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Director deformation of a twisted chiral nematic liquid crystal cell with weak anchoring houndaries
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On the basis of a generalization of the Rapini-Papoular expression [J. Phys. (Paris) Colloq. 30, C4-54
(1969)] for the anchoring energy, the rigorous expressions for the threshold and saturation fields are de-

rived analytically, in detail, for a field-controlled twisted chiral nematic slab with weak boundary cou-
pling. The surface anchoring energy of the Rapini-Papoular type for a twisted nematic slab should be
generally expressed as the interfacial energy per unit area for a two-dimensional deformation which is a
nonlinear combination of the azimuthal and polar angles. Applying a variational calculation method for
the two-dimensional problem to the total free energy, that is the sum of the bulk energy and the surface
energy, we derive general torque balance equations which describe the equilibrium deformation of the
director.

PACS number{s): 61.30.Cz, 61.30.Eb

I. INTRODUCTION

In liquid crystals (LCs), surface effects have been stud-
ied mainly for nematic phases [1]. The structure of liquid
crystalline phases in close proximity to an interface is
different than that in the bulk, and this "surface struc-
ture" changes the boundary conditions and influences the
behavior of the liquid crystal in the bulk. The nematic
phase is especially sensitive to external agents, in particu-
lar, to surface forces [2]. Macroscopically, the surface
effects are manifested in the director orientation in the
bulk. There are two cases of particular interest: first, the
strong anchoring case, in which the director near the sur-
face adopts a fixed orientation e, which is called the an-
choring direction or the "easy" direction as denoted by
de Gennes [3]; second, the weak anchoring case where
the surface forces are not strong enough to impose a
well-defined director orientation n at the surface; this is
the situation for the majority of systems. When there are
other fields (electric, magnetic, and fiow) the director at
the interface obviously deviates from the easy direction.
To describe a weak anchoring surface for an untwisted
nematic liquid crystal (NLC) sample, Rapini and Papou-
lar (RP) have introduced a simple phenomenological ex-
pression for the interfacial energy per unit area for a
one-dimensional deformation [4],

sin (8 —80) .

Here 00 is the angle between the easy direction e and the
layer parallel while 8 is the orientation of the director at
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the nematic-wall interface. The anchoring strength pa-
rameter 3 determines the ability of the director to devi-
ate from the easy direction. For a twisted nematic (TN)
LC sample the RP anisotropic energy density for the
director orientation must be extended to the more general
form [1]

g, = — (n.e)

which is a nonlinear combination of the azimuthal and
polar angles. Using the RP function, some authors have
studied the infiuence of the interfacial effect [5—12] on
the bulk orientation of NLCs and in this way attempted
to measure A [13—16]. However, in Refs. [5—12], the
unified RP energy form Eq. (1) has been written as a
linear combination of a polar angle anchoring term

g& =( A i /2) sin (8 —8o) and an azimuthal angle anchor-
ing term g& =( Az/2) sin (P —Po). Although such a sep-
aration simplifies the mathematical analysis, there is no
physical reason to make a separation. In addition, from a
mathematical point of view, this linear combination is
not invariant with respect to rotation of the axis system;
therefore, the two optimum directions (8o, po) and
(8o,po+rr } in Refs. [5—12] are inconsistent with the origi-
nal intention of Eq. (1}that there is only one easy axis at
the surface. Although the expression for the surface en-
ergy can be predicted for other shapes of the surface po-
tential, such as the elliptic type, Legendre expansion, and
so on [2], it cannot be expressed as a sum of independent
terms g, (8) and g, (P) for the polar and azimuthal angles,
but is expressed by the two-dimensional function g, (8,$).
Since the proposal of Eq. (1), the calculation of the field-
controlled director orientation in a twisted chiral nematic
(TCN) slab with weak anchoring has been an open ques-
tion for more than 20 years. Recently, on the basis of a
general RP expression for the anchoring energy, Eq. (1),
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II. GENERAL TORQUE BALANCE EQUATIONS

