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Tetrahedral syrnrnetry in nematic liquid crystals
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By means of symmetry consideration the order parameter U,~& of a tetrahedral nematic liquid
crystal (LC) was derived. In contrast to other nematic LC s (including uriiaxial, biaxial, cubic, and
icosahedral phases) the odd rank (=3) of U, ii, permits the phase transition of both the first and
second order from isotropic liquid into tetrahedral nematic LC's and leads to the appearance of one
of two possible helical structures in the chiral T phase of this nematic LC. In the framework of the
mean-field approximation the contribution of the orientational part of the LC order parameter to the
polarizability of LC with difFerent symmetries was found and the existence of the second order phase
transition from isotropic liquid into nonchiral tetrahedral nematic LC's has been predicted. The
Freedericksz transition in the nonchiral Td, phase was considered: the peculiarities of the bifurcation
tree crucially depended on the direction of the external field with respect to the rotational C3 and
screw C4 axes of the unperturbed tetrahedral phase. The untwisting and deviation of the helical
T phase in external fields were discussed. The structure of the disclination core in a tetrahedral
nematic LC was analyzed.

PACS number(s): 61.30.Gd, 61.30.Jf, 64.70.Md

I. INTRODUCTION

The absence of translational symmetry in the nematic
phase of liquid crystals (LC's) admits the point symmetry
groups —subgroups of 0(3), including the groups forbid-
den in crystalline lattice. The existence of nonuniaxial
nematic phases was predicted [1,2] long before they were
found in the lyotropic mesophase [3]. After that by means
of traditional conoscopic and calorimetric techniques as
well as the NMR and x-ray diffraction there were iden-
tiBed many nonuniaxial phases in thermotropic nematic
(LC's): monoclinic [4,5], rhombic [6,7], tetragonal [8] and
cubic [9]. In the paper [10] the properties of the hypo-
thetical icosahedral nematic LC's were described. In a ly-
otropic LC, rhombohedral, tetragonal, and cubic phases
were also observed [11].

This variety of nematic LC of difFerent point symmetry
groups G initiated development of the theory of physi-
cal phenomena (elasticity, flexoelectricity, hydrodynam-
ics) for a nematic LC of arbitrary symmetry [12—15]. The
theory of linear defects for the most groups G was devel-
oped in the framework of a homotopical approach [16].
The orientational order parameter Q which was used
in the Landau-de Gennes theory of a nematic LC is well
known for middle (ur=2) crystallographic point groups
DI„Dpp, and DI, h where m is the rank of the symmet-
ric traceless tensor. For higher symmetries, it was con-
structed in [17—19] for cubic groups (to=4) and in [20—23]
for icosahedral groups (io=6). Tetrahedral nematic LC's
which correspond to m=3 have not been discussed pre-
viously. One reason for this is that they have not been
observed experimentally until now. Another reason is
that the main problems of LC theory were solved in the
1970's and 1980's and the gradual decrease of interest to
this branch of condensed matter in the last decade has

left a number of unresolved questions.
In the theory of condensed matter, the tetrahedral

symmetry was successfully used to describe defects in dis-
ordered phases (metallic glasses, Caspar-Frank phases)
as frustrations of tetrahedral packing [24]. The tetrahe-
dral symmetry of a nematic LC also could be a source
of disclination lines [16]. In contrast to other nematic
LC's the odd rank of Qs permits the phase transition
of both the first and second order from isotropic liquid
into tetrahedral nematic. Moreover, the &amework of the
mean-Beld approximation leads only to the second order
phase transition. Another consequence of this is that the
Preedericksz transition in tetrahedral LC phases depends
on the sign of the applied field (opposite directions of a
Beld of the same magnitude must give di8'erent deviation
planes for the tetrahedral bonds).

The continual theory of tetrahedral nematic LC's in
the &amework of the Ericksen-Leslie theory was dis-
cussed in papers [14,15]. Our objective here is to derive
the order parameter Qs of a tetrahedral nematic LC and
to develop on its ground the theories of phase transition
&om an isotropic liquid into a tetrahedral nematic LC
and orientational Freedericksz transition. Next, an equi-
librium state of a chiral phase &ee &om the applied Belds
and in the presence of such fields will be discussed. The
core of disclination line in those phases will be considered.

II. SYMMETRY CONSIDERATIONS

We begin here with a brief summary of the symme-
try properties of the order parameter Q for mesophases
of diferent point groups G. The tetrahedral order pa-
rameter Qs will be found to flow naturally from these
considerations. Symmetry classification of LC phases on
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the ground of four-particle correlation functions [25] has
shown that the orientational order parameter Q of the LC
phase can be constructed by means of the components of
the irreducible tensor A of integer rank m. However the
symmetry of LC point group G could reduce the number
Z of independent scalar invariants I (G) of tensor Q
moreover it could make Z equal to zero, e.g. , for Q2

Z[I2(D2h, )] = 2, Z[I2(D4i, )] = 11 Z[I2(O&)] = 0.

hedron. Six Greek indices n, P, ..., v in the expression
for Qs take all noncoinciding values of six Latin indices
i, j, ..., t. The expression for Qs can be obtained by sum-
mation over I, of four irreducible tensors of the third
rank As = u [n, n n& . —1/5 (n, b~i, +n b;I, +n™&h;~)).

The obtained list of order parameters Q exhausts all
possible nematic LC phases. As presumed, it corresponds
to the list of finite subgroups of group SO(3): CA, (A: )
1), Di, (k ) 2), T, 0, Y.

Therefore, the orientational order parameter Q of a LC
for the certain point group G might be naturally chosen
as the first nonvanishing symmetric traceless tensor Q
which satisfies the following conditions:

Z(I (G)] g 0, Z[I„(G)]= 0, v = 1, 2, ..., tv —l.

Now for LC phases not possessing the inversion center
or reflection planes, we should take into account an op-
portunity to construct pseudoscalar invariants by means
of the terms Q~V'Q (chiral phase). Thus it is not dif-
ficult to realize [26] that for subgroups G of the three-
dimensional orthogonal group O(3) a sequence of order
parameters Q is finite and well defined. In Table I,
qo and q, u, r, s are the modules of tensor order pa-
rameters Q2, Qs, Q4, Qs, respectively. For construc-
tion of tensors Q we have used M unitary vectors n
if m = 2 these vectors are directed along three rota-
tional axes t 2 of rectangular parallelepiped; if m = 3,
along four rotational axes C3 of tetrahedron; if m = 4,
along three rotational axes C2 of tetrahedron or t 4 of
cube; if ~ = 6, along 15 rotational axes C2 of icosa-

III. TETRAHEI3RAI NEMATIC PHASE

From all nematic phases (see Table I) the tetrahedral
phase is the only one that has an antisymmetric order
parameter Qs ——U;~i, with respect to inversion of vectors
Qm

U,,g( —n) = -U~g(n). (2)

It leads to some peculiarities of the physical properties
of those phases.

