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Estimating functions of probability distributions from a finite set of samples

David H. Wolpert'* and David R. Wolf '

' The Sante Fe Institute, 1399Hyde Park Road, Santa Fe, Xew Mexico 87501
DX-13, Image Analysis Section, MS P940, Los Alamos 1Vational Laboratory, Los Alamos, Xew Mexico 87545

(Received 15 July 1993; revised manuscript received 15 March 1995)

This paper addresses the problem of estimating a function of a probability distribution from a finite set
of samples of that distribution. A Bayesian analysis of this problem is presented, the optimal properties
of the Bayes estimators are discussed, and as an example of the formalism, closed form expressions for
the Bayes estimators for the moments of the Shannon entropy function are derived. Then numerical re-
sults are presented that compare the Bayes estimator to the frequency-counts estimator for the Shannon
entropy. We also present the closed form estimators, all derived elsewhere, for the mutual information,

g covariance, and some other statistics.
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I. INTRODUCTION

Consider a system with m possible states and an associ-
ated m vector of probabilities of those states p=(p;),
1(i (m, (g;,p;=1). The system is repeatedly and in-

dependently sampled according to the distribution p. Let
the total number of samples be X and denote the associat-
ed vector of counts of states by n = ( n; ), 1 i m

(g;,n; =X). By definition, n is multinominally distri-
buted.

In many cases what we are interested in is not p but
some function of p, Q(p). In this paper we are concerned
with the problem of estimating some such function Q(p)
from the data n. This problem is ubiquitous in physics,
arising, for example, in dimension estimation and in es-
timating correlations from data.

Example l. In information dimension estimation [1],
one imagines a discretization of a space containing an at-
tractor. The attractor constitutes a probability density
function across the space and therefore a probability dis-
tribution across the bins of the discretization. One is
then interested in how the Renyi entropy of the distribu-
tion across the bins changes as the discretization becomes
finer and finer. This behavior gives us the information di-
mension of the attractor, which is useful in nonlinear
time-series analysis, especially in connection with es-
timating the embedding dimension [2].

We cannot directly measure these Renyi entropies, but
must instead estimate them. These estimates are based
on a limited amount of data consisting of a set of samples
of the distribution. [Often it is assumed the samples are
generated in an independent and identically distributed
(IID) manner. ] Therefore we are directly confronted
with the problem of inferring a function of a distribution
from a set of samples of the distribution.

It turns out that to accurately measure the information
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dimension we would like to make accurate estimates of
the Renyi entropy for as wide a range of granularities of
the discretization as possible. In particular, we would
like to make accurate estimates when the discretization is
quite fine. In such a regime, the number of counts per
bin, i.e., the values n;, will be quite small. Accordingly,
we are unavoidably faced with the "small sample statis-
tics problem" of how to meaningfully perform inference
with small samples. This is precisely the regime in which
Bayesian techniques, the subject matter of this paper, ex-
cel.

Examp/e 2. In much of physics and engineering it is
currently conventional to measure the degree to which a
pair of random variables inhuence each other through
correlations, covariances, and the like. More sophisticat-
ed information theoretic techniques such as mutual infor-
mation [3—6] are also finding their way into physics [7],
as well as into other fields such as computational biology
[8]. (See also the discussion in Sec. VI.) All such mea-
sures can be cast as functionals Q (p), where p is the un-

derlying probability distribution over the variables in
question.

Whatever the inAuence measure one prefers, to use it
in practice, i.e., to estimate its value for a particular
physical system using some experimental data, means us-
ing a data set n to estimate Q(p). For example, in Ref.
[8], the experimental data are a data base of HIV-1 V3
loop amino acid sequences. The goal is to find pairs of
sites on the amino acid sequences that have high mutual
information. (The idea is that such sites must vary to-
gether for the virus to be viable). So for any given pair of
sites the data base provides a set of counts n; of each of
the 20X20=400 possible amino acid pairs (there are 20
possible amino acids per site). Our goal is to use such an
n to estimate the mutual information of the p generating
the set of HIV sequence values at that pair of sites.

In this paper we investigate the case where Q ( ) is the
Shannon entropy [9—11] S(p)= —g,.p, ln(p;). In Ref.
[12] we analyze the cases where Q ( ) is either the mutual
information, g, covariance, variance, or the average.
(The conclusions of that analysis are presented in the
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conclusion to this paper. ) Some previous work on es-
timating Q (p) from n (most closely related to the work of
Ref. [12])appears in Refs. [1,3,13—20].

We note in passing that the intuitive notion of the
Shannon entropy of a distribution as the "amount of
missing information" in that distribution is not usually
considered meaningful if the information at hand consists
of data n rather than the underlying distribution p, since
Shannon entropy is a function of p rather than of n. In
the sense that the Bayes estimator discussed in this paper
is optimal and produces a Shannon entropy value from
information of the form of samples n, the Hayes estimator
can be viewed as a way of defining the "amount of miss-
ing information" when the information at hand consists
of a finite data set n rather than a full distribution p.