We first give the derivation of the general torque bal-
ance equation. We consider a nematic cell located be-
tween the two planes located at X3=0 and X3 =I, as il-
lustrated schematically in Fig. 1. The easy directions at
the top and bottom substrate surfaces are denoted by the
unit vectors e and e, respectively. Using Eq. (1), the
corresponding surface energy densities are given by

gs (n e+) (X3=1),
2

(2)

two of us have reported briefly our results for the general
expressions for the threshold and saturation fields [17].
This follows from a rigorous treatment on the variational
problem with special variable boundaries. The method is
significant both for fundamental and the applied research
in the LC field.

In this paper, we describe the variational method for
the two-dimensional variation problem on the energy in-
cluding the bulk and surface energy, and give the detailed
derivation of our results reported in [17]. In Sec. II the
general torque equations are derived using a technique
based on the special functions. By using the general
torque equations the basic equations needed to calculate
the threshold field are derived in Sec. III. With a limiting
calculation for the equations obtained the result of the
threshold field is shown in Sec. IV. Following a similar
procedure to that in Sec. IV, we show the derivation of
the saturation field in Sec. V. Finally, Sec. VI contains
our conclusions.

T

gb= —k»(V n) +k22 n VXn+
Po

2

+k33[n X(VXn)] +g1(n), (4)

where kII, k&2, and k33 are the splay, twist, and bend
elastic constants of the NLC, respectively, po denotes the
pitch of the material induced by a chiral dopant, and
g~(n) represents the interaction energy between the
director and an external field which depends on n but not
on Vn. The total free energy I" is the sum of the bulk en-
ergy and the surface free energy

F= fgdu+ fg, ds + fg,+ds+, (5)

where dv is the volume element of the bulk and ds is the
surface area element. Minimization of the total free ener-

gy yields the stable director configuration. The equilibri-
um condition is then determined by the variation equa-
tion 6F =0. For many years the determination of the
equilibrium condition for a weak anchoring coupling has
been an unsolved problem because of the complicated
form of Eq. (5). No solution for a variational problem
under boundary conditions including integral forms can
be found in literature and books on the variational prob-
lem. In order to change Eq. (5) into a form which can be
solved by the normal variational approach, we introduce
two special functions, the unit step function

1 (X3~0)
1'X3'= '0 (X, &0),

gs (n e ) (X3=0),
2

(3) and the Dirac function

where A+ and A are the anchoring strength at the top
and bottom substrate surfaces, respectively. The total
free energy density in the bulk may be expressed as [3]

(X3=0)
5'X3'= '0 (X,eo),

f 5(X3)dX3=1
dp(X~)

5(X3)=
dX3

go+ g+
Then Eq. (5) reduces to the unified integral

F=f g*du= f (gb'+g, *)du,

where gb* and g,
' are defined by

g„*= g~+ —(1—n n) [p(X3)—p(X3 —1)], (7)

g'= —— A (n.e )+ (1 n n) 5—(X .)
2 2

+
A+(n e+) + (1—n.n) 5(X —1).

Xi

FIG. 1. The geometry of the twisted chiral nematic ce11 1o-
cated between the two p1anes X3 =0 and X3 = l.

Here v, g, and g are Lagrange multipliers to be deter-
mined by the constraint n. n =1 in the bulk and at the
substrate surfaces. In previous work [10—12] on the same
problem, the Dirac function was used to unify the in-
tegral form of I; however, the unit step function has not
been included because it was not necessary for the prob-
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lems being addressed. On the other hand, the normal
Euler-Lagrange approach used to minimize F is

Bg 8 Bg =0 (ij =1,2, 3),
~nl ~Xj

(9)

where n; =dn;/BXJ. Substitution of Eqs. (7) and (8) into
Eq. (9) leads to

Bgb

Bn,.
~gb

Bxj anj
v—n; [p(X3 ) —p(X3 —I) ]

Rgb —A +(n e+ )e,
+ g—+n, 5(X3 —l)

