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Two-species annihilation with drift: A model with continuous concentration-decay exponents
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We propose a model for diffusion-limited annihilation of two species, 3+8—+2 or 8, where the
motion of the particles is subject to a drift. For equal initial concentrations of the two species, the densi-
ty follows a power-law decay for large times. However, the decay exponent varies continuously as a
function of the probability of which particle, the hopping one or the target, survives in the reaction.
These results suggest that diffusion-limited reactions subject to drift do not fall into a limited number of
universality classes.

PACS number(s): 05.70.Ln, 82.20.Mj, 02.50.—r, 68.10.Jy

Diffusion-limited reactions (DLR s) in low dimensions
have been extensively studied because of their anomalous
kinetics, and because they serve as simple prototypes of
complex, nonequilibrium dynamical systems [1—10]. Re-
cently, attention has focused on anisotropic DLR's: the
particles move preferentially in one spatial direction, giv-
ing rise to an effective drift [11—16].

For the one-species DLR of coalescence, A + A ~ A,
and annihilation, k A ~0, it has been shown that the spa-
tial anisotropy introduces no appreciable changes
[11,15,16]. However, the two-species annihilation pro-
cess, A +B~0, exhibits markedly different behavior
with or without drift [12—14]. In one dimension, when
the initial concentrations of A and B particles are equal,
the total concentration decays as t '~" in the isotropic
case, and as t ' in the presence of drift. This interest-
ing behavior is attributed largely to the hard core repul-
sion between particles of like species. A heuristic ex-
planation, based on the Burgers equation, for the t
decay has been presented along these lines [13,14]. A re-
cent exact analysis of a two-species annihilation model
with no hard core interactions confirms their essential
role: in their absence, the concentration decays as t
with or without the drift [16].

In this work, we introduce an anisotropic two-species
annihilation model, with hard core interactions between
like species. A distinct characteristic of our model is that
it contains an adjustable parameter. We find that the
concentration power-law decay exponent depends con-
tinuously on this parameter. Nonuniversal exponents are
a surprising feature. Our finding is based on extensive
numerical Monte Carlo simulations to be detailed below.

Our model is defined on a one-dimensional lattice.
Each lattice site can be in one of the three states: empty
(0), occupied by a single A particle, or occupied by a sin-
gle B particle. Numerical results were obtained for the
case of maximum anisotropy [12—14], where particles
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may hop only to the nearest site to their right:

. . . AO. . . —+. . .OA. . ., . . .BO. . .~. . .OB. . . ,

. . .OA. . ., prob. p
. . . AB. . .~ '

, . . .OB. . . , prob. 1 —p,

. . .BA. . .—+ '
. . .OB. . . , prob. p
. . .OA. . . , prob. I —p.

(2)

The reaction may then be represented as

A +B~A or B, (3)

where the product species is that of the hopping particle,
with probability p, or that of the target particle, with
probability 1 —p. Thus p may be thought of as a parame-
ter which represents the "persistence" of the hopping
particle. Stoichiometrically, however, the reaction rule is
equivalent to the symmetric annihilation reaction

A+B ~-,' A+-,'B, (4)

regardless of the value of p, because the number of AB
nearest-neighbor pairs is equal to the number of BA
nearest pairs (assuming homogeneous initial distribu-
tions), even for unequal concentrations of A and 8 parti-
cles.

We have performed concurrent simulations of the
above model on a cluster of over 50 IBM RS6000
workstations, for lattices of 10 sites, with periodic
boundary conditions. Simulations ran up to times
t =10 . Particle hopping was random and independent,
with the rate defined so that in one time unit each of the
surviving particles performs an average of one hopping
attempt. The attempt could lead to motion, reaction, or
be discarded, depending on the state of the target site.

with equal rates for A and B. Hopping is disallowed if
the target site is occupied by a particle of the same
species; this models hard core interactions. If the target
site is occupied by a particle of the opposite species, hop-
ping is allowed and reaction takes place with outcome
determined by the probabilistic rule
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know from reactions like A + A —+0, or 3, that non-
mean-field Auctuations can also arise in "well-mixed" sit-
uations (no domains), in the form of non-mean-field inter-
particle distributions [19]. Detailed studies of the inter-
particle distribution for the p =1 model will be reported
in the future. Since all known one-dimensional reaction-
diffusion systems, with or without hopping isotropy, pos-
sess only one "diffusive" length scale, —t', the ex-
ponent values of —,

' for the p =1 model (see Table I) are
probably exact.

The case of p =
—,
' resembles the anisotropic two-species

annihilation model, A +B—+0, studied by Janowsky
[12,13] and by Ispolatov, Krapivsky, and Redner [14].
Notice that the difference in the number of particles be-
tween the two species, N„Ntt, i—s locally conserved (in
every reaction event) in the Janowsky [12] model, but
only globally conserved in the present model. This dis-
tinction is of no serious consequence in the isotropic case
of no drift [20]. In the case of drift, we argue that the
two models should be similar. In particular, the heuristic
arguments of Ispolatov, Krapivsky, and Redner [14]
could be repeated for our model with p =

—,', almost
without change, obtaining the same conclusions and pre-
dictions. Indeed, our simulation results for p =

—,
' are not

inconsistent with those already published for A +B~0.
An interesting observation is that for p =

—,
' the conver-

gence to the long-time asymptotic behavior of our model
seems faster than that of the Janowsky model. An exam-
ple is shown in Fig. 3, where we plot the time-dependent
exponent of the concentration decay [obtained from local
slopes of log(c) vs log(t)], for both cases. We have no ex-
planation for this phenomenon. Perhaps it could be ex-
ploited to settle the slight discrepancies between the nu-
merical findings of Janowsky [12,13] and the results of
Ispolatov, Krapivsky, and Redner [14].

In summary, we have proposed a one-dimensional
DLR model with continuously varying exponents. It is
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FIG. 3. Comparison of the local slopes of 1og(c) vs log(t) be-
tween our model with p =

2 ( + ) and the anisotropic annihila-
tion model, A +B~O (0).
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and for sharing his data with us prior to publication.

important to emphasize that our density-exponent values
were determined largely by numerical studies, and fur-
thermore, the actual estimates range from —,

' for p =1
down to near —,

' at p =
—,', and to about —,

' for p =0. Since
all three values 4 3

and —,', and only these values, have
been encountered for various universality classes of other
one-dimensional reactions, one could suspect that our ob-
servation of continuous exponents is an artifact of finite-
time numerics. However, our numerical simulations
were really "large scale" by modern standards, and the
data presented seem to suggest error limits which clearly
favor continuous variation rather than a smooth cross-
over between three universal values.
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