In Sec. II of this paper we introduce the Hayes estima-
tor for Q(p) given n. In Sec. III we discuss the optimal
properties of Bayes estimators and discuss their relation
to conventional statistical techniques. Section IV con-
tains the central mathematical results needed to calculate
Hayes estimators for Q(p). We then apply these results
to the case where Q(p) is the Shannon entropy. Section
VA contains a brief calculation showing that for small
sample sizes there are significant differences between the
Bayes and frequency-counts [S(n)= —g;(n, /N)ln(n, /
N)] estimators for the Shannon entropy. In Sec. V B we
present graphs of the results of a numerical comparison
of the Bayes and frequency-counts estimators for the
Shannon entropy. These graphs illustrate the bias, vari-
ance, etc. , associated with both the Hayes and frequency-
counts estimators.

Fully formal justifications for some of the manipula-
tions carried out in this paper (e.g. , interchange of in-
tegration and differentiation) can be found as appendixes
to Ref. [12]. Reference [12] also analyzes a number of
priors not discussed in this paper.

II. BAYESIAN ESTIMATION OF Q(p) FROM COUNTS

To estimate Q(p) from the data n, it is necessary to
find the probability density function (PDF) P(p~n). (See
Ref. [21] for a formal discussion of our statistical nota-
tion. ) First note that P(n~p)=N!ii, i[p, '/n, !] By.
Hayes's theorem the PDF P(p~n) is given by

P(pin) =P(n~p)P(p)/P(n), (1)

where P(n)= fdpP(n~p)P(p) and P(p) has support
only on the simplex R =—[p: p; ~0 Vi, g;p; = I]. P(p~n)
is called the "posterior PDF,"P(n~p) is called the "like-
lihood, " and P (p) is called the "prior PDF." Unless oth-
erwise stated, integrals over p are understood to be
definite integrals over the region extending from 0 to ~
in each p;.

Note that because of cancellation, the constant
N!/(+;, n;!) does not appear in P(p~n). Accordingly
we can simply write P(p n) ~P(p)ii;=,p with the pro-
portionality constant (dependent on n only) set by nor-
malization. Finally, the PDF of Q(p) given n is given in
terms of P(p~n) by

P(Q(p)=q~n}= ldp5(Q(p) —q}P(p~n) . (2)

Consider the situation where what we know is n and
what we wish to know is Q(p). For this usual situation,
it is the distribution P(Q(p)=q~n) appearing in Eq.
(2)—and this one alone —that tells us what we want. By
way of contrast, distributions that do not depend on a
prior (e.g., likelihood-based quantities) do not tell us what
we wish to know. This, along with other arguments
given below, is why we focus on P(Q(p) =q ~n) in this pa-
per.

Rather than trying to find the density P(Q(p)=q n)
directly, it is often simpler to find its moments.
The kth moment of Q(p) given n is given by

f dq q P(Q(p)=q~n)= f dp Q "(p)P(p~n), i.e. , the kth
moment of Q (p) given n is the posterior average of Q "(p)
according to the posterior distribution P(p~n). Define qk
by

qk= JdpQ (p}P(p) g p (3)

(When we have a particular Q in mind we will change the
letter 'q' appropriately, e.g. , when Q is the entropy, we
will refer to sk rather than qk. ) Using Eq. (1) for P(p~n)
we see that the kth moment of Q(p) given n is given by
qk/qo. We refer to this ratio as the "Bayes estimator
with prior P(p) for Q (p)."

In particular, the Hayes estimators for Q(p) and Q2(p)
can be used to find the standard deviation of Q(p). This
in turn may be used with Chebyshev's inequality [20] to
bound the probability of deviation of Q(p) from the
Bayes estimator's guess for Q (p). This constitutes a
"Bayesian error bar" associated with our estimating the
value of Q (p) as q i /qo. Note that this error bar does not
rely on an assumption that the underlying distributions
are Gaussian.

To proceed further it is necessary to make an assump-
tion for the prior PDF P(p); once this is done, P(p~n)
and qk/qo are uniquely determined. In the calculations
to follow, P(p) will be assumed to be a uniform prior
over the unit simplex, i.e., it will be assumed to have the
form P(p) 0-b(p)6(p), where 6(p)=ii;8(p;), [8 is the
Heaviside theta function 8(x}=1 for x ~ 0 and 0 other-
wise], b(p)=5(g;p; —1), and the proportionality con-
stant is set by the normalization condition fdp P(p) = 1.
[The 6( ) enforces the non-negativity of the p, and the
b, ( ) enforces the condition that the sum of the p; equals
1.]

We emphasize that here we are using the uniform prior
only for reasons of expository simplicity. In many prob-
lems the uniform prior is inappropriate and a different
prior should be used. In Ref. [1] we consider the exten-
sion of our results to a broader class of priors than those
considered in this paper. The general trick we use for
such nonuniform priors is to express them as a linear

k,.combination of monomials (p, )
' and then note that the

Bayes estimator with a prior (proportional to)
(p; ) 'b, (p)6(p) is the same as the Bayes estimator with a
prior b, (p)6(p), provided in the latter estimate each n,is.
incremented by k, . [See Eq. (3).]

As an example of such a nonuniform prior, the entro-



52 ESTIMATING FUNCTIONS OF PROBABILITY. . . 6843

pic prior P (p) =e, where S is the Shannon entropy and
cz is some constant, is related to the popular technique of
maximum entropy [22,23]. As another example, the Diri-
chlet prior, P(p) ~ g;. ,p'; for some constant a, has also
been considered in some contexts [24]. It is also some-
times appropriate to use a prior that does not allow the
probability of certain states to differ from zero [25]. In
Ref. [12], Bayes estimators for both entropic and Diri-
chlet priors are discussed.