Bgb+ — —A (n e.)e; gn; —5(X3 ) =0 .
l, 3

This leads to the following equilibrium conditions:

Rgb

Bn,-

=vn, (0&X3&l),8 ~gb

J l~J

gb + --+ += A +(n e+ )e,.++g+n; (X3 =I),
l, 3

Rgb = —A (n e )e; gn; —(X3=0) .
Bn;3

(12)

(13)

Equation (11) comes from the coefficient of the function
[p(X3)—p(X3 —i)] of Eq. (10), and Eqs. (12) and (13)
come from the coefficients of 5(X3) and 5(X3—l), respec-
tively. Equation (11) is the torque balance equation in the

J

III. BASIC EQUATIONS FOR THRESHOLD PROBLEMS

In the case of strong anchoring, the Freedericksz tran-
sition gives us a simple method to determine the physical
parameters for NLCs by measuring the deformation in-
duced by an external magnetic or electric field. To un-
derstand the generalized torque balance equations de-
rived in Eqs. (11)—(13) we may consider the threshold
problems of the Freedericksz transition and the satura-
tion transition in the case of weak anchoring.

First, based on the general torque balance equations,
we derive the basic equations necessary to deal with
threshold problems. We consider simply a TCN cell lo-
cated between the two planes X3=0 and X3=l with a
symmetry with respect to the middle plane X3=l/2.
Then for any p, the symmetry, p(X3 ) =p, —p(1 —X3 )

and 8(X3)=0(l —X3) in a range of 0(X3 (i/2, obtains.
The surface tilt angles are taken to be the same at both
surfaces, 8 =8(0)=8(l) and A = A + = A . The easy
direction e at X3=0 and the direction at the X3 layer

may be expressed as

e =(cos80, 0, sin80),

n = (cosO cosP, cosO sing, sinO),

(14)

(15)

where the azimuthal angle P and the tilt angle 8 are func-
tions of X3. With Eqs. (4) and (15), Bg& /Bn; 3 is given by

bulk. General surface torque balance equations at the top
and the bottom surfaces are given by Eqs. (12) and (13),
respectively. Equations (11)—(13) and the constraint
n n =1 determine the solutions for n, v, and g

— com-
pletely. The problem for a weak anchoring surface using
the RP function can now be solved generally.

gb

Bn, 3

k33 sin 8 cospO' "—(k23 cos 8+ k33 sin 0) cosO sing/" ' —kz cosO sing (i = 1 )

k33sin 8 sin/8" '+ (k22 cos 8+ k33 sin 8) cosO cospp' "+k2 cosO cosp (i =2)
(kii +k33 sin 0) cos80'" (i =3)

(16)

where 8"'=d8/dX3, p'"=dp/dX3, and k2 = —2mk33/po, where positive and negative signs of k2 correspond to left-
and right-handed helixes, respectively. Substitution of Eqs. (14) and (15) into Eq. (13) leads to

Bgb = —A (n.e )e; gn;—
Bn, 3

—A (cos80 cosO cosP+ sin80 sinO) cos80 gcosO co—sP (i = 1)
—

g cosO sing (i =2)
—A (cosOocosOcosg+sinOosinO) sin80 —gsinO (i =3) .

(17)

Elimination of g with Eqs. (16) and (17) gives the surface torque balance equations at X3 =0 as

f (0)8'"~z 0= A (sin80sinO+cos80cosOcosg)(cos80sinOcosg —sin80cosO),

h (0)P'"~x 0= —kz cos 8+ A (cosOocosOcosg+sin00sinO) cosOosing cosO,

(18)

(19)

where

(20)f (0)=k» cos 8+k33 sin 8,
h (0)=cos 8(k23 cos 8+ k33 sin 8) .

The surface torque balance equations at X3 = I can be ob-

I

tained simply by reversing the signs of the right-hand
sides of Eqs. (18) and (19).

