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iffraction of partially coherent beams on three-dimensional periodic structures and
the angular shifts of the difFraction maxima
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The scattering of electromagnetic fields of arbitrary state of coherence and polarization and of
arbitrary spectrum by three-dimensional periodical structures is described in the first-order Born
approximation and under assumptions of statistical stationarity and quasihomogeneity of the fields.
It is shown that, in general, the angular dependence of the radiant intensity of scattered radiation
is in6uenced and modified by the coherence properties of the incident radiation. The results are
illustrated by examples that indicate that when x rays are scattered by a crystal, shifts of diffraction
maxima due to partial coherence of incident beam may appear, both in the Laue method and in the
powder method.

PACS number(s): 41.20.—q, 42.25.Fx, 42.25.Kb, 61.10.Dp

I. INTRODU CTION

In recent years a good deal of effort was paid to the
study of spectral properties of a partially coherent ra-
diation [1—9]. Closely related to this is scattering of a
partially coherent beam on a diffraction grating, which
has been examined theoretically in [10] with the aim to
take into account the process of spectra measurement.
Diffraction of coherent waves on a grating is a well-known
process. If the grating is illuminated by a polychromatic
plane wave, the angular distribution of the radiation in-
tensity behind the grating is proportional to the spec-
trum of radiation; i.e., the components of different &e-
quencies are deffected in different directions (neglecting
aperture efFects). Different situations may occur when
the incident radiation is spatially not completely coher-
ent as assumed in [10]. In that paper the diff'raction
grating was assumed to be illuminated by a beam gen-
erated by a secondary quasihomogeneous source of any
state of coherence and the scalar approximation was used.
It has been shown there that under these circumstances
the angular dependence of the intensity of radiation in
the far zone behind the grating is given by an integral
relation in which there is, beside the spectrum, another
frequency-dependent term due to the state of coherence
of the radiation. The fact that in the case of the par-
tially coherent beam the grating does not have to "give"
the spectrum like in the coherent case has two physical
reasons, which cannot, however, be separated in general:
The Wolf effect, i.e., the change of spectrum of partially
coherent radiation during propagation, and an inherent
angular divergence of partially coherent beam. So, it may
happen that when a suitably correlated light beam with
the spectral line centered around some Gxed &equency
is incident on the grating, the diffraction maxima will
be shifted with respect to those pertaining to the fully
coherent beam. This result is of interest in connection
with x-ray structure analysis, which determines the in-
ternal composition of crystals just &om the location of

diffraction maxima of the scattered x rays. It is worth
mentioning that shifts of x-ray diffraction lines dependent
on the degree of coherence of radiation have been already
observed [ll]. However, difFraction on three-dimensional
(3D) gratings corresponding to scattering of x rays on
crystals could, in principle, be different &om diffraction
on two-dimensional periodic structures that we already
mentioned. The present paper deals with this problem,
i.e. , with the theory of scattering of an electromagnetic
radiation of any state of coherence on three-dimensional
periodic structures within the accuracy of the first-order
Born approximation and with the question of coherence-
induced angular shifts of diffraction lines in the context
of x-ray structure analysis.

II. SCATTERINC OF ELECTROMAGNETIC
FIELDS FROM PERIODIC STRUCTURES

To describe the scattering of statistically stationary
electromagnetic Gelds of an arbitrary state of coherence
and polarization, and with an arbitrary spectrum &om
three-dimensional quasiperiodic media (with dispersion
and space ffuctuations in general) within the accuracy of
the first-order Born approximation, we modify the the-
ory of Wolf and Foley [12] developed for scattering from
spatially and temporally fluctuating media [4,12,13]. The
first-order Born approximation means that the scattered
radiation does not itself scatter.

Using the method of Hertz vectors and imposing the
conditions of statistical stationarity of the radiation as
well as the constraints for the applicability of the Grst-
order Born approximation the authors of Ref. [12] have
shown that the spectrum of the scattered electric field
in the far zone takes the following form [Eqs. (4.8) and
(4.11) in [12]]:

6 A:2k'2
S(ru„cu) = dw' (27r) exp[i(k' —lc) r]

x (8) —uiu ) (('P,*(k,cu) P (Ie', (u')) ~) . (1)
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Here ru = r is a position vector with ~u~ = 1, u is
a frequency, k = ku = ((t}/c)u with c being the speed
of light in vacuum, b~ denotes the Kronecker symbol,
l, m = 1, 2, 3 (or x, y, z), symbols ()R and ()~ repre-
sent averaging over ensembles of fluctuations of the in-
cident radiation and of the scattering medium, respec-
tively, summation over repeated sufBxes being implied.
The vector function 'P(k, (tt) is given by the expression,