For simplicity of presentation define

I [Q (p), ]—:fdpQ(p) b(p)e(p) ii p (4)

Note that I[, ] is a functional of its first argument and a
function of its second argument. With this notation the
Bayes estimator with uniform prior for Q (p), [i.e. ,
qk/qo with P(p) uniform] is given by I[Q "(p),n]I
I [ l, n]. [For nonuniform P(p), qk/qo is given by a
different ratio of integrals. ]

III. BAYES ESTIMATORS MINIMIZE
MEAN-SQUARED ERROR

Before evaluating the integrals I[Q(p), n] we briefiy
discuss an optimality property of Hayes estimators and
relate these estimators to some classical estimation tech-
niques. If the true probabilities are fixed to a particular
p, then the mean-squared error when using an estimator
G (n) to estimate Q (p) is given by

g P(nip)[6(n) —Q(p)]' . (5)

For a fixed p, (5) is minimized by choosing 6 (n) indepen-
dent of the n: G(n)=Q(p).

More generally, when p is not fixed and is distributed
according to P(p), the mean-squared error is given by

f dp P(p) g P(nip) [6(n) —Q(p) ]' . (6)

As conventional in the calculus of variations [26], to find
the 6 ( ) to minimize this expression write G ( ) =60( )

+arl( ), differentiate (6) with respect to a, and then
evaluate the result at a=0. Doing this yields

g g(n) fdpP(nip)P(p)[60(n) —Q(p)]=0 . (7)

Since this equality must hold for all g( ), for all n

fdpP(nip)P(p)[GO(n) Q(p)]=0 . (8)

Equation (8) is solved [assuming f dp P(nip)P(p)%0] by

Go(n)= fdpP(nip)P(p)Q(p) f dpP(nip)P(p)

(9)

Note that Eq. (9) holds for any prior P(p). Given the
discussion in Sec. II, Eq. (9) shows that Go(n), the esti-
mator having minimal mean-squared error from Q(p), is
identical to the Bayes estimator for Q (p):

60(n)= fdpP(pin)Q(p). (One can derive this particu-
lar result more simply; the derivation here is pedagogical
in that if one wants to optimize some other functionals,
the relatively complicated approach presented here is
needed. In particular, if one is interested in "least bias"
estimators, this is the case. See Ref. [27].)

As an example consider the famous Laplace sample
size correction estimator [24], in which the underlying p,.
are estimated from counts n by p;=(n;+1)I(N+m).
This estimator is precisely the Bayes estimator with uni-
form prior, for Q(p)=p (see results in Ref. [12]). Note
that for small n; the Bayes estimator is notably di6'erent
from the frequency count estimator p, =n; /X.

Of course, none of this means that a Bayesian tech-
nique is optimal if the prior it uses is poorly chosen, i.e, if
the prior the researcher uses does not match the one gen-
erating the data. This is a general feature of Bayesian ap-
proaches; they are "only as good as the prior. " We ad-
monish the reader to choose their prior with careful at-
tention to the problem at hand when using the techniques
we present here.

As an aside, note that when Q( ) is nonlinear and not
injective [e.g., when Q( ) is the Shannon entropy], one
cannot evaluate the Hayes estimate for Q ( ) by calculat-
ing Q of the Hayes estimate for p, i.e., Q of an average is
generally not the same as the average of Q. (Formally,
for nonlinear Q( ), Q[(n;+1)/(N+m)]Aq, /qo, in gen-
eral. ) For these kinds of Q ( ) one must take into account
the probabilities of all p's to evaluate the Bayes estimator
for Q (p) and its associated error bars.

In general, one might not want to take the mean q eval-
uated according to the PDF P(Q(p) =q ln) to form an es-
timate for Q (p). For example, one might be interested in
minimizing (the average of) l

6 (n) —Q(p) l
rather than

lG(n) —Q(p)l, a goal that generically results in an esti-
mate of the median of the PDF rather than its mean. As
another example, it might be of interest to minimize
something other than a functional of the error
G(n) —Q(p). An instance of this appears in Ref. [12],
which discusses minimizing the mean-squared bias to find
what might be called a "Bayes minimum-bias estimator. "
(See also Sec. VA, which discussed numerical calcula-
tions of biases and variances of the Bayes and frequency-
counts estimators. )

As yet another example, in the non-Bayesian technique
of maximum-likelihood estimation, for the case where

Q (p) =p, one estimates Q(p) as the Q(p) that maximizes
the likelihood P(nlQ(p)). (See Ref. [28].) This corre-
sponds to the Bayesian procedure of finding the mode of
P(Q(p)=qln) [assuming the prior over q =Q(p) is uni-
form]. When Q(p) =p the result is the frequency-counts
estimate p; =n; IN

Note that techniques such as maximum likelihood have
the advantage that (unlike Bayesian techniques) their pre-
dictions do not depend on (what is usually) an assumption
for the prior. In this trivial sense, they do not degrade if
one makes a poor assumption for the prior. On the other
hand, such techniques usually cannot be cast as minimiz-
ing some functional of Q (p) where p is not fixed. In this
case, they cannot be cast as a technique that minimizes
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some expected real world "cost" or "loss" [29]. Another
advantage of Bayesian techniques is thai they make all
assumptions explicit, by putting them in the prior [30].
In addition, in that they are determined by the posterior
P(Q n), as mentioned just below Eq. (2), Bayesian tech-
niques concern themselves with "what we want. " (See
Ref. [31] for a more general discussion of the relative
strengths and weaknesses of Bayesian and non-Bayesian
techniques. )

IV A, for calculating the moments of Q (p). In the
remaining subsections we apply the procedure of Sec.
IVB to the case in which Q(p) is the Shannon entropy:
Section IV C contains a calculation of I [l,n] and in Sec.
IV D we present a calculation for those integrals that,
along with I [l,n], give the Bayes estimator of the Shan-
non entropy when the prior is uniform.