When a magnetic field 8=(0,0,8) is applied to the
TCN cell, i.e., g = —(bX/2)(n B ) in Eq. (4), with Eqs.
(4) and (15) the free energy density in the bulk may be ex-
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pressed as

g = [f—(8)8"' +h(8)P"' ]+@ cos 8$'"1
b 2

Substitution of Eq. (26) into Eq. (24) leads to

C2= (Ci k2 cos gM) +EBB sin 8M . (27)

8 sin 8,
2

(21)
Substituting Eq. (27) into Eq. (24), we obtain

where Ag is the anisotropy of the diamagnetic suscepti-
bility of the NI.C. Minimization of the free energy in the
bulk yields the stable director configuration for any given
field. Applying variational calculus to Eq. (21), we find
that the bulk equations (11) lead to

f (g)g(2)+ &f g(1)2 1h y(1)2
0 0

g(1)—~—1/2( g)

where X(8) is defined by

X(8)=f (8) bXB (sin 8M —sin 8)

+2k 2 sing cosgp' "+b,XB sing cosg =0, (22)

(23)
+ (C, —k2cos 8~)

1

g )
1 2 M

whre C, is a constant of integration, fz
=df /d 8,

h()=dhldg, and 8' '=dg"'/dX3. Subsitution of Eq. (23)
into Eq. (22) leads to the torque balance equation in the
bulk,

f (8)8"' +— (C, —k2 cos 8) +BLAB sin 8=C2,(&j2

(24)

(C, —k2 cos 8)

With Eq. (26) the integration of Eq. (28) changes to

'= f—x'"(8)dg .
2 (9

(29)

where C2 is a constant of integration.
Applying a variational calculation to the total free en-

ergy for the two-dimensional problem described in the
preceding section, we find four equations describing the
equilibrium director deformtion. Equations (18) and (19)
are the boundary conditions due to the balance of the
torque for tilt and twist at X3=0, respectively. Equa-
tions (23) and (24) give the director orientation in the
bulk. Essentially, Eqs. (18), (19), (23), and (24) are the
basic equations for solving the threshold and the satura-
tion problems analytically. The right-hand side of the
torque equations (18) and (19) are both functions of 8 and

P, simultaneously. This is entirely diff'erent from the cor-
responding equations obtained in Refs. [S—10] in which
one depends only on 8 and the other only on ((1. This
shows that the challenging problem for the present
analysis is to solve the complicated equations (18) and
(19).

Further calculation of Eqs. (18), (19), (23), and (24)
may give us more useful forms to consider the threshold
problems. Substitution of Eq. (23) into Eq. (19) leads to

C, = A (cosgo cosg cosP

On the other hand, Eqs. (23) and (28) lead to

~1/2( g)
d(t = (C, —k2 cos 8)dg . (30)

X3=—I 1

Integration of Eq. (30) then leads to

' x'"(8)
2 0

—
P = f (Ci —k2 cos 8)dg . (31)

Substitution of Eq. (28) into Eq. (18) gives

f(8 )N '/ (8 )=A(singosing +cosgocosg cos((1 )

X (cosgo sing cosP —singo cosg ) .

If P, is the angle of twist from P(X3 =0) to P(X3 = I), the
symmetry with respect to X3 =I /2 gives us the condition

+singo sing ) cosgo cosg sing (2S) (32)

dO
x3 = I/2

(26)

where 8 =8(X3=0) and P =P(X3=0). Let us consider
the extreme condition for (9 at the midplane of the cell,

Now for given values of p„go, and B, it is clear that the
values of P, 8, and 8~ can be determined completely
from the basic equations (2S), (29), (31), and (32). Once
they are known, by using Eqs. (28) and (30), we can ob-
tain the director deformation in the bulk, 8(X3 ) and
$(X3).
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IV. FRKEDERICKSZ TRANSITION

To derive the threshold magnetic field BF of the
Freedericksz transition, we suppose that 8o=0 and
8 =8~=0 for B &Bz and 8M~0 when B~BF. With
these boundary conditions the limiting integrals in Eqs.
(29) and (31) can be solved analytically to give the rela-
tionship between the threshold field and the anchoring
energy. We introduce a new variable a under the condi-
tion of 8 ~ 8M such that

sin8=sin8M sina (sin8 =sin8M sina );