The spatial integral is taken over the domain occupied by
the scatterer and the polarization I (r, t) induced by in-
cident (real) electric field X(r, t) [14] is defined as follows
[15]

P(k, ~) = d r exp( —ik . r)
27l

x j dt exp(t~t}t (e, t} (2) where p(r, t) is the dielectric susceptibility. The "corre-
lation" term in Eq. (1) is given by the expression

(,('Pi'(» ~)&-(k' ~'))R) M =
6 ~(~ —~')

(2 )'
X(rI*(r„~)rI(r2, ~))MW( (r„r2, ~), (4)

where Wi (ri, r2, u) is the cross-spectral tensor of the
incident radiation, i.e. , the Fourier transform of its cross-
correlation tensor (assuming statistical stationarity),

Wi~(ri, r2, w) = — d7 exp(iver)2'
x(E'i(ri, t)E (r2, t+ r))R,

I4
S(ru, (u) = (2~) —(bi —uiu ):-i (k, (d).

According Eqs. (4), (7), and (8),

(k, ~) = d r, d r, exp[ik (r, —r2)]
1

27I Rs R3

1
rI(r, ur) = — dt e px(i(ut) (rIrt).2' (6)

xx*(ri t ur)A (r2, (u) s((u) pi~(r2 —ri, (u).

(1o)

Let us suppose now that the cross-spectral tensor of
the incident radiation is quasihomogeneous (at least in
the region of scattering medium), i.e. , that

Here the integrations extend over entire space (B ) be-
cause the 6nite size of the crystal appears in the form
factor. P.ether,

~ltn(r it r2t (t ) = S(~)1' '(»)I' '(r2) Pittt(r2 r it (t )t

(7)

A(r, (u) = A(r) ) pt-(u)) exp(iG r),
G

with A(r) = I ~ (r)T(r) being a real function. Setting

where s(u) is the normalized spectrum, I(r) is the inten-
sity distribution, and Iji (H, u) is the tensor of degree of
spectral coherence.

Let us assume that the dielectric susceptibility is a
quasiperiodic function of position vector,

A(f) = d r exp( —if . r) A.(r),
27I' Rs

we can introduce the quantity

(12)

g(r, ~) = T(r) ) p~(u)) exp(iG' r). (8) X(f, (u) = d r exp( —if . r)X(r, (u)
270 Rs

Here T(r) is the form factor that characterizes the macro-
scopic geometric shape of the scatterer (crystal) and G'

are vectors of the reciprocal lattice. The coe%cients
pt (w) characterize the structure of the lattice. It is as-
sumed that the form factor varies with v' much more
slowly than the exponentials. In order to shorten the
analysis we introduce the tensor function i (k, w) so
that

= ).~~(~) &(f —G').

We then And that

(k, ~) = s((u) d f X'(f, (u)X(f, (u)yi (k —f, ~),
R3

(14)
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where

pt(, f, ur) = d r exp( —if . r)pt (r, u). (15)
27r RS

Equation (14) can be easily obtained by the use of the 6D-
convolution theorem (for the 4D analogy see [10]). The
radiant intensity measured in the far zone in the direction
u is proportional to the integral of the spectrum over the
whole &equency range, i.e., to the quantity

OO oo

I(ru) = d~g(ru, u) = (2') dtd —
2 (ht~ —utu~) ) ) .'Ya, (~) 'Y&~(~)

0

xs(ur) d f A*(f —&t)A(f —G'2) ptrn(& —f, ~)~
Rs

where Eqs. (9), (14), and (13) have been used.
Let us add a few remarks about the function p, t (f, u).

Since the incident field satisfies the homogeneous wave
equation [12] the appropriate electric cross-spectral ten-
sor has to satisfy the "double Helmholtz" equation
[8,17,18]. Consequently the function pt (f, td), which
represents the spatial Fourier transform of the degree of
spectral coherence, must have the form x d~ k s(~) jet~(k —G, ~),

0
(i9)

parison with p, t (f,~) when considered a function of f
Equation (18) can be then written in the approximate
form

I~(ru) = n (bt —utu )
(2vr) '

(f ~) =4
I

~ l~(lfl ). (17) where o. is a real constant proportional to the volume of
the crystal and still k = A:u.

