left solution
corresponds to the pseudocritical temperature (8 = 0), and
the right one to the clearing point (8 = 1).
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15- @ isotropic

matics, however, and for some lyotropics, the predicted
effects should be well observable.

0.5- B. Capillary
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FIG. 7. Phase diagram for the symmetry-breaking configu-
ration transition. The usually assumed spherically symmetric
solution occurs only in a very small region of the phase space.

More than 20 years ago, Cladis and Kleman compared
a planar 8 = 1 disclination to the escaped solution. They
found the latter to be energetically preferred only for suf-
ficiently large capillaries [13]. Later, theoretical and ex-
perimental evidence for an additional symmetry-breaking
solution was reported [ll]. Thus, our calculations are
in agreement with previous considerations. As a result,
we predict a first order symmetry-breaking configura-
tion transition between both solutions. A phase diagram
specifies under which conditions either of the two config-
urations should occur.

C. Droplet

IV. CONCLUSIONS

A. Ceneral

The calculations we made are based on a dimension-
less and material-independent equation, and are there-
fore valid for any nematic that can be described by the
Landau —De Gennes theory. In order to relate the results
to experiments, a material must be specified. We choose
N-(4'-methoxybenzylidene)-4-(n-butyl)aniline (MBBA)
as an example, because its properties are well known:
From Eq. (7) it follows that the correlation length (o—
0.4 nm is only a few molecular lengths. This bears two
consequences: first, for the underlying mesoscopic theory
to be valid, one volume element has to be large enough
to contain suKciently many molecules so that statisti-
cal mean values can be de6ned. Thus, all statements
which refer to lengths smaller than '-" 10(o are not appli-
cable to MBBA and other thermotropic nematics. Sec-
ond, high resolution experiments would be needed to de-
tect such small structures. For polymer-constituent ne-

In director field calculations, homeotropic droplets
have usually been assumed to possess spherically sym-
metric director configurations when external fields are
absent and rigid anchoring applies [14,15]. Using the
alignment tensor formalism, Penzenstadler and Trebin
have already considered a cylindrically symmetric solu-
tion [16].We could show that this symmetry-breaking so-
lution will be encountered ordinarily. Only for very small
droplets, or very close to the nematic-isotropic phase
transition, should a spherically symmetric solution oc-
cur.
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