X[h(8M)+/sin 8M]

+k2[h (8M)(sin 8M+sin 8)

+fs1n 8M]j

11'= [2k22 —k33 ( 33 22)(sin 8M+sin 8)],
k33 —k„

71=
k11

Eq. (29) then becomes
1/2

/2 k1, (1+'tl sin 8M sin a)
2 a QyB 2++

de
1 —sin 8M sin a

where

(33)

Taking the limit 8M 0 at B =B„, we have 8~0,
h (8)~k22 $~$0=2k22 k33 and Eq. (25) reduces to

C, = A sing cosP (34)

Then the integration of Eq. (33) can be performed analyt-
ically to give

k 1/2
11

2 —2 2
dc'

hyBF+k22 [1)tp(C1 k2) +2k—2k22(C1 —k2)]

A0
k 1/2

11

4XBF+k 22 [$0( C1 k 2 ) +2k 2 k 22 ( C1 k 2 ) ]
(35)

With a similar process, Eq. (31) can be solved analytically and gives

2
——a C) —k2

k22

k 1/2
11

~XBF+k22 [40(C1 k2) + k2k22( 1 k2)]
(36)

The ratio of Eq. (36)/Eq. (35) leads to the relation

C1 —k2= (t)It
—

2t)It ) .
k22 0

2 I t

Equations (34) and (37) then lead to the important relationship between A and P, namely,

Pt —2ttt — = sing cosPo 2+i Al . o o

po k22

(37)

Equation (38) may give us the simplest way to evaluate the anchoring strength. In other words, the anchoring energy
can be calculated from the measurment of tI) as a zero-field technique.

Substitution of Eq. (37) into Eq. (35) leads to

~xBF'+ 40(At 24')'/I'+ 2k 2(—dt 20')/I—
cota =tan (39)

2 k)(

Equation (32) at B =BF changes to

40(kt —20')'
A cos p =Qk„hyBF+

l2

4mk22(t)Itt —2P )
cotcxo .

Ipo
(40)

Elimination of cota from Eqs. (39) and (40) gives
' 1/2

A cos P =Qk»R tan
11

where

(41)

0 2

B2+ 22 33 0t 4m.k22(gt —2P )

lpo
(42)



zHONG-CANAND OU- YANGHURST,SUGyMURA~686

is given byhold m~g~~t'
1/2

~ith Eq. (42)~ th

2yo)+4irlkgg/Po]+ (y —2y') [(k33B
~X

52

(43)

transcende0 are the solutions 0(43) g and
(38) and (41).

ousstudies
tal equations

our results with prev s
43) for the t ress. (38), (41), and (e consider Eqs.

It is convenienproperties. i
less parameter

mk22

I
(44)

a netic ea
'

fi ld u'=B/B„the reduced magand also to use t e
where

B =—Qk„/byC (45)

ed by Seeker et al. 11 un-

1 anchoring o y

m tiono s
nl . I 1s 1s

I [12] ithe resu plt re orte
n indepent t acho ng

taking ob th anchoring streng
a twisted nematic ce wi
Eq (46) reduces to

1/22k '+(k, —2k„y,11~

~x

isted nematice threshold magnetic e is

In this limiting case o
(38)] and —,

' I R
reduces to

1/2
k )P +4vrlk~~g, /pok +(k33 21 1 7T

B~l =
~x

—0) in othei w rdst opic surfacce (~- ~
. '

tation,director orientthere is no a
(38) (41), and (43)btain from Eqs.