A. Phase transition

The phase transition from isotropic liquid into nonchi-
ral phase Tg of a tetrahedral nematic LC can occur as
a transition of both the first or the second order in con-
trast to a weak phase transition of only the first order
into other nematic phases (with the exception of the sec-
ond order phase transition in a tricritical point [2]). It
follows from the fact that the rank of tensor U,~ I, is odd.
Therefore, one can construct the scalar invariants only

TABLE I. Mesophases: Symmetry groups and orientational order parameters. [Continuing the
tradition that was given rise to by Schouten [27] (Q2 deviator 5, —Qs septor-7, Q4—rconor-9) an-
irreducible tensor Qs might be called, in the Latin manner, tridecor according to the number (13)
of its independent components in the general case. ]

Symmetry group G and orientational order parameter Q
Isotropic liquid

G =SO(3) for chiral liquid, and O(3) for nonchiral liquid
Qo ——0—scalar

Vector liquid
G = |I, for chiral, G = CI, „

for nonchiral polar, and G = CA, h, , SA, for nonchiral axial
Qi ——n—unitary vector

G = DA:+g,

6=S

Uniaxial nematic LC
k ) 2 for chiral (cholesteric), G = Dt, q, D~q+i~i„, k ) 2 for a nonchiral

Q2 —qo (n;n~ —1/3 b,i)—unitary deviator
Biaxial nematic LC

G = D2 for chiral, G = Dqp, for nonchiral

Qs ——g,'q (n; nP —1/3b, ,)—deviator, P,'q = 0

Tetrahedral nematic LC
G = T for chiral, G = Td, for nonchiral

M=4
Qs ——u g „n,n ns —unitary septor

Cubic nematic LC
G = O for chiral, G = Th, , Oh. for nonchiral

[g n,, n nl, nP —1/. 5 (b,~bi, t + b;&b~& + b, lb~&)]—unitary nonor

Icosahedral nematic LC
G = Y for chiral, G = Yj, for nonchiral

[Q,' n™n,ngnI n~ nt™—1/7+I, (b pb~pb„„)]—unitary
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of even order: U;zgUy~„(U;~.I,Uy~;), etc. [Restricting
ourselves by considering only the symmetric third rank
tensor V~I, we can build two independent scalars of the
fourth order, (V~i, )4, V~I, Vi, i„Vi~~V~;~;th. ree independent
scalars of the sixth order, (V~A,.), (Vzp) Vi,&&V&z&Vq,~,
V~I„.VI,I~VI„&V~„,V,qVq,-~, etc. If the trace of V~A, is zero,
we have only one independent scalar in every sequence
pointed above. ] The density I" of the &ee energy of the
Tg nematic LC near the phase transition reads

n4

U'. U...+ -(U*,.U. *). . 2

+as (U;~i, Ui, ~;) (3)

e'

The Tp nematic phase forms a spatially homogeneous dis-
tribution of the tetrahedral bonds.

The phase transition &om an isotropic liquid into the
chiral phase T of a tetrahedral nematic LC also can be
of both the first or the second order due to the con-
siderations discussed above for the Tg phase. However,
the appearance of the term U;zi, V'U;~. i, in (3), like other
quadratic derivatives which described the elasticity, can
lead to the spatially inhomogeneous ordering of the T
phase as well as in ordinary cholesteric LC (G = D ).

What kinds of space ordering does a chiral tetrahedral
nematic LC form7 This question can be considered in
two versions. The erst one is to find a phase diagram
in parametric space [temperature-chirality-applied field
(probably)] for a chiral liquid crystal with order param-
eter U,~I, . Obviously such a diagram would include the
branches of the disorder phase (isotropic liquid) and the
tetrahedral T phase. Besides, one can also suppose some
more phases with an intricate space package similar to
the blue phases in the narrow temperature region be-
tween uniaxially twisted phases and the disorder phase.
This approach assumes an analysis of the full expression
of &ee energy E~ including the gradient and nongradi-
ent terms (see the realization of such a program for blue
phases in [28]).

The second version is more modest and, therefore,
more restricted —to find a possible space ordering of
the chiral tetrahedral nematic LC by considering only
the gradient part of the free energy Ez. It means that
we are far from the phase transition. This approach natu-
rally does not say anything about the phase environment
around the considered phase. The high symmetry of the
chiral tetrahedral phase in comparison with the ordinary
cholesteric LC shows that one can expect nontrivial so-
lutions already at this stage. In the present paper, we
restrict ourselves to the second version.

Let us choose for convenience another parametrization
of tensor U,~A, by means of three unitary vectors e' di-
rected along rotational axes C2 of the tetrahedral nematic
LC (Fig. 1)

FIG. 1. Bonds in a tetrahedral nematic liquid crystal.

and conserving the conditions of the rigidity of tetrahe-
dral bonds

(n', n') = s (b" —4).
The density E~ of the Frank &ee energy of a deformed
T nematic LC with strong surface anchoring is described
by four nonchiral K, and one chiral v elasticity modules,
according to [14]

2F7 = ) [Ki div e'+ K2(e', rote') + v(e', rote')]
i=1

+Ks ((e, rote ) + (e, rote ) + (e, rote ) )

+K4 ((e, rote ) + (e, rote ) + (e, rote ) ) .
(6)

Notice that expression (6) is constructed on the grounds
of nine independent pseudoscalars (e', rote~). By means
of vector identities for the right-hand triade e, e, e

dive' = (e",rote~) —(e~, rote" ),

(e' x rote') = (e~, rote") + (e",rote~) , i g j g A:

expression (6) can be represented as a quadratic form in
nine-dimensional Euclidean space

2' = —3K2~ + ) K2(2:;+ ~)

n = (e +e +e), n = (e —e —e),
3 3

( Ks+ K41 2 Ks —K4+
~

Ki+
~

y,'+ y* ~*-

r

3n (—e +e —e), n = (—e —e +e),
3 '

3
+3+ Z4+ z;
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where

r =, x; = (e', rote'), y; = dive',
2K2 '

3 3

B2 ——) p;, B4 ——) p, .

z; = 2 (e' x rote') —div e' z, & 0.
The necessary conditions of positive definiteness of ex-
pression (7) are

K3+ K4
K2 &0, K3+K4) 0 K1+

4
&0,

K3K4K1+ & 0.
3 + 4

By satisfying these inequalities, the &ee energy ET has
an absolute minimum determined by the conditions

dive' = 0, (e' x rote') = 0, (e', rote') + K = 0. (10)

One can find these sums by use of the two-parametric
orientation of vectorial triade M;: n; = (e', N)
cos6;, i = 1, 2. Then it is easy to show that

B2 ——2, B4 ——2 [ 1+8(I)I, I)3)],

8 (I)1I I)2) = cos '81 cos 'l)2 —s111 I)I cos I)I
—sin 82 cos

Let us introduce the ratio between elasticity modules u =
(K3 + K4)/2K2. Minimizing the expression (14) with
respect to p one can find

It is easy to show that three scalar equations (10) for any
vector e' are equivalent to one vector equation with the
nontrivial solution 1+ (1 —~) 8(81,1)2)

' (i6)

rote'+ ~ e' = 0.
Thus we should have obtained a pure twist of each vector
e . Nevertheless, the rigidity conditions (5), which are
valid in every point of three-dimensional space, forbid the
continuous distribution of tetrahedral bonds with equal
periodical twist of each vector e'. This can be proven by
means of vector identities but we will point out a simple
geometric argument. Indeed, a pure twist of two vectors,
e.g. , e and e, gives rise to the twist axis Tw3. It has a
constant direction in the space and cannot coincide with
third vector e because e itself is involved in the twist
of the pairs e, e and e, e . However this construction
is forbidden in the three-dimensional space: e as the
vector product of ei and e2 must coincide with the twist
axis Tt03.