A. Convolution form of the integrals

IV. CALCULATION OF THE BAYES ESTIMATOR
FOR SHANNON ENTROPY

As shown in Sec. II, finding the Bayes estimator with a
uniform prior for Q "(p) reduces to evaluating integrals of
the form I [Q"(p),n]. This section presents the main
techniques for calculating these integrals and uses them
to calculate the Bayes estimator when Q is the Shannon
entropy.

Readers interested only in the Shannon entropy results
may skip directly to Sec. IV E. In Sec. IV A we derive an
important result that allows integrals such as I [ ] to be
recast as Laplace convolution products. In Sec. IV B we
outline the general procedure, based on the results of Sec.

I

In this subsection two important results are given.
First, in Theorem 1 it is shown that if a function H(p)
factors as H(p)=11;,h;(p, ), then the general form of
the integral JdpH(p)h(p)B(p) is that of a convolution
product of m terms (recall that m is the number of possi-
ble outcomes of the process under observation). Second,
Laplace's convolution theorem is given.

Define the Laplace convolution operator (3 by
(fgg)(r) =Iodx f (x)g (r—x).

Theorem l. If H(p)=ii;. ,h, ( p), thenjdp b (p)6(p)H(p) =(; = &h;(p; ) )(r) I,= ).
Proof. The p, may not be independently integrated

since the constraint g; ip;=1 exists. This constraint is
reflected in the explicit definition of the integral

fdpi'(p)6(p)H(p)= f dp, . f dp th, (p, )X Xh (p )]5 1 —g p,
I =1

1 1 —
pl=f dpihi(pi)f

1 —(p&+ . +p 2)
X dp, h, (p, )h (1—(p, + +p i)) .

0

Define the m variables rk, k =1, . . . , m, recursively by r, =g, ,p; =1 and rk =rk i pk, . Since r„=r,—g,":,'p;,
our integral may be rewritten as

7 ] ~2 7f dp (p)6(p)H(p)= f dp, h, (p, )f dp h (p ) . f dp h (p )h (r —
p ) .

Now, with the definition of the convolution, the integral can be rewritten as
7 —2fdpi'(p)6(p)H(p)= f dp, h, (p, ) f dp h (p )(h, gh )( —

p ) .

Since the convolution operator is both commutative and
associative, we can repeat this procedure and write the
integral above with obvious notation as

mf dp&(p)6(p)H(p)= h;(p;) ( )l,=i=1

Q.E.D.
Theorem 2 is the Laplace convolution theorem and is

stated for completeness only. The proof may be found in
Ref. [32]. Define the Laplace transform operator L by
L [h](s)= jo h (t)e "dt

Theorem 2. If L [h, (p;)] exists for i =1, . . . , m, then
L [ ;I3,h;( p)] = i,i,L [h;(p; ) ].

B. Outline of general procedure

Theorems 1 and 2 allow the calculation of integrals
l[Q"(p),n] for functions of the form Q(p)

,Q; (p~), which we call "factorable. " Here
we briefly summarize the procedure to be used.

(i) For each Q;J(p ), calculate the Laplace transform of
n.

'J pJ)=QJ(pi)pi
(ii) Calculate g,". ,ii,L [h,"(p )].
(iii) Take the inverse Laplace transform of the term cal-

culated in (ii) and evaluate it for an argument of 1.

As an example, let Q(p)=S(p)= —g,. i,p,.ln(p, . ). All
powers of S(p) are factorable terms. Therefore, the pro-
cedure outlined above may. be used to find the Bayes esti-
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mators with a uniform prior for any power of S (p), as
shown in detail in the remainder of this section.

C. Calculation of I [ 1, n ]

In the next theorem the Laplace transform is used in
concert with Theorems 1 and 2 to calculate the normali-
zation constant I [l,n]. With the Gamma function I (z)
given by I (z) = f o

t' 'e 'dt for Re(z) ) —1 we have the
following.

Theorem 3. If Re(n;)) —1 Vi =1, . . . , m, then
I [ l, n] =g;,I (n;+ 1)/I' [N +m].

Proof. For the integral I [ 1,n ]
= f

dpi'(p)e(p)g;=ip,
the h;(p;) of Theorem 1 are

given by h;(p; ) =p . Since

L [p")(s)=, for n )—1,I (n+1)

we have, by Theorems 1 and 2

m

I[1, ]=L ' gL[p ']( ) ( )l,=
i=1

=L ' g I (n;+1)s ' (1)l

m

g r(n;+ I)
i=1

I (N+m)

Q.E.D.
The same result can also be derived using somewhat

more laborious change-of-variable tricks. See the section
on Dirichlet distributions in Ref. [33].