We will use the fact that we are dealing with a beamlike
field, i.e., with radiation that propagates close to some
chosen direction sp (]sp~ = 1). In such a case ~@t~(a, u)

~

is negligible except when ~8 —Bp~ ( e (( 1 [19], where
~s~ = 1 and 2e represents the angular divergence of the
beam. It is worth mentioning that this is an inherent
divergence of partially coherent radiation arising &om
imperfect transverse correlations in wave &onts and has
no direct connection with aperture diffraction effects.

III. DIFFRACTION ON CRY'STALS

If we suppose, as it is usually done, that the scattering
by the crystal is essentially due to point atoms we can ap-
proximate the coefficients p~(ur) by unity for all vectors
of the reciprocal lattice O'. If, in addition, the particular
diffraction orders corresponding to different vectors G' are
well separated one can also restrict oneself to studying a
single diffraction line only. Thus, instead of the quantity
I(ru) we will focus our attention on the following one:

2vr '
I (ru) = (b —uu ) d f iA(f —G')ir ~S

x d(uk s((u) pt (k —f, ~).
0

To emphasize the correlation-induced effects we ne-
glect the inQuence of the finite size of the sample; i.e.,
we will assume a relatively large crystal and a homoge-
neous distribution of intensity of the incident beam so
that the function ~A(f)~ will be very narrow in com-

IV. LAUE METHOD

In the case of the Laue method a fixed monocrystal
is illuminated by a collimated x-ray beam with a broad
("white") spectrum. For the sake of simplicity we will
assume that the spectrum in the location of the sample
is constant [let s(u) = 1 on the effective frequency range].
It is well known that when the incident radiation is fully
coherent the lattice selects the directions of diffraction
maxima and the proper &equencies so that k = t + kso
(ksp represents the wave vector of the incident wave).
In the coherent limit the function pt (f, u) tends to the
h function b(kap —Ie + G) and thence I~(ru), given by
Eq. (19), is nonzero only when k = G + ksp. From
Eq. (19) it is clear that for a partially coherent incident
beam the situation is somewhat more complicated.

Let us choose such a coordinate system so that the
incident beam will propagate in the direction of the z
axis and the vector G' under consideration is located
in the x-z plane. Further, let us confine ourselves to
directions of observation m that are also in the x-z
plane. Thus sp = (0, 0, 1), G'—:(G sin P, 0, G cos P), and
u = (sin 8, 0, cos 0), where P and 0 are the angles that G'

and u, respectively, make with the z axis (with sp).
To show that the shift of the diffraction maxima caused

by coherence properties of the incident radiation occurs
even in very common situations, we will assume that the
radiation is generated by a circular chaotic nonpolarized
planar source (e.g. , the radiant of a tungsten x-ray tube)
of radius po placed perpendicularly to the z axis at the
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distance zo &om the saInple. We will assume that the
tensor of degree of spectral coherence of the radiation
has, even in the region of the scattering crystal, only
two (same) nonzero components p = p» ——p, [20].
To determine p(r2 —I'I, u) we will employ the scalar,
paI'axial ) and faI' zone appl oxlmatloHs. As It 1s shown
in Appendix A, for the spatial Fourier transform of this
degree of spectral coherence we then obtain the following
expression,

p(f, , ~) = 8(k —f, ) circ
~

1 1 . (f~l
2 'k' '

q k)' (20)

where f~ is the projection of f perpendicular to the z
axis alld e = pp/zp [21]; the function circ is defined in
Appendix A.

After substituting from Eq. (20) into Eq. (19) one ob-
tains for Ir (rm) the expression

I~(rII) = I'(0) = nc —(1+cos 0)
(2vr) ' 1 . GsinP

dk k b(k —k cos 0 + G cos P)circ — sin 0—,0
~

(21)

for 0 e (—7r+ 2P —e, —Ir+ 2P+e) n (e, 2' —e) and zero
otherwise 111 tile llltel'val (cl 27r —E) (27I periodicity ls
not displayed here for brevity); see Fig. 1. The function
(1+cos 0)/(1 —cos 0) is increasing in the interval (0, vr)

and it is decreasing. in the interval {Ir,2Ir). Thus if the
"coherent position" of the difFraction line 0, I, = 2P —Ir

lays between 0 and 7r (0' and 180 ) the maximum of X(0)
is shifted, with respect to 6, h, toward smaller angles and
if 0, h g (Ir, 2Ir) it is shifted toward larger angles [22].
Similarly, it can be shown that the angular shift appears
also in the centroid

I0r(0) d0

JZ(0) d0
(23)

(The shift of the centroid decreases with increasing 0, I,

[on the interval (~, ~ —e)].)