2'ayaF'=k„

2.5— I
I

k33/kl1=1. 5

k22/klan

——0.6
3'/2 (j./Po=0. 7)

1.5—

r h t the Freedericrickszhe reasonable rresult t ap o
nsition does not exist or a

t opic surface.pling wit
discuss our p

previous s results y
esults an2 in which we show

l /po =0.7 ) wit

ist hire ringen
t the ratio I /2 shows t a

result, however,
port

f the pr t ist
layer t

'
ickness. n

e effect o ebe less than 0.
=0.7 is used in ouE . (38)]. So l/p

ifi

for a HN cell is same as t a r

t as
'

b Leslie [5] as1 that derived yut as

o atic (HN) slab with wea ahomogo eneous nem
l/pa=0 and

0.5

b,ylk „B~& =Qk„byB„ tan 0
0

obtained by Rap'a ini andsuit as that o
nts for these vanou

resent theory an
h 1to consider ot er snecessary

Ireduced threshold fields u

eneous nematic, w
resent theoretica resu

g
t cel s.

ial arameeters used
bire r'

11 Thd in Ref.
=O.6.in the ca cuh lculation are 33 I l

=



DIRECTOR DEFORMATION OF A TWISTED CHIRAI. NEMATIC. . .

V. SATURATIQN FIKI.D

We can also derive analytically the saturation field B&,
above which the director becomes complely homeotropic.
However, in actual calculations we have to overcome
some mathematical difficulties (see the controversy men-
tioned in Refs. [8—10] and Ref. [11]).

To derive the saturation field Bz, we need to suppose
8O=O and 8M ~~/2 when 8~8s. With these boundary
conditions the limiting integrals in Eqs. (29) and (31) can

be solved analytically to give the relationship between the
saturation field and the anchoring energy. Introducing a
new variable, p for 8M in the range m. /2~8M )8, given

by

cosO~ cosH~
cosO= — cosO =

cosp cosp

and with C& =q cos 8M from Eq. (25) at 8O=O, Eq. (29)
becomes

1 f(8)
cosp [hgB + W(8)](1—cos 8M/cos p)

1/2

dP, (47)

where

—(q k, )'——(1+y cos'8~ )[ —2q (q k, )+q—' sin'P]
W(8)=

k33( 1 +y cos 8M )( 1+y cos 8~/cos P)

A cosP sing

cos

k22 —k33

In the limit 8M —+m/2, Eq. (47) becomes

k33dp

cosP+Z +q cos P
where

Z =AgB~k33 —k2 .

The limiting integral of Eq. (48) can be obtained analyti-
cally as

90=0,

f(8 )X ' (8 )=3 cos8 sin8 cos P

in the limit of 0~ ~/2 and 0 m/2, leads to

sinP +Z +q cos P = 3 cos P

Now for given values of P„ the values of Bz, P, and P
(i.e., 8 ) can be determined completely from Eqs.
(49)—(51).Elimination of P in Eqs. (49) and (51) leads to

sinP 1
h

lZ—=—tanh
+Z +g cos P Z 2k33

(49) , ,z o

f'( A /Z)~(1 —g')
(52)

q sinp
&Z'+ q'

(50)

On the other hand, the boundary condition of Eq. (32) at

With a similar process, in the limit of 8M ~m/2, the lim-
iting integral of Eq. (31) can be obtained analytically as

elk~~ = —sin
uok33

where g =( 3 /Z) tanh(lZ/2k33 ). Equation (52) is an im-

portant equation which gives the relationship between Bz
and y'.

%'e now show the derivation of the relationship be-
tween Bz and A. Eliminating p and p in Eqs.
(49)—(51), we obtain

sin( T) 1 — tanh
A IZ
Z 2k33

1/2
A lZ—cos( T) coth
Z 33

1/2

X 1+tanh
lZ

2k33

A lZ
tanh

2k33
(53)

where T =P, /2 —m.lkzz/(pok» ). Because the second fac-
tor of Eq. (53) leads to an unreasonable result of
tan P = —1, only one reasonable solution is derived
analytically with the first term of Eq. (53) to give the im-
portant relationship between Bz and A as

Z lZ 1+ cos (T)
2k33 sinh [1Z/(2k33)]

To discuss the saturation properties, as defined in Ref.
[11],we introduce a parameter
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y — I I2 k),
k33