Making use of continuous functions we cannot provide
the absolute minimum of the &ee energy Ez . In order to
find a continuous distribution of tetrahedral bonds that
minimizes Locally (in vicinity of the equilibrium state)
the expression (6) let us consider e'(r) in the class of
functions

3K 3K2K
0 + 4J Q 1) PC ) FCg2+u ' 2+m

I)I = I)2 = arctan (4~2); (17)

(ii) a uniaxial phase with a helical axis along the rota-
tional axis C3 of chiral tetrahedral nematic [Fig. 2(b)]

which leads to the free energy I'T = K2rp—*(81,I)2).
Now the final step is to 6nd the minimum of the &ee
energy with respect to the angular variations of 61,82.
After a simple algebraic procedure we will get the follow-
ing:

(i) a uniaxial phase with a helical axis along the rota-
tional axis C3 of chiral tetrahedral nematic [Fig. 2(a)]

N = const, M;(r), rotM; + p;M; = 0 (12)

and put

e'=nN + PM;, (N, M, ) =0, K =M; =1. (13)

Before we go on, it must be noticed that only one p
serves for three vectors M;; it could be proven by means
of linear algebra. Now inserting (13) into expression (7)
after simplifications we obtain

where

K, +K412I'T = 2K, ~p,B2+
~

K2 ——
I

u'B4
2 )

K3+ K4+ P+2)
FIG. 2. Uniaxial chiral phases of a tetrahedral nexnatic LC:

(a) C3 helix, (b) C2 helix.
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cu)1, p~ =K, I"c, = K—2~, Bi=0, 82=~/2. formula

As follows from formulas (17) and (18), the pitch h =
2vr/p,

' of a helical tetrahedral structure depends on the
anisotropy of the LC elasticity only in case (i).

B. Polarization

4

2W = U;~i,E;E~E—i, = —u ) (ri, E)
m=1

(19)

Then, in e' basis we find

W = — u (e', E) (e', E) (es, E) .
3

(2o)

The one-particle distribution function of the tetrahedral
bonds is p(U) = a exp ( W/kT), wh—ere a is the normal-
izing constant. Going over to the spherical coordinates
we obtain

p(U) = a exp
~

E cos 8 sin 0 sin 2p
~

. (21)
2u'

)3 kT

The value (0) = (cos csin Osin2y) can be taken as the
angular order parameter that goes to zero in the isotropic
phase. Applying the general definition of (0)

(0) = O(0, p) p(U) sin 0 d0 d(p,
0 0

(22)

let us present a final result omitting the details of the
calculation procedure,

(n) = —ln 1,(~~(1 —* )) d*2

d'Y 0

where p = ~ &&Es and Io(x) is a modified Bessel func-

tion. It is easy to show that in the weak field (p ( 1)

4 8 u
105

A conclusion about the order of the phase transition
could also be drawn in the &amework of the mean-field
approximation in statistical physics (see a modified vari-
ant of the Maier-Saupe theory in the Sec. III C). First
of all, it is necessary to determine an angular order pa-
rameter for a tetrahedral neinatic LC similarly as (cosg)
for a paramagnetic gas or as (cos28) —1/3 for a uniaxial
nematic LC [29]. In the present section we will restrict
ourselves to the determination of such an angular pa-
rameter (0) considering a polarization of a tetrahedral
nematic LC.

Let us put a tetrahedral nematic LC in electric field E.
The density of energy of their interaction is

W = —(P, E)

and assuming that the contribution to W = (W) from
every tetrahedral bond is given by (20) we will find

W= — uE (O)c,
3

where c is the concentration of the tetrahedral bonds in
the nematic phase. After inserting (24) into the last for-
mula and comparing it with (25) we finally obtain

16 uP = ps(E)E, ps(E) = c E
3&5 kT (26)

where p3 is the polarizability of the tetrahedral nematic
LC.

It must be mentioned that the expression (26) could
be simply generalized for any neinatic phase (Table I): if
an order parameter is a tensor Q of rank iii with module
6 then the polarizability p of such a mesophase in the
weak electric field (b E ( A:T) is

m E2(m —j)b2

kT

In conclusion, we will make a remark: the last expres-
sion describes a contribution of an anisotropic part of
the order parameter to the polarization of the nematic
phase. There is really always an isotropic part of polar-
izability p0 as a result of the induced dipole moment p0E.
By analyzing the nonlinear contribution E ( ~ to the
polarizability of the nematic phase, one can determine a
symmetry class ur of liquid crystals according to Table I.

C. Maier-Saupe theory of tetrahedral nematic LC's

V; = —V (0) cos8; sin 0; sin2rp;,

where V is an energetic constant which does'not depend
on temperature T. The spherical coordinates 0;, y; de-
scribe the ith molecule position in the mean molecular
field. It is natural to introduce a function

Consider now the phase transition &om an isotropic
liquid into a nonchiral phase Tg of the tetrahedral ne-
matic LC in the &amework of the mean-field approxima-
tion. Our approach is based on the Maier-Saupe theory
for the uniaxial nexnatic LC s [29] with natural differ-
ences.

In accordance with this approximation a one-particle
distribution function of the tetrahedral bonds is p(U;) =
a exp ( V, /kT), where —V; is the orientational energy of
the ith molecule in the mean molecular field (0). Fol-
lowing the Maier-Saupe theory, we shall put V; oc (0).
Similarly, to the derivation of the orientational energy of
the tetrahedral nematic LC's interaction with the electric
field (19) and (20) we can obtain

Defining a polarization P of the nematic phase by the Q; = Q(g;, p;) = cos9, sin 0;sin2p,
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in order to construct a one-particle angular ord.er pa-
rameter (0;) which goes to zero in the isotropic phase.
According to the definition we have

Finally, Eq. (32) gives

T = 2 4 6
T* d1v —d2v + d3v )

(0,) = O(0, , (p;) p(U, ) sin 0; de, dy;,
0 0

where the one-particle distribution function p(U, ) can be
written as

105 T*
)4 T (35)

p(U, ) = a exp O(8;, p;)
(0)V
kT (30)

C3
d1 —————0.50 x 10, d2 —— —0.34 x 10

C1 2C1
C4

d3 —— —0.25 x 10
6C1

Now we are able to make the last step in the &amework
of the mean-field approximation and to postulate a self-
consistent equation

where T* = 2c1
Q 105 f is a temperature of the second

order phase transition. In the vicinity of T* we immedi-
ately obtain from (35)

(0;) = (0) . (31)

Inserting (28)—(30) into Eq. (31) after simple calculations
we obtain

(II)(T)
2 iggs (1 T ) T ( T
0, T&T*.

kT d

V dv
v = —

[ ln Z(v) ],

2

Z(v) = Ig(vsintcos t) cost dt,
0

(32)

The numerical solution (Fig. 3) of the nonlinear equation
(32) also confirms the conclusion about the order of the
phase transition with ordinary dependence on the order
parameter (0) oc gT* —T.