From the positiveness of the frequency it follows that the
function X(0) is zero unless P is in the range (7r/2, 3Ir/2).
Further we will consider the angle 0 to be greater than e

and less than 2Ir —e (then we need not consider patholog-
ical cases corresponding to G/k = 0 and limiting cases
with P = +~/2). One can than show (see Appendix 8),
that

2 (2Ir)s 2 1+ cos2 0
2'(0) = ncG cos P 1 —coso 3

As an example let us consider a situation when the
parameter e = 0.01. This value determines the shift of
diBraction maxima in radians. It is approximately 0.5 .
The width of the line (2c) is about 1' [23]. For the vec-
tor G' for which 0, h

——30' the centroid of the difFraction
profile is C = 29.977 . However, the presence of aper-
tures between the source and the crystal improves the
coherence of the radiation and the shifts may decrease.

Hence even in the case of the usual thermal source,
the profile of the diKraction line divers &om those for
the fully coherent illumination. Not only the broaden-
ing of the lines appears but also the angular shifts both
of the dig'raction maxima and of the centroids. With
a more complicated form of the function vPI~(f/~ f ~, ~),
which realizes the coherence properties of the radiation
in the place of the sample, the diKraction profile may be,
of course, modish. ed in more complex ways. Especially
the explicit &equency dependence can play an important
role. Nevertheless, the shift of the maxima and of the
centroids never exceeds the value of the half "coherence"
divergence of the beam (i.e. , e). For practically appli-
cable estimates of shifts it probably will be necessary to
conceive a more realistic description of correlations in
the incident radiation, taking into account the inHuence
of possible monochromators, apertures etc. , to consider
the efFect of the finite size of the crystal [thus to evalu-
ate the convolutioll in Eq. (18)], and to know the actual
spectrum of the incident radiation.

We can see that the physical cause of the shifts lies
in the inherent divergence of partially coherent beams
[which is, in fact, a consequence of a finite size of the
(transverse) coherence area] and on the inhomogeneous
modification of the intensity of particular &equency com-
ponents during propagation (Wolf efFect) [1,2]. The first
efFect is connected with dependence of p, on f/~ f ~

and
the second one with its total dependence on u [together
with the factor k4 in Eq. (19)].

FIC. 1. The notation and the layout of vectors m, sp, ance
G' is shown. The function PI~(k —G', u), given by Eq. (20),
is nonzero when (II —G'/k) lays on the bold arc of the circle.

V. POVVDEB. METHOD

In the case of the powder method the sample is in the
form of a powder or a polycrystalline material. The inci-
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dent radiation is quasimonochromatic. To find the inten-
sity distribution of scattered radiation we have to include
the contributions &om crystals of all present orientations
[each contribution is given by Eq. (18), in general]. We
can suppose that the distribution of the orientations of
component crystals is almost continuous. Let us intro-
duce the following parametrization of the unit sphere,

x = sinpcosp, y = sinpsinp, z = cosp,
P e (0, 7r), P C (0, 2~). (24)

Starting again &om Eq. (19) and using the same assump-
tions regarding polarization of the incident radiation and
regarding the source as in the previous section [Eq. (20)],
one has

(2vr)
' OO 2' 7r

I~(rm) =2'(0) = n (1+cos 0) d~k s(~) dP dP sinP
T 0 0 0

1 ( . GsinPcosg GsinP sing)
xh k —kcos0+ Gcos circ — sing—

)
(25)

Here u, —:(sin 0, 0, cos 0), so = (0, 0, 1); k = u/c and G
is the magnitude of the chosen vector of the reciprocal
lattice. Integration over P and P covers all orientations
of component crystals.

A kind of "degeneration" appears here: we cannot dis-
tinguish contributions &om vectors of the same magni-
tude G and hence, to obtain an actual value of intensity,
we have to multiply the function IG. (v tc) by the number of
vectors of the reciprocal lattice having magnitude equal
to G. Since the space lattice is real, at least the vector
—G' must occur together with G'.