2lk22

s ok33

2 1/2

(55)

where the reduced saturation field u " is defined as
u"=Bs/8, . With Eqs. (44) and (55), we find that Eq.
(54) reduces to

tanh(m Y/2) cos (T)
sinh (m Y/2)

Next we show the relationship between Po and Y. The
substitution of Eq. (54) into Eq. (52) gives

tan
2[sinh (sr Y/2)+cos T]

(57)

tan( m Y'/2), cosz T
sin (m. Y'/2)

(58)

~
sin2T~

(59)
2[cos T—sin (m Y'/2)]

where Y'—= Y/i'=+[2 kzzl/( k33 pp)] u k»/k33.
The relationship between A, and u" given by Eqs.

(55)—(57) has been calculated numerically using the same
values of the physical parameters used in Fig. 2. The re-
sult is shown in Fig. 3. We notice that, in the limit
I'—& ao, Eq. (56) leads to nearly the same result as that re-
ported in Refs. [9] and [11]. However, in the limit Y~O,
we have

u "~2+@22/kit k33 (60)
I@0

Equation (60) shows that, for a HN cell and TN cells,
u "~0 because ~po~ ~ Do, and for a SBE cell, u" follows
Eq. (60) for the value of l/~po~ given. This diff'ers from
the result that the saturation voltage vanished as some
value of Ao as reported in Refs. [9] and [11].The present
theory is therefore the only one which leads to the natu-
ral conclusion that decreasing the anchoring strength
reduces the saturation field and that the free anchoring
limit (i.e., A =0) gives a zero saturation field for HN and
TN cells and a constant value for a SBE cell. The
significance of the ratio af kzz/k33 in a TCN cell is ap-
parent fram Eqs. (56) and (60). It is clear from Eq. (56)
that the saturation field for a HN cell is always larger
than that for a TN cell. It can be deduced from Eqs. (43)
and (56) that for typical values of l/po and the elastic
constant ratios the u'(A, ) and u "(1,) curves always inter-
sect, as shown in Figs. 2 and 3. For a weak anchoring
condition with A, larger than the value of X at the point of

For TCN LC of very short pitch, where
[2lkzz/(k33pp)] u k&t/k33 )0, Eqs. (56) and (57) can
be rewritten as

- (e,
0 )

0

FIG. 3. The A, dependence of the reduced saturation fields
(u ") for homogeneous nematic, twisted nematic, and supertwist
birefringent e6'ects cells. This shows the present theoretical re-
sults and those reported in Ref. [11].The material parameters
used in the calculation are k33/k)1=1. 5 and k22/kl, =0.6.

intersection, a LC cell has a bistable property discussed
in Refs. [9) and [11]. More detailed consideration of this
property may help us in the design of a SBE cell with a
weak anchoring.

Finally, we discuss the saturation property for strong
anchoring. The saturation threshold field for strong an-
choring has been predicted theoretically [8] and is ob-
served experimentally [15]. In the limit of A ~ ao, Eqs.
(54) and (55) lead to Z —+ ao and then Y~ ao. As a result,
Eq. (57) gives the condition of P ~0 for strong anchor-
ing. On the other hand, strong anchoring leads to
P ~sr!2 with Eq. (51).Then the result of 8 —+0 is found.
Both results of P ~0 and 8 ~0 are reasonable condi-
tions for strong anchoring.

VI. CONCLUSION

In keeping with the model of Rapini and Papoular, we
have made a rigorous analysis of weak boundary cou-
pling effects for nematic liquid crystals. Instead of using
two different anchoring strengths, polar and azimuthal,
we only need a single anchoring strength A in the deriva-
tion of the threshold field and the saturation field. Calcu-
lations of the director configuration for NLC cells with
difFerent surface anchoring conditions and external fields
become much easier. A variational calculation method
for the two-dimensional problem introduced in this paper
may allow us to minimize the total free energy, which is
the sum of the bulk energy and the surface energy for a
two-dimensional deformation. This may be significant in
the development of LC display devices.
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