For the case T —+ 0 we have

where v = &z (0). This nonlinear equation determines
an implicit temperature dependence of the order param-
eter (O)(T) as well as the temperature T* of the phase
transition where (0)(T) = 0 if T & T*.

Let us study analytically the behavior of (A)(T) in the
vicinity of the phase transition ((0) (( 1). Using a power
expansion for the modified Bessel function Ig(x) and an
integral representation for the P function B(l, n) [30] one
can find a statistical integral Z(v)

(0) m = 0.385,
2

3 3

that also is in good agreement with numerical results
(Fig. 3). This value comes from the maximization of
A(0, , y;) with respect to the angular coordinates 8;, p;

y, = 45', 0; = arccos
~ ~

= 54.7' .

i I(21 —I)"1'
Z(v)= ) —,v, bi= 2

L=O

(33)

where the first five coeKcients b~ are

2
60 = 1 61 = —190 x 10 62 = 266 x 10

105
63 —2.75 x 10, 64 —2.23 x 10

The logarithm of Z(v) can also be expaiided in powers
of v by means of a cumulantial expansion [31]

lnZ(v) = ) —,
' v ',

j.

c1 61) c2 62 61) c3 —63 36162 + 261,
c4 ——64 —46163 —362 + 126162 —66

The erst four of them are

c1 —1.90 x 10, c2 = —0.96 x 10
c3 —1.35 x 10, c4 = —2.86 x 10

where the so-called cumulants c~ are related to b~ in a
regular manner

Let us knish this section with a short discussion of the
inBuence of the thermal Huctuations of nematic bonds on
the critical behavior of the nonchiral tetrahedral nematic
LC in the vicinity of the phase transition into isotropic
liquid. This question is obviously out of the scope of the
mean-field approximation.

As was shown in [32] for the phase transition &om a
nonchiral uniaxial nematic LC into an isotropic liquid in
the one-constant approximation we can operate with a
model of three-component spins of the 6xed length in-
stead of the second rank traceless tensor Q;~ if the fluc-
tuations of the module q of tensor order parameter Q;~
would have been neglected. In the framework of the
above-mentioned approximations in [33], this approach
was extended to the phase transition &om a nonchiral
biaxial nematic LC into an isotropic liquid: one can op-
erate with a model of five-component spins of the fixed
length instead of the second rank traceless tensor Q,~.
Following this approach, in our case we will use a model
of seven-component spins of the fixed length (Appendix)
instead of the third rank traceless tensor U;~I, . In this
spin representation in accordance with power expansion
(3) we have an isotropic model that belongs to the uni-
versality class d = 3, n = 7. This model has only one
stable isotropic fixed point [34], where the second order
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FIG. 3. Second order phase transition
from isotropic liquid to the nonchiral tetra-
hedral nematic LC.
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I
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The width bT of the critical temperature range is deter-
mined by the Ginzburg criterion.

D. Freedericksz transition

In this chapter we will discuss the behavior of the
nonchiral tetrahedral nematic LC contained in an infi-
nite plane-parallel slab in electric field E. It presumes
a strong anchoring of nematic bonds at the boundaries;
an electric field is applied perpendicular to the boundary
plane.

The free energy of the deformed Td nematic LC in the
E field calculated per unit area of the surface of the plane-
parallel LC layer is described by the functional

f
L

(FT; + W) dz,
2L (36)

where W was defined in (20), FT is the density of the
Frank &ee energy of the deformed Tg nematic LC [14]

phase transition is valid at T = T*. It is presumed here
that the coefficient ai f'rom the expansion (3) is defined
as ai ——ai(T —T*). The critical indices in the small
vicinity bT of this point T* are determined by the e ex-
pansion which in our case gives for the order parameter
up to the power e

bic nematic LC in [35] for the variational problem with
the functional J, the holonomic relationship (5), and
boundary conditions (38). This approach makes it possi-
ble to identify the nature of the functions that minimize
J and satisfy the conditioiis (5) and (38). This is equiv-
alent to the Ritz variational method. It gives rise to a
certain algebraic polynomial with several variables which
can be simply analyzed.

The high symmetry of the tetrahedral group leads to
the variety of initial unperturbed orientations of nematic
bonds with respect to the boundary. Nevertheless, this
variety can be shared in the following three difFerent parts
by symmetry considerations:

(i) E is not parallel to any rotational axis of the nonchi-
ral tetrahedral nematic LC, i.e., E is parallel to the prim-
itive rotational axis C1,

(ii) E is parallel to the screw axis C4 of the nonchiral
tetrahedral nematic LC;

(iii) E is parallel to the rotational axis Cs of the nonchi-
ral tetrahedral nematic LC.

Indeed, let us consider a small deviation of tetrahe-
dral bonds n' from their unperturbed positions no The
deviations of the e' triade in the neighborhood of the
unperturbed eo triade according to (4) are also small.
Going over to the spherical coordinate system (Fig. 4),
introducing the angular coordinates wi, i = 1,3 for vector
e, wi, i = 2, 4 for vector e, and using the orthogonality
relationship of these vectors we get

3

2F~~ = ) [ Ki div e'+ K2(e', rote' )
i=1

+Ks (e' x rote') ] (37)

(e, e ) = sin ~i sin w2 + cos 7.i cos T2 sin(rs + ~4) = 0 .