Due to the b function we can eliminate the integral
over the variable P in Eq. (25). Then

2'(0) = — (1+cos 0)
n (2~)'
G „2~2

Gc/(1 —cos 8)
X

0
Cku k's(~)tG(0, (u), (27)

Since cos p ) —1 it is clear that k has to be less than
G/(1 —cos 0), otherwise the result of integration over P
is zero. Let us confine ourselves, for the sake of simplicity,
to the angles 0 of the range (s, vr —e) U (sr + e, 2vr —s). The
remaining integral over the variable P represents, in fact,
the length / of the bold arc in Fig. 2 given by intersecting
circles. If the circles do not intersect the integral is zero.
Consequently,

GcosP = k(cos0 —1). (26) where

2G k2 k sin 0 + (G/k) —(cos 0 —1)1 — cos 0 —1 2 arccos
~

sin 0~ gl —(k/G)2(cos 0 —1)
(28)

we have also used Eq. (26). The value of this function is
equal to the length of the arc emphasized in Fig. 2, when
the circles intersect, and is zero otherwise.

Prom Eqs. (27) and (28) it can be seen that even in
the case of inonochromatic incident illumination [s(~) =
h(~ —uo)] the diffraction line is broadened —the width is
2s (see Fig. 3) —and the diffraction profile is described
by a relatively complicated function. The reason for this
is the coherence divergence of the input beam and the fact
that in difFerent directions difFerent numbers of the orien-
tations of component crystals contribute to the intensity
of scattered radiation. If the spectrum of the incident
x-ray beam has a small but finite width, the difFraction
line is further broadened due to this (this contribution
is responsible for increasing the breadth of the line with
increasing G) and its profile is inHuenced by the form of
the spectrum, modified due to the Wolf efFect, in general.

An example: Let us consider the same configuration

&
sin P = —,—(cos 0 —1)

FIG. 2. Geometrical meaning of the integral over P in
Eq. (25). When the circles intersect the integral is equal to
the length of the bold are.
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VI. CONCLUSIONS

FIG. 3. Illustration of broadening of the difFraction line in
the case of monochromatic illumination.

as in Sec. IV, i.e., let the parameter e = 0.01 again. Let
us suppose, further, that the spectrum of the radiation
at the position of the crystal is Gaussian,

(ld —

COO�)

s((u) oc exp (29)

0.030—

0,025

with the width o = 0.001uo. In Fig. 4 there are re-
sults of the numerical analysis of Eq. (27) together with
Eq. (28) under the conditions mentioned above. It shows
the shifts of maxima of difFraction profiles and of their
centroids [see Eq. (23)) with respect to Bragg angles
(corresponding to the ideal difFraction of the monochro-
matic plane wave of frequency uo) for difFerent magni-
tudes G of vectors of the reciprocal lattice. The val-
ues of G are &om the interval between 0.1 ko and 1.9 ko

(ko = (do/c) and they are represented on the horizontal
axis by the corresponding Bragg angles for &equency ~0,
0~ = 2arcsin[G/(2ko)]. All the quantities are given in
degrees. The accuracy of the calculated values is bet-
ter than 0.001 . From Fig. 4 we can see that the shifts
of diBraction maxima may appear also in the powder
method under commonly occurring circumstances. Nev-
ertheless, in our example, the shifts are very small in com-
parison with the breadth of the profile, which is about 1'
[24]

We have developed a theory describing the scattering
of electromagnetic radiation of any state of coherence and
of arbitrary state of polarization on three-dimensional
periodic structures, valid within the accuracy of the first-
order Born approximation, i.e., for kinematic difFraction,
in terms of x-ray structure analysis. The incident field
may have an arbitrary spectrum. It is only assumed to be
statistically stationary and quasihomogeneous (at least in
the domain of the scattering medium).

We have shown that the diffraction profiles (i.e., the
angular dependencies of the intensity of scattered radia-
tion) are influenced, in general, by the coherence prop-
erties of incident radiation. It is caused partly by the
Wolf efFect, i.e. , due to the modification of the spectrum
of radiation during propagation as a consequence of the
state of spatial coherence of the field, and. partly by an
inherent angular divergence of partially coherent beam-
like fields, which is connected with the finite size of the
(transverse) coherence area. The effect can have interest-
ing consequences for x-ray structure analysis. %'e have
demonstrated, by examples, that the coherence-induced.
angular shifts of diKraction maxima may appear even in
common cases both in the Laue method and in the pow-
der method.

