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Kinetic theory of ion acoustic waves in a plasma with collisional electrons
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An analytical theory of ion acoustic waves in Maxwellian plasmas and in plasmas with an ex-
ternally applied temperature gradient has been developed. The emphasis is upon the effects of
electron-electron and electron-ion collisions on ion acoustic wave damping and on the effective elec-
tron heat conductivity associated with the waves. The asymptotic limits of weakly and strongly
collisional electrons are studied analytically and then a numerical solution is compared to Fokker-
Planck simulations and 6tted by simple algebraic expressions. The limit of large Z has also been
investigated and the condition of validity for the Lorentzian plasma approximation has been found.
It is also shown that the heat Qux driven ion acoustic instability exists over a wide range of param-
eters with a smooth transition from the collisionless to the collisional limit. Accounting for ion-ion
collisions leads to the separation of the instability region in two domains. The long-wavelength part
dominates in plasmas with a relatively high ion temperature.

PACS number(s): 52.35.Fp, 52.25.Fi

I. INTRODUCTION

In laser-plasma interaction physics it is common to en-
counter situations where the effects of particle collisions
can have an important impact on wave and transport
processes. By the use of short-wavelength lasers and
correspondingly higher plasma densities the character-
istic scale of parametrically excited plasma waves can
become comparable with the ion and electron mean free
paths where the standard plasma descriptions of weakly
or strongly collisional cases are no longer valid. To deal
with these conditions several practical quasihydrodynam-
ical models have recently been proposed. These are based
on the idea of delocalization of the transport coeFicients
in plasmas over the scale of the electron mean free path
[1—5]. The performance of these models is strongly reliant
upon exact solutions of the kinetic Fokker-Planck equa-
tions, which are diFicult to obtain analytically in this
intermediate region and therefore the implementation of
complicated numerical codes is involved. The develop-
ment of a correct analytical description of this region
is an important challenge for theoretical plasma physics
because of its relevance to basic problems from kinetic
theory and many applications.

Laser absorption in plasmas is accompanied by strong
heat fluxes that can be the source of secondary plasma
instabilities. One of them, the return current instability,
has been discovered by Forslund [6] and is involved in
many processes associated with laser-plasma interaction
like laser energy absorption, heat transport, and