We represent the transformations rules of the unper-
turbed eo triade as

and 2L is the thickness of the nematic layer. The bound-
ary conditions for strong anchoring are

(38)

( e, e, e ) = ( eo, eo, eo) A,

We will use the approach developed for the orthorhom- where the three-dimensional operator A(ri, w2, ws) is
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A=
COS 7 1 COS 7 3
COS 7 1 Sln 7 3
Sln 71

COS 7 2 SlIl 7 4 COS 'T1 SlIl 72 Sln 7 3 —Sill 7 1 COS 'T2 COS 74
COS 72 COS 74 SlIl 7 1 Cos 72 Sln T4 —COS 7 1 slIl 7 2 COS 73
SlIl 72 rcos

7 y cos 'r2 cos(7s + T4)
(39)

The angular coordinates w;(z) have the boundary condi-
tions v, (+I) = 0. Obviously, we have only three inde-
pendent angular coordinates r;{z) that follow from the
orthogonality relation for vectors e, e2. Expanding this
relation as a series in 7-,. we obtain

'r3+T4+T17r2 [ 1+ s (71 +72) + ) P2g(ry, r2) ] = 0,
A:=2

where P21, (Ty, T2) is a homogeneous polynomial of the
2kth degree in 7-1 and 7-2. Let us now symmetrize the
expressions for 7-3 and 7-4 by introducing an additional
relation 7-3 —7-4 ——2 7-5, then

rs 4 —+ 7s —
2 7y72 1 + s (rg + 'r2)

3 3 3

u ) ) ) E, E EI,A. ,' A A. q, .

i=1 j=1 k=1
(40)

W = E, [(E,)' —(E,)']

+Ei [(Es)' —(E:)'l~z + Es [(E:)'
—(Ei)'1&s . (41)

Then we immediately obtain E directions that preserve
the Freedericksz transition with nonzero threshold E*:

(ii) E is parallel to the screw axis C4,

E1 ——E2 ——0 or El —E3 —0 OI E2 —E3 —0,

where Eo = (eo, E) . Using the linear part of the orthog-
onality relationship we will find the linear part 81 of W
with respect to 7;.

+ ).Pza(~i, ~z) (iii) E is parallel to the rotational axis Cs,

In order to 6nd out whether the Freedericksz transition
with zero threshold E* takes place, it is not necessary to
consider the full functional J: according to the Landau
theory of phase transition, if the expansion of FT„+W in
the power series in w, and dw;/dz includes nonvanishing
linear terms w, or dw, /dz, then the transition occurs in
any weak electric field, i.e., the transition threshold is
zero (E*=O). As was shown in [35] for a wide class of
functionals, the expansion of FT, (37) does not include
linear terms. These terms originate only &om TV under
certain conditions imposed on E with respect to the eo
triade. Let us 6nd these conditions. It is easy to show
that W can be written in the form

In any other cases (i) the Pre edericksz transition
evolves continuously (E*=0).

1. EII c,

Consider the case where E = Eeo. Prom (39) and (40)
one can obtain up to the fourth power with respect to 7-;

2W = tL E ( T&72 —
&

T&T2 [ T] + 72 ] )
8 2 2 2

3
(42)

The expression for Fz; up to the fourth power with re-
spect to dv;/dz and 7; also can be written in the following
way:

2FT, =(K, +Ks)
I d I

+
I d

(d l (d
( dz ) ( dz )

(d~sl '
d7 5 d72+ 2K2

I I + 2Ks
dz dz

d
T2

dz

d72 9 z (d~21 2 (d~yl
+(2K' + 2Ks —7Kz) ~g~2 +(-',K. -K.) ~,'I

/

+ ~.'I
dz dz i dz ) ( dz )

2

+2 (Ks K2) I

„

I
[r& + r2 ] .

(d~s )
idz)

Now we have obtained the well-known density of func-
tional J&, that differs &om that one considered for an
orthorhombic nematic LC [35] only by the nondiagonal-
ized quadratic terms 7-172. By means of canonical trans-

formation and minimizing procedure developed in [35] for
similar functionals, like J~, , we will obtain after integra-
tion of (36) the following expression for the polynomial
Jc.(c, (,n):
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(la) primary

g] (, =rl, =o,
gs

(49)

07 gs 0~ g2g8 + gig5~ g3gs gig6~
(g2gs glg5) (g3gs glgs) + glgsg4

E~ & E (E2, (50)

(1b) primary

g2 („=rl,=0,
gg

(51)

FIG. 4. A perturbed molecular "hedgehog. "
g2 & 0, g9 & 0, gqgg & gags, g3g9 & g2g~,

(glg9 g2g5)(g3g9 g2g7) + g2g9g4 & 0

E2 &—E & E~, —(52)

2', = gi( + g2( + gsn + 2g4C(n+ g5C (

+gs( '9 + g&'9 C + 2 (gs( + g9( + g~o'9 ) .

(44)

In the last expression, ( and ( are the amplitudes of the
first modes in the cos Fourier expansion for angular devi-
ations wj + ~2 and vq —v2 of tetrahedral axis C4 &om the
E direction correspondingly. g is the similar measure for
rotation angle ~5 around the C4 axis. The coeFicients g;
can be found in the usual way [35]. We will present the
first three of them

gg 2
——(Kg + K3)q + v 3eE, g3

—2K2q, (45)

OqJ= OgJ= 0&J= 0,
which has the following solutions that are locally stable
in the relevant parts of the parametric space:

(0) trivial

(47)

g, &0, g, &o, g, &o: ~ ~E~&E,*, (48)

where q = vr/2I is the wave number, e = 4u/3 is an
electrical "permittivity" of the tetrahedral nematic LC.
The other coefEcients g, (q2Ki, eE3), i & 4 are continu-
ous functions, also gs ) 0, gq & 0, g~o ) 0 that follow
from the thermodynamical stability condition.

The analysis of Jc, ((,(, rl) allows one to find the sta-
tionary states separated by the bifurcation points E*
where the structural transitions occur. The stationary
states are determined by the set of critical points, while
the Hessian matrix ((02J~, )) defines the regions of para-
metric space ((,(, rl, E) where the stationary states are
stable. The critical points („(,, q, of the polynomial
(44) are given by the following system of equations:

(2) secondary

(, g 0, (, g 0, rI, $ 0 , (53)
(54)

where +E~ and +Ez are the primary and secondary bi-
furcation points accordingly,

Kg+ K3
~3e (55)

The opposite signs of the fields +E* and —E' mean
that they are oppositely directed. The expression for E2
cannot be represented in analytic form.

The nonzero solutions are the points of the intersection
of three second-order surfaces in the space ((2, (2, rl2).
The analytic form of such solutions is cumbersome. One
can use the symmetry considerations [35] to show that
there may be four such solutions. There can also be a
situation where there are no solutions at all. The stability
of the structures is governed by the positive definiteness
of the corresponding Hessian matrix.