A similar e8'ect can probably appear in the particle
diffraction (e.g. , in the scattering of electrons or neutrons
on crystals). The phenomenon described could perhaps
occur also when a thin hologram is illuminated by a par-
tially coherent light.
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APPENDIX A: CHAOTIC PLANAR. SOURCE

Let us consider a planar circular spatially incoherent
statistically stationary scalar secondary source with the
radius po and the center at the origin of coordinate sys-
tem; its cross-spectral density

0.020

6)
Z3

0,015
CO

GO 0.01 0

0,005 —~CentroidS

W(p, p, cu) -+ h(p —p )S(~) ci c
i

&pi)
(AI)

where pi, p~ are position vectors laying in the source
plane (2D vectors), which is perpendicular to the z axis,
S(w) is the spectrum (we suppose it to be the same
throughout the whole source), and

0.000—
30 60

I

90

Bragg angle OB («g)
I20 150

0 otherwise. (A2)

FIG. 4. The shift of the maximum of the diffraction pro6le
and the shift of its centroid with respect to the corresponding
Bragg angle vs the Bragg angle. For details, see the text.

The cross-spectral density in the far zone (i.e. , when the
distance from the source is much greater than the dimen-
sions of the source) of the radiation generated by a planar
secondary source is given by the formula (see, e.g. , [25])
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f k )' exp[ —ik(rx —rz)]
) (r i, r2, ~) =

I

—
I

cos ex cos 82 d py d pg
(2vr ) r1r2 R2 R2

xW(px, p2, cu) exp[&k(sax . px —s&2 pz)]~ (A3)

where r; = r;s;, Is;I = 1, cose; = s„., and s~; is the
projection of vector s; into the source plane, i = 1, 2.

We employ the paraxial approximation and assume
Iri —r2[ « r; (t' = 1, 2). Near a point (0, 0, zp) in the
far field (zp being the distance froxn the source obeying
the constraint Izp —z, [ « zp, z, being the z components
of r;), we obtain for the degree of spectral coherence the
expression

APPENDIX 8: NOTES TO DERIVATION
OF FORMULA (22)

Here we will inquire where the function 2'(0) appearing
in Eq. (21) has nonzero values. The 6 function in Eq. (21)
selects only k fulfilling the equation

k(cos 8 —1) = G cos P.

J(sk[r~2 —rex I)p (r2 —ri, ur) = exp[ik(z2 —zi)]
ek[rgz —rex[

(A4)

where r~; = rs~;, J() is the Bessel function of the first
kind and the first order, and s = pp/zp. Since we are
interested in the cross-spectral density (tensor) only in
the region of the sample crystal [elsewhere the function
T(r) is zero] we may regard, for the sake of simplicity
(but without any loss of generality) the spectral degree
of coherence as having the form given by Eq. (A4) in
the whole space (with s being constant). We can then
determine its Fourier transform with respect to (r2 —ri):

Because k ) 0 the value of cos p must be negative and
thus P C (7r/2, 3m/2). The function "circ" is nonzero
when

1 ( . GsinP)—1 ( —
I

sino—
e ( k

(B2)

—sin e cos p ) sin 0 cos p —sin p cos 0

+ sin P cos e ) sine cos P, (B3)

Taking into account that e (& 1 one can write c sine
and 1 = cos s. Realizing this and using Eq. (Bl) together
with the negativeness of cos P one obtain the inequality

or, after some algebra,
(A5)p, (f, ~) = — b(k —f, )circ]

1 1 . (fg&
27r s k2 ' ( sk ) (0+ e& f9 —2P —~l

sin.
I

Icos]
I

&0
) ( 2 )Here f is the z component of f and f~ is its projection

on the source plane. This expression is only approxima-
tive and it does not satisfy condition (17). Nevertheless,
since we assume that e &( 1 (i.e. , pp (& zp) the function
p(f, u) is nonzero only for

I f~ I
&& k and Eq. (A5) is

nearly identical with

I
cos

I I
(B4)

) 0 2 )
I.et us confine ourselves to angles of observation in the
range 8 C (e, 2m' —e). We then need not deal with elim-
ination of nonphysical cases and with examinating the
cases when P is close to +sr/2, which need more careful
analysis when 0 is near zero. Under this constraint the
sines in Eq. (B4) are positive axid it is then straightfor-
ward to show that the inequality (B4) is satisfied when
0 e (—vr + 2p —e, —~ + 2p+ e).

It should be noted that we do not distinguish between
0 and 0+ nor, where n is an integer.

1 1 (1 f l
&(f ~) = —,, ~(k —If I) rect

I

— s. —
I

(«)2~ e2k2 Ifl )

Evidently this expression has the same form as Eq. (17).
In this equation rect(() = 1 for ( C (0, 1) and is zero
otherwise, so is the unit vector in the direction of the z
axis.
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