D. Calculation of I [p, 'ln '(p, ) . p ln (p ),n]

As mentioned in Sec. IV B, since S(p) = —g;p;1n(p;),
powers of S(p) are sums of terms, each of which have the
form p, 'ln '(p, ) p ln (p ). Thus, to find the Bayes
estimators for arbitrary powers of the Shannon entropy,
expressions of the form

I [pi' ln '(p&) . p ln (p ),n]

must be calculated. Using the fact that 8"„p"=p"1n"(p),
we immediately have the following.

Theorem 4. For Re(n; ) & —1 t'ai,

I [ln '(pi) . . 1n™(p ),n]=B„' 8„ I[1,n] .

The justification for the needed interchange of derivative
and integral is given in Appendix C of Ref. [1]. In using
Theorem 4, note that since N =g; in;, we have
d„N =1.

For expository simplicity, before presenting Theorem 5
we introduce the definitions 4&'"'(z) —=4'" "(z) and
b@'"'(zi,zz)—:4&'"'(zi ) —N'"'(z2), where 4'"'(z) is the po-
lygamma function 0""'(z)=8,"+'in[I (z) ] [34]. This
definition of N is made to facilitate the clean presentation
of results; N'"'(z) =8,"in[I (z) ].

Theorems 5 and 6 apply Theorem 4 to the calculation
of the integral I [ln '(pi ) ln (p ),n] for some special
cases.

Theorem 5. For Re(n;)) —1 Vi,

I [ ln(p„), n]

=64'"(n„+1,N+m) g I(n;+1) I (N+m) .
i=1

Proof. I [ln(p„), n ]=8„ I [ 1,n ] (by Theorem 4). Substi-

tuting the result from Theorem 3 for I[1,n] above we
find

/ r(n, +1).
I (n„+1)

a. ' I (n, +1)B„I (N+m), .&„' " I (N+m)

I (n„+1)= Ql (n;+1) b@'"(n„+1,N+m) (by definition of @)

g I (n;+1)
bN"'(n„+1,N+m) .I N+m

Q.E.D.
Theorem 6. For Re(n, ) & —1 Vi,

r

I [ln(p„) ln(p, ),n]= + I (n;+1) I (N+m)
i=1

X Ib@'"(n„+1,N+m)b4'"(n„+1, N+m) —4&' '(N+m)], uAv
mI [ ln (p„),n]= + I (n;+1) I (N+m)[[b@"'(n„+1,N+m)] +6@' (n„+1,N+m)] .

i=1
Proof. Similar to proof of Theorem 5.
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K. Bayes estimators for moments of the Shannon entropy

In this subsection the results for the Hayes estimators with uniform prior for the first two powers of S(p) are given,
i.e., we give si/so and sz/so. Refer to Secs. IVA —IVD for the calculations used here and to Sec. IVD for the
definitions of the functions 4&' "~(z) and b 4&'"'(zi, z2 ).

Theorem 7. For Re(n;)) —1 Vi, s, /so= —g;[(n;+1)/(N+m)]64'"(n;+2, N+m +1).
Proof. Define e; as the m vector with a 1 in index i, 0's everywhere else. Then

si/so=I gp; ln(p;), n I[1,n]

= —g I [ ln(p; ),n+e; ]/I [ l, n] (by definition of I [, ])

= —g d„I [l,n+e, . ]/I [l,n] (by Theorem 4)

(n, +2, N. +m+1) (by Theorems 5 and 3) .
n +1
X+m

Q.E.D.
Theorem 8. For Re(n, . ) ) —1 Vi,

(n;+ 1)(n.+ 1)
s2/so= g [b@'"(n;+2,N+m +2)b@"'(n +1,N+m +2)—4&' '(N+m +2)I

(n, +1)(n, +2)+ g [[6@"'( n+3, N+ m+2)] +64' '(n;+3, N+m +2)I .

Proof. Similar to proof of Theorem 7.
Note that the computational evaluation of si jso grows

only linearly with m. Similarly, the calculation of s2/sp
grows quadratically. Moreover, the terms in the sum-
mands are no more dificult to evaluate than other typical
transcendental functions; our entire procedure is ex-
tremely quick and easy, computationally speaking.

In a manner similar to the calculation of s& and s2, all
higher moments of S(p) are calculable via differentiation
[since B,N'"'(z)=4&'"+"(z)]. Note that when no data
have been observed, i.e., n=0, the estimator for s, /so is
simply —b,@' '(2, m +1)=g,. zi '. (This may help the
reader in deciding whether a uniform prior makes sense
for the application they have in mind. ) It should also be
noted that as X~~, the Hayes estimator
s, /so~+;(n;/ N)ln(n, /N) [34], i.e., it asymptotically
becomes the frequency-counts estimator.

V. BAYES KSTIMATORS
VS FREQUENCY-COUNTS ESTIMATORS

In this section we compare the Hayes estimator (see
Theorem 7) and the frequency-counts estimation for the
entropy in two ways. First, in Sec. V A an explicit calcu-
lation of the two estirnators is made for two specific cases
where a small number of counts are observed in two bins
(m =2). This simple calculation points out that for small
X there are significant differences in the values of the two
estimators. Second, in Sec. VB the two estimators are
graphically compared for a range of sample sizes and true
underlying distributions.

A. Small N

It is always desirable to have a large amount of data.
Often, however, this is not possible. One of the strengths
of Bayesian analysis is its power for dealing with such
small-data cases. In particular, not only are Bayesian es-
timators in many respects more "reasonable" than non-
Bayesian estimators for small data, they also naturally
provide error bars to govern one's use of their results.