This alternation pattern of critical points of the poly-
nomial (44) which are locally stable in different regions
of the parametric space is typical for the bifurcation tree
in a three-dimensional space with a trivial stem (47) and
with primary (49), (51), and secondary (53) bifurcation
branches (Fig. 5). At the primary bifurcation points
+Ez the trivial state (47) becomes unstable via a second
order structural transition. At the points +E2 of the
secondary bifurcation the primary states (49) and (51)
lose their stability via structural transitions of the first
or the second order. Prom the physical standpoint ev-
ery bifurcation gives rise to a rotation of the tetrahedral
"hedgehog" around one of the screw axes C4. It might be
emphasized that there is a difference between this figure
and the one corresponding to the Preedericksz transition
in the orthorhornbic nematic LC [35]. Of course, this
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around the Cs axis. The first two coefficients f; are

fi ——s(3Ki+ K2+ 2Ks)q —
s eE,

f2 ——s (2K2+ Ks)q (57)

The other coefficients f, (q K~, sE ), i ) 3 are continu-
ous functions, also f4 ) 0, fs ) 0 which follows &om
the thermodynamical stability condition. This kind of
potential is also well known [37]. It can be easily shown
that (56) gives one primary bifurcation point Ei

E* = 3K, +%2+2%,
g 3 (58)

and one secondary bifurcation point E2.
Since Eq. (56) contains cubic terms, the structural

transition in point E& is of the first order that implies
the presence of hysteresis. It is more convenient to an-
alyze the critical points of the polynomial (56) in polar
coordinates p and g which are defined by the relations

p cos @, ( = p sin g. The sequence of the stable
states is as follows:

(0) trivial

p, = rt, = 0, @, is arbitrary, (5g)

fi)0, f2)0: m E(Ei,
FIG. 5. Bifurcation tree of the Freedericksz transition in

tetrahedral nematic (E ~~ C4): +Xi and +%2 are the primary
and the secondary bifurcation points, respectively.

difference is concerned with the unparity property (2) of
the order parameter U,-~A, . In this case, the Freedericksz
transition in the tetrahedral nematic LC occurs if E is
both parallel and antiparallel to the C4 axis that also dis-
tinguishes the tetrahedral phase from orthorhombic and
cubic [36] phases.

(1) primary

&fs&
' I fi

64 (fs) 2 fs'

rl, =0, vg, =m —,m)1,
pg =

8 fs

(2) secondary

fi ( 0 is stable, 0 ( fi ( ——is metastable,
g f2
32 fs

E,* &E& E,*,

(61)

(62)

Eff &s

We have here E = (e + e + e )E/+3 and this case
can be analyzed in the same way as the preceding one.
Not going into analytical details, let us consider the cor-
responding polynomial of Bee energy Jc, (g, (, rl) [let us
note that the expressions for polynomials (44) and (56)
can be obtained in a more simple way by use of the in-
tegrity basis of invariant polynomial for the point sym-
metry groups C2„and Cs„]

»c. = f.(('+(') + f2''+ f.C(C' —3 (') + f4''
+f.n'(C'+ (') + f.(C'+ (')' (56)

Here g and ( are the amplitudes of the first modes in
the cos Fourier expansion for angular deviations of the
tetrahedral axis C3 &om the E direction, g is a similar
angular measure for the rotation of tetrahedral bonds

3lfslf4 + Qgfsf' — &i&2
pg = )

2f4Ai ' 3 '

+1 4f4fs —fs g o, &2 = fif4 —f2fs
(64)

The expression for E2 is defined by the real solution of
the equation Az ——3[fs~p, . There are some more degen-
erated cases (b, i ——0) which can lead to the change of
the transition order in the secondary bifurcation point
or even to its vanishing. The details of the whole pro-
cedure will not be discussed here. Unlike the preceding
case (E ~~ C4), the Freedericksz transition occurs now
only when E has the same direction as the Cs axis (Fig.
6).
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Here the helical axis is directed along the z axis, p&
is determined in (18), an electric coherence length o2 is
given by

1 K2

2~3 ~E' ' (66)

An equilibrium state that minimizes J2 is obtained
from a solution of the Euler- Lagrange equations derived
from (65) with respect to P and y,

+ 2 crz cosy sin y cos2$ = 0,dz2

sing (3cos y —1) = 0 .

(67)

(68)

2mI3

FIG. 6. Bifurcation tree of the Preedericksz transition in
tetrahedral nematic (E ~~ C3): E~ and E~ are the primary
and the secondary bifurcation points. A hysteresis is shown
in the vicinity of Ez.

The last equation gives the deviation angle y2 which min-
imizes the free energy and does not depend on the twist
angle P. One can show that the minimum of J2 corre-
sponds to yz ——arctan (j~2), where "+" or "—"signs
are determined by the sign of c.

Equation (67) is a time-independent sine Gordon equa-
tion. Inserting the value of y2 into (67) we will obtain a
periodic solution

E. Behavior of the chiral tetrahedral phase
an an external field

7r
P(z, k) = ——+ arcsin sn

4
z

27 )
Consider the chiral tetrahedral T phase in electric field

K. Now we have another scenario: the inhomogeneous
spatial distribution of tetrahedral bonds (Fig. 2) makes
the distortion of unperturbed T phase valid at any weak
field E. But there arises another question —does the
field untwist the helices of chiral tetrahedral bonds as
well as it does with the uniaxial helix in the case of the
cholesteric I C (G = D )'7

In order to give an answer to this question let us con-
sider the behavior of the unbounded Tg phase in an elec-
tric Geld. It is easy to show that all tetrahedral bonds
will be oriented homogeneously in such a way that the
rotational axis C3 of the nonchiral tetrahedral phase will
coincide with the E direction. Naturally, the possible di-
rection of the Cq axis —along the Geld or the opposite
direction depends on the sign of u. Returning to the
chiral tetrahedral nematic LC in an electric field, it is
now clear that we have two mechanisms of the field in-
fIuence on the uniaxial helices of the T phase: untwisting
of helices and reorientation of their axes in the space.

1 Untwisting o.f the C'z helix

The expression for the &ee energy J2 contains a twist
angle P of the tetrahedral bonds around the helical axis
C2 in a plane perpendicular to this axis and a deviation
angle y between the helical axis and the E field

—Sc, I

—(Vc, )'

with the pitch h2 of the perturbed helical structure

h2 -—— 2/108 a2 k K(k) . (70)

~ 27
E(k) = —&c k a.

2 4
(71)

Using the two last equations one can show that the helical
pitch h2 increases with an increase of E and diverges as
h2(E) oc —h2 ln(Eqg —E) in the vicinity of threshold
field E&h which is given by

2

E,h =
)

(72)

Thus, the chiral-nonchiral tetrahedral nematic phase
transition is shown to occur continuously at E = E&h.
The &ee energy J2 is given by expression

2 K2 fl 1

v» ~2 E2 k')
—K2K2, E + 0
—( 2 )

2 K2r.2, E m Egh, .

Here sn(z, k) is the Jacobi elliptic function, K(k) denotes
the complete elliptic integral of the first kind of modulus
k, where the constant k is determined from the following
equation with the complete elliptic integral of the second
kind E(k) as:

—
2 crz cos y sin y sin 2P dz . (65) This obviously confirms the energetic preference of helix

untwisting.
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2. Deviation of the Cs helim

In contrast to the case considered above the behav-
ior of C3 helices in an external field does not lead to
the untwisting of the helical structure at all. Indeed, let
us write a &ee energy J3 of this chiral LC choosing for
convenience an appropriate orthonormalized coordinate
system that is based on the three unitary vectors N'

N =n, N = (3n +n),
2 2

surface around the direction of the external field. We can
remove this degeneracy in the chiral T phase applying
two crossed external fields of diBerent nature —electric
E and magnetic H Gelds. One can expect as well that
the crossed external fields will give rise to the deviations
of the C3 helical structure. The calculation is similar to
the previous one, and we will give a brief list of derived
expressions and short comments on them.

C2 h,elix. Consider the C2 helical structure put in
crossed E and H fields, (E, H) = EHcosq. The &ee
energy J2@ of this system is

N
2

(2n +n +n). (73) K2

fdic

—
s ~, I

—(I ~, )'
o dz

Using the notations for the twist angle P of the tetrahe-
dral bonds around helical axis C2 and a deviation angle
g between the helical axis the and E field, we will obtain
the expression for J3

—
z Gi sin 2$ —

2 G2 cos 2P dz, (7s)

pc, I K&c.I 0 (dz

+—os sin y sin 3$ + 4(y)

4~2
4(y) = o's (3cos y —5cos y) .

3

(74)

—2 ~ 2 —2 ~ 2Gl = 0'2~ cos g~ sin g~+ w2~ cos g~ sin QH cos 2g,

G2 = 02~ cos g~ sin g~ sin 2g .

As before, the helical axis here coincides with the z axis;
y~ and yH are the deviation angles between this axis and
the directions of E and H, respectively, Lo is a projection
of the angle q on the plane perpendicular to the helical
axis. There exists a relation

~,' = 3v2 (75)

The Euler-Lagrange equations far functional (74) read

—os sin y cos3$ = 0,dz2 4 (76)

The helical axis coincides with the z axis, p& is deter-
mined in (17), and the electric coherence length as is
given by

cos q = cos y@ cos yH + sin y~ sin y~ cos g, (79)

where o2a is given by (66) and o20 is defined as o22~ ——

o2@(E/H) . (Strictly speaking, it would be worthwhile
introducing two separate interaction constants of the
tetrahedral phase with electric and magnetic fields: in-
stead of r, we would have two permittivities, r~ and e H,
for each field. It would lead to the renormalization of
o2~, o20 and would not change the following consider-
ations. ) The Euler-Lagrange equations that describe an
equilibrium state of this system read

sing ( 5~2cos y+ —sin 2y sin 3$ —v 2 ) = 0 . (77)
+ 2 Gi cos2$ —

~ Gz sin2$ = 0,1 (so)
The last equation has only one solution, sin y3 ——0, which
does not depend on the twist angle P: ys ——0 corresponds
to r ) 0 and y3 ——m corresponds to c ( 0. It means
that the helical axis deviates in such a way that E is
directed along it. As follows from (76), the Cs helical
structure does not untwist. The free energy J3 is

J3 = —K2~p~ —
9 cE

i.e., the elastic energy of unperturbed C3 helices and the
electrostatic energy of the nonchiral tetrahedral nematic
phase in the E field contribute to J3 additively.

8. Chiral tetrahedral phase in crossed fields

As we have seen in the preceding sections, there is
a continuous degeneracy of C2 helical axes at the conic

~x (Gi+G2) = ~x (Gi+G2) = o. (s1)

Two equations (81) give the deviation angles gz&, y2~
which minimize the free energy J2@ and do not depend on
the twist angle P. Inserting the expressions for Gi, G2, g
in (81) and omitting the simple algebraic calculations we
obtain

0'2@ cos g~ (3 cos g~ —1)

+ oz~ cosyH (3cos pre —1) = 0, (82)

cos y~ —2 cos q cos y~ cos y~ + cos y~ =
2 sin2 2 1 2

(83)
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h2@ ——4 (G„+G2, ) 4 k K(k), (84)

where G,, = G; (yz&, yz~). The following expression
gives the values of threshold fields Eqh) Hqh in the implicit
form:

4—v.

These equations generalize Eq. (68) in the case of non-
collinear fields and they are reduced to it by setting & = 0.
In the (cos y@,cos y~) plane, Eqs. (82) and (83) describe
two algebraic curves of the third and second order, re-
spectively, which at least have one pair of intersection
points. [In the polar coordinate system, curve (82) passes
through the origin of coordinates and has two opposite
asymptotic directions where it goes to infinity. Curve
(83) is a simple ellipse. ] Moreover, under certain condi-
tions for the values of-E, H, q the curves will have two
or three pairs of intersection points. This means that
we could deal with the first order transition between C2
helical structures during their evolution caused by the
applied K and H fields. Thus we have at least one real
solution y&&, yz~ which depends on the values E, H
of applied fields. The orientation of the C2 helical axis
deviates with the increase of E and H.

Simultaneously, this helical structure will untwist ac-
cording to the time-independent sine Gordon equation
(80). A periodic solution of it can be obtained in terms
of the Jacobi elliptic function. The pitch 62@ of the per-
turbed helical structure is

They have only one trivial solution G3„G4„whichdoes
not depend on P

G3, —G4, —0 . (s7)

COS g@ COS +0 + SiIl g~ SlIl +0 COS g = Cos Q (ss)

oz& sin y~ + o3~ sin yH cos3g = 0 .

The competition between these four solutions leads to
the selection of the equilibrium state, corresponding to
the minimum of the suin 4(y@) + C'(yH). The first or-
der transitions between different helical orientations are
expected with the variation of the applied fields.

F. Defects in the tetrahedral nematic LC

These equations generalize Eq. (77) for the case of
crossed fields. In the crossed fields, the C3 helical struc-
ture will not untwist. However, the deviation of the he-
lical axis depends now on the magnitudes of the fields E
and H. Equations (87) determine the equilibrium direc-
tion y3&, y3~ of the C3 helical axis as a function of the
independent variables E, 0, cos q. If the directions of
the external fields do not coincide with the helical axis,
there are four different orientations determined by an al-
gebraic system corresponding to four different values of

2m
0 ) 3 )

where the C2 helix is fully untwisted. In the (E«, H«)
plane, the last equation describes a continuous algebraic
curve.

C3 helix. Consider the C3 helical structure in the
crossed E and H fields which are not collinear. A free
energy J3@ of this system is

K2 (dP
s I l d Pcs I Pc,

Q Z

+2 (Gs sin 3$+ G4 cos 3$) + C (y@) + 4(pe) dz,

—2 ~ 3 ~ 3G3 ——o && sin y~ + o 30 sin yH cos 3L0,

The current topological d~-dimensional defect classifi-
cation [38] labels singularities in three-dimensional space
by the conjugacy classes of the absolute homotopy groups
sr~ (P), where d ——2 —d&. The degeneracy space V
of the order parameter Q is defined as a coset space
Q/'P, Q is the unbroken symmetry group and 7 is the
subgroup of (preserved) symmetry of the phase. The de-
fect that corresponds to the trivial conjugacy class (1)
can be smoothed out by a local order-parameter Huctua-
tion and, therefore, is denoted as topologically unstable.