For our case, for small N, the Hayes estimate s& /sp can
differ considerably from the estimate one would make us-
ing the frequency-counts estimator S(n)= —g;, (n;/
N)ln(n;/N). In addition, the Bayesian formalism au-
tomatically tells you when it is unsure of its estimate,
through its error bars. Both points are illustrated by the
following pair of examples:

Example 1. Assume two possible events (m =2). Let
n, =0 and n2=2. s, /so=0. 458. The entropy estimate
obtained using the frequency-counts estimator is 0. Note
that the standard deviation of the Bayesian estimate [i.e.,
the square root of si/so —(si/so) ] is quite large. This
indicates that we do not have strong con6dence in the
answer 0.458 and rejects the fact that the sample size is
small.

Exam@/e 2. Again, m =2. Assume that n& =1 and
n2=4. si /so=0. 533. The entropy estimate obtained us-

ing the frequency-counts estimator is 0.5.
Note that there are "edge effects" in using s, /sp as the

estimate for the entropy. If the true p is uniform
(p, =m ' Vi ), then S(p) is maximal and always exceeds
s i /sp no matter what the observed n are. This is be-
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cause the estimate s, /so takes into account all possible p
that might have generated the observed n, including all
those with a smaller entropy than the true (maximal) en-
tropy. In a similar fashion, if the true S(p) is minimal,
then it is always exceeded by s&/so, regardless of the
value of the observed n.

B. Graphical results of numerical comparisons

The graphs appearing in Figs. 1 —5 depict several com-
parisons of the Bayes and frequency-counts estimators for
entropy. In all cases the solid line represents the Bayes
estimator, the dash-dotted line represents the frequency-
counts estimator, and the dotted line represents the true
value of the entropy, where applicable. Figure 6 depicts
the PDF of the Hayes estimator for a fixed ratio of counts
as the number of counts increases. The graphs are the re-
sult of exact numerical computations of the various quan-
tities represented.

Figure 1 explicitly demonstrates the result of Sec. III
of this paper for the Shannon entropy with m =2. Recall
that this section shows that the Hayes estimator is the
minimal mean-squared error estimator. As is immediate-
ly seen in Fig. 1, for all X the Bayes estimator has a
smaller mean-squared error than the frequency-counts es-
timator, where the mean-squared error for an estimator
S(n) is given by

dpPp Pnp Sn —Sp (10)

0.3
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15

FIG. 1. Mean square error [Eq. (10)] for the Bayes (solid line)
and frequency-counts (dash-dotted line) estimators of the entro-
py S (p) = —g, ,p ln(p; ).

The curves were generated with P (p) uniform. The
Bayes estimator is that of Theorem 7, which assumes this
uniform P(p).

Figure 2 depicts the average over p of the sample vari-
ance, that is,

f dp P(p) g P(n p) S(n) —Q P(n'~p) S( n)
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FIG. 2. Mean sample variance [Eq. (11)] of the Bayes (solid
line) and frequency-counts (dash-dotted line) estimators of the
entropy S(p)= —g;,pin(p;). Both variances are shown as
functions of the sample size N.

= f dpP(p) QP( ~pn) S(n) —QP( ~pn)S( )n
n n'

+ f dpP(p) QP(n~p)S(n) —S(p) (13)
n'

i.e., the mean-squared error is the sum of the mean sam-
ple variance and the mean-squared bias. The left-hand
side of Eq. (13) is depicted in Fig. 1. The first integral on
the right-hand side is depicted in Fig. 2. The integrand
of the last integral on the right-hand side [excluding

[Again, P(p) is uniform. ] This figure shows how, for a
particular sample size X, the estimators deviate from
their sample averages. It is immediately seen that the
Bayes estimator has a smaller sample variance. (This is
in agreement with the conservative edge effects behavior
of the Bayes estimator, which was mentioned in Sec.
V A. ) This result is useful for understanding Figs. 3 and
4

Figure 3 shows the sample averages of the estimators
as functions of the sample size N for various va1ues of the
true p, that is,

Q P ( n~p ) S( n) . (12)
n

Figure 4 shows the same sample averages of the estima-
tors, but now as functions of the true p for various values
of the sample size N.

It is of interest to note that for a particular range of p
values and suKciently large X, the sample average of the
frequency-counts estimator actually comes closer to the
true entropy than does the sample average of the Bayes
estimator [see Figs. 3(d) —3(f) and 4(d) —4(f)]. To see how
this is possible in light of the fact that the Hayes estima-
tor has lower mean-squared error, first note that

f dpP(p) g P(n~p)[S( n)
—S(p)]
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P(p) j appears in Fig. 3 as the square of the difference be-
tween the curve for the estim. ator and the true value be-
ing estimated. This quantity favors the frequency-counts
estimator for some values of p for sufticiently large N;
however, the first integral on the right-hand side more

than compensates to give a result favoring the Hayes esti-
mator.