Using general properties of the symmetry groups
[SO(3) is a connected component of O(3), T is a con-
nected component of Tg and does not contain continuous
rotation around an axis] it is easy to show the absence of
the stable point defects (de ——0) and the surface defects
(d+ ——2) in chiral and nonchiral tetrahedral nematic LC's

G4 = o~~ SlIl g~ Sln 3LO )

where mrs~ is given by (75), os~ ——mrs~(E/H), and the
function 4(y) is defined in (74). The Euler-Lagrange
equations read

4 G2s+ G42 Bx 4(g~) + sin3$ B~ (Gs+ G4) = 0,
(86)

4 Gs+ G4 Bx~@(y~) + sin3$ Bx~(Gs+ G4) = 0.

7l Q (O(3)/Tz) =
7rQ (SO(3)/T) = (1j

~2(O(3)/T~) = ~2(SO(3)/T) = (1) .

Line defects (d~ ——1) were studied in [16] where an-
other mechanism of the topological instability of these de-
fects was pointed out in addition to the above-mentioned
relaxation process: one defect can be transformed into
the other via catalyzation by the third defect line. This
classification used for tetrahedral phase leads [16] to sta-
ble disclinations which are directed along a threefold ro-
tational axis of tetrahedral phase. This fact is rejected
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in the existence of a nontrivial fundamental group

vr, (O(3)/Tg) = vr, (SO(3)/T) = T, (90)

where T is a binary group of T with seven conjugacy
classes assembled into three subsets

(&o &o &4) (&s &s) (&s &3}

Tr Qs = ) U~~sU;~y = s u

The free energy (3) is a function only of Tr Qs2and the

Volterra process
s,

l l~W,
b)

/'pX~

7

(
I a~

r

FIG. 7. The origin of the disclination line in the tetrahedral
nematic via the Volterra process. Disclination line L is along
the threefold rotational axis C3 (normal to the plane of the
page): (a) the cross section of the tetrahedral nematic LC by
the plane L —SqS2, (b) the displacement of the lips L —Sq and
L —S2 of the cutting surface with respect to each other; (c)
the disclination line L after viscous relaxation of the structure;
(d) disclination core.

Let us build the distribution of nonchiral tetrahedral
bonds around the disclination line L of the above men-
tioned type [Figs. 7(a)—(c)] by means of the Volterra
process for the partially ordered Ruids [39]. On this line,
parallell to the threefold rotational axis C3„,the direc-
tions of the tetrahedral bonds are undefined. However,
we will try to consider this core of defect by the approach
developed in [40] for the disclination core in a uniaxial
nematic LC. Consider expression (3) for the free energy
E of Tg nematic LC. According to the definition of the
order parameter Uijj,

symmetry of the order parameter is higher than in the
tetrahedral case. The only constraint comes from the
last equation where u can be found by the minimization
of the free energy E. As has been mentioned in Sec.
III C, one can use a model of seven-componential spins
of the fixed length instead of the third rank traceless
tensor U;&I, (Appendix). The last equation manifests this
property and determines the degeneracy space P as a six-
dimensional sphere S in the seven-dimensional space of
the components of matrix UijA, . This fact immediately
leads to topological removability of the singularities in
the core of dischnation, since erg(S ) = (I) for d = 0, I, 2.
As can be seen in Fig. 7(d), this removability occurs
due to the appearance of a uniaxial phase with sixfold
rotational axis C6„in the center of the core.

IV. CONCLUSION

The present paper is devoted to the nematic liquid
crystals with tetrahedral point symmetry groups (G)—
chiral (G = T) and nonchiral (G = Tg) tetrahedral ne-
matic LC's which were not previously discussed. Never-
theless, they occupy a natural place among other nonuIii-
axial nematic LC s —biaxial, cubic, icosahedral. From
all nematic phases, the tetrahedral phase is the only one
that has an order parameter Qs of the odd rank. It leads
to some peculiarities of physical properties of this phase.

The phase transition &om isotropic liquid into tetra-
hedral nematic LC is of the second order via a super-
critical bifurcation, or of the first order via a subcritical
bifurcation. This behavior distinguishes tetrahedral LC
&om other nematic LC's with tensor order parameter of
even rank, where the phase transition &om isotropic liq-
uid is of the erst order via a transcritical bifurcation.
In the &amework of the Maier-Saupe approach, it has
been shown that the transition &om isotropic liquid into
nonchiral tetrahedral nematic 0 = Td is always of the
second order, and the temperature T* of this transition
has been found.

It is shown that the continuous equilibrium state of chi-
ral tetrahedral nematic LC's manifests itself as a helical
structure of two possible kinds —uniaxial phases with
helical axes along the rotational axes C2 or C3. The be-
havior of the helical structures in the external K field is
determined due to the reorientation of the helical axes
with respect to the field direction for both kinds of spi-
rals. Besides, the applied field untwists only the C2 spiral
structure, and its pitch 62 increases with the increase of
E and diverges logarithmically in the vicinity of the un-
twisting threshold field E~h, .

In the &amework of the mean-field approximation, the
polarizability p3 of the tetrahedral nematic LC in the
electric field behaves as p3 cx: E

Among other problems concerned with nonuniaxial ne-
matics, a traditional one is the Freedericksz transition
in the nonchiral tetrahedral phase. The high symme-
try of tetrahedral group T& and a strong anchoring of
nematic bonds at the boundaries of the in6nite plane-
parallel slab choose only two directions of E which pre-



L. G. FEL

serve the Freedericksz transition with nonzero threshold
E'. Namely, the Freedericksz transition is possible when
E is parallel to the screw axis C4, or to the rotational axis
C3 of the unperturbed tetrahedral phase. In both cases
the bifurcation trees have been found. , and the thresh-
old fields at the erst and second bifurcation points are
obtained.

A disclination core in the nonchiral tetrahedral ne-
matic is analyzed: it is &ee of singularities due to the
appearance of a uniaxial phase with sixfold. rotational
axis C6 in the center of the core. The point and. surface
defects are unstable in the tetrahedral nematic I.C.
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APPENDIX

U111 + U112 + U113 = U221 + U222 + U223

U331 + U332 + U333 —0 ~

Then,

(AI)

Let us show that Tr Qs can be represented as a sum of
seven squares of independent components U,~I, . Accord-
ing to the definition of the unitary septor

Q3 ) Uij kUij k 6 Uizs + 2 (U112U113

+U221 U223 + U331 U332)

+4 (Uiiz + Uiis + uzi
+U22s + Ussi + Uss2) . ( 2)

This quadratic form is positively defined and can be di-
agonalized in the canonical basis T;

Ui2s =
iis )

fU„,&
( Uz2s )

ssi
~( Uss2 )

- t'T, l
0 T')

where the transformation operator A is

7

i=1
(A3)

Thus, one can use a model of seven-component spins T
of fixed length instead of the third rank traceless tensor

~iO ~6
1 1

( ~io ~s

Then, one obtains from (91) the equation of a six-
dimensional sphere S
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