Figure 5 depicts the sample average of the estimator's
deviations from true as a function of p for various sample
sizes N,
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g P(n~p)[S(n) —S(p)] (14)

The integral of the expression in (14) multiplied by the
density P(p) (here uniform), depicted for various 1V, is

shown in Fig. 1.
Finally, Fig. 6 shows the convergence of the PDF

P(s~n) given by

P(S(p) =s~n) = f dp 5( S(p) —s )P (p ~n) (15)
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for a fixed ratio (1:15) of observed counts n&.n2, as the
overall number of counts X =n, +nz increases. Note the
increasing density placed upon the true entropy as the
counts X increase. Note that the average of s according

to this density P (s~n), i.e., f ds s P (s~n), is the Hayes esti-
mator for S(p) given the observations n. As mentioned
previously, of all estimators, its squared error averaged
over both p and n is minimal.
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P(s ~ n)
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FIG. 6. Posterior PDF [Eq. (15)] of the en-

tropy S(p) for m =2 and fixed counts ratio
n, :n2=1:15,but difFering overall X =n&+n2.
As N increases, the density converges to a 5
function at the values s =S(—,'6, —,'6 ) =0.2338 of
the entropy.
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VI. RESULTS FOR OTHER Q( )

In Ref. [1] we performed calculations similar to those
given above to derive the Bayes estimators with a uni-
form prior for some other quantities besides the Shannon
entropy. This section defines those quantities and
presents the results; the reader is referred to Ref. [1] for
the rather involved derivation of these results. In the in-
terest of brevity, not all the results are presented here;
again, the interested reader is referred to Ref. [1].

In presenting these results sometimes p and n will be
matrices. To avoid confusion with the previous discus-
sion, sornetirnes the matrix p will be indicated by the
symbol p. It will also help clarify the discussion to define
v;J —=n; +1. Similarly, to denote row or column sums of
n; 's we use v;.=g v;. and v. =g;v; and define

XlJ IJ '

The mutual information is defined in terms of a matrix
pby

M (p) =S((p, . ) )+S((P.J ) ) —S (p) . (16)

Here (p;. ) and (p. ) are the vectors of column and row
sums of p=(p;. ), respectively, i.e., p;. =Q.p; and similar-
ly for (P.J ). S (p ) is the usual Shannon entropy
S(p)= —QJP Jln(pz), while S((p;.))=—g;p, .ln(p;. ) and
similarly for S((p. )). Mutual information is a measure
of the amount of information shared between two symbol
streams (symbolic dynamical systems) with joint proba-
bility p; [4]. It may also be seen as a measure of the
correlation between two symbolic systems with joint
probability p; [3]. The mutual information function has
applications in areas such as communication theory [4]
(e.g., the measurement of channel capacity), pattern
recognition [5], and natural language analysis [6], to
name but a few.

The g statistic for independence is also given by a
function of a matrix p,

X'(p) = y [(P;J P; p', )'I(P; p, )] . — (17)
EJ

is commonly used in statistical tests of independence

[35], where it appears in a form with the maximum-
likelihood estimator of p substituted for p in Eq. (17).
The form in Eq. (17) is proportional to the asymptotic
(large data set) statistic used in these tests and it is easily
shown to be a first-order approximation to the mutual in-
formation under certain conditions [2,36].

The covariance function of a matrix p is given by

cov,~(p) = g p,, (X, —p )( Y, —p, ), (18)

where each of the m possible states is associated with
some ordered pair (X, , Y ) of numbers [there are m index
pairs (i,j ) altogether]. The ij th state occurs with proba-
bility p, The means are p„and p; p„=g;p;.X; and
similarly for p~ [35].

The variance function of a vector p is given by

var(p)= gp, (X, —p„) (19)

(20)avg (p)= gp, X, .

In calculating moments of these quantities, extensive
use is made of the following result, which in Ref. [12] is
established by using Mellin transforms and Theorem 3.
This result allows us to calculate moments of real-valued
powers of sums of the p;.

Let cr„mean a subset of the integers between 1 and m
i.e., a delineation of certain p s. We define
P„—=g, (n;+1), v;—=n;+lly =+,. &1(v;)Ip, and

pu =Zoic~„pi.
Theorem 9. If the subsets o.„,defined for u =1, . . . , k,

satisfy o „f1 o „=Sfor all uWv, if Re(p„+i)„))0 for all
u =1, . . . , k, and if Re(v; ) )0 for all i =1, . . . , m, then

y„k I (P„+i)„)
[Pi '

Pk n] r(p+ )
II I-(p )

where the ith state is associated with the number X; and
occurs with probability p;. Finally, the average is a func-
tion of a vector p given by
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where f33:—g, v; and Ij=g„q„.
(i) Mutual information M(p)=+,Ip,IIn(p, I/p, p z.

)... In
this case the observed counts form a matrix. De6ne
V7J V7 ~ +Vg J V7J ~

Theorem 10. If the v; are non-negative integers for all
ij, then (a) E(M(p) ~n) = 6'II —O'I —CI where

' aC '"(v, .+1,v+1),

'"(v. +1,v+1),

) =@uMN+ @IM+@IN

6'I=E gp;. In(p;. )~n
l l

V.J.
6"I=E(p 1n.(p. )~n)= g

J
and (b)

&,—,=E 'gp;, »(pj)ln = y "&e"'(v,, +1,v+I),
7J 7J where

IJM IIN IN

=E g p; 1n(p,")p „1n(p „)~n
7,J, m, n

[b4"'(vI. +1,v+2)b@'"(v „+1,v+2) —4&' '(v+2)]
i j m, nAi j

+ g [[6@"'(v;.+2,v+2)] +5@' '(v, +2,v+2)],
v v+1

JIM =E g p;. 1n(p;. )p . 1n(p .
~
)n

[b C&' "(v;.+ 1,v+ 2 )hN" '( v .+ 1,v+ 2 ) —N' '( v+ 2 ) ]
~,. v(v+1)

+ g [[4@"'(v;.+2,v+2)] +bA&' '(v;. +2,v+2)]
v v+1

(to find BIN substitute v.; for v;. and v. for v . in the expression for

AIM�),

IIME g g p; 1n(p; )p . 1n(p . ) ~
n

lJ m

[bA&"'(v; +1,v+2)b, @"'(v .+1,v+2) —4' '(v+2)]
~,. v(v+1)

v, (v, .+1)+ g [[bA&"'(v, .+2,v+2)]
v v+1

+6 @'"(vI + 1,v, .+ 1)b@'"(v;.+2, v+2)+AC&' '(v;. +2,v+2)]

(to find CIIN substitute v. for v . in the expression for BIIM),

IN
=E g'g p;. 1n(p;. )p.„ ln(p. „)~n

v,„(V;„+1)
[[b,N"'(v;„+2,v+2)] +6@' '(v;„+2,v+2)]v(v+ 1)

v, +v.„—2v,„(v,.—v,„)(v.„—v,„)+
V v(v+ 1)

, (r, 1) (v.„—v,„)„v,.—v;„(v,.—v,„)„+6@'"(v;„+2,v+2) g, 1+ +
„=p r ' (v;„)„v;„+r (v,„)„

~ n ~ln1+
~7n+r

(v,. —v,.„)„(v„—U,„), Q, (r, 1) Q, (s, l)+X X
r=O s=O (v;„)„+,
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where Qi is given by

( —1)' ' '
1

Qi(j ni):—I:1—@j r—ji 1—)]
()),—j)!„0 )),—r

+0(j —)),—1)( —1) ' I (j—)), )

and the notation ab means I (a +b ) /I (a )

(ii) Average A (p}=g; ip;X, [Note that for X;=5;j,
part (a) of Theorem 11 gives the Laplace law of succes-
sion estimator for p ..]

Theorem 11. If Re(v,. ) & 0 t(i then (a)

E(A(p)ln}= g V

and (b)

V; VJ. v;(v;+1)
E(A (p)ln}= g XXj+ g X;

lAJ.&. v v+1 ' j,. v v+1

(iii) Variance V(p) =g,. ip;(X; —p ) . Note that
E( V(p)ln)AE([A (p) —E(A(p)ln)] ln); p„ is the true
mean, not the expected mean, and V(p) refers to the true
variance, not the variance in the estimator E( A (p) ln).

Theorem 12. If Re(v; ) & 0 tfi then (a)

v(v —v, ) vv,
E( V(p)ln) = g X,' —g ' X,.X,.

and (b)

E(V (p)ln}= QE(p pjln)X, X. )

—2 g E(p,p, pkln)X, 'X,Xk)
1)J)k

+ X E(p p pkpiln)X;XXkXI),
i,j,k, I

where the expectations can be found by applying
Theorem 9 or simply by augmenting the n's appropriate-
ly (see the proof of Theorem 7).

(iv) Covariance C (p) =g; p; (X;—p„)(Y, —p ).
Theorem 13. If Re(v;. ) & 0 Vij, then

E(C(p)ln)= gX, Y [vv, —v, .v. .],1

'v v+1
l) J

as can be verified by applying Theorem 14a of Ref. [12].

The second posterior moment of C(p) is given in
Theorem 26 of Ref. [12].

(v~ X (p)=r.j(p p p) ~p pj. .

Theorem 14. If Re( v, )& 0 V ij. , Re( v;. ) & —1, and
Re(v. . ) & —1, then

E(X'(p) ln }

(v —1)(v—2)
(v;.+vj —vj+1)(v;.+v. —v; )

i ij m .j . ij n(v.—v ) (v. —v )

0 (v;.+v. . —v, +2) +„

as can be verified by applying Theorem 14a of Ref. [12].

The second posterior moment of X (p) is given in
Theorem 27 of Ref. [12].

VII. CONCLUSION

Many situations can be characterized as follows.
There is some unknown probability distribution p across
a set of m possible events. That distribution is IID sam-
pled N times, to create a data set n. From n we want to
infer not p itself, but some functional of p. The example
considered in this paper is inferring the Shannon entropy
of p from n.

There are many different ways to go about performing
such inference. The Bayesian approach is to directly esti-
mate what we want, which is P(Q (p) =q ln) as a function
of q. This approach requires that we know (or assume)
the distribution P(p). This distribution should refiect
one's prior knowledge concerning p. In this paper we
consider the case where P(p) is uniform over all allowed
p. In Ref. [12] we consider the extension to arbitrary
P(p).

Rather than try to calculate P(Q(p) =q ln) directly, in
this paper we instead calculate its moments. The first
moment gives the optimal guess (in the sense defined in
Sec. III) if one wishes to minimize mean squared error.
The second moment can then be used in conjunction with
Chebyshev's inequality to bound the probability of devia-
tion of Q (p) from this optimal value.

These first two moments for the case where Q ( ) is the
Shannon entropy are presented in Sec. IV E. Numerical-
ly investigations of them are presented in Sec. V. In Ref.
[12] we find the first two moments when Q(p) is the mu-
tual information of p, the variance of p, the covariance of
p, the y of p, and the average of p. These results are
presented in Sec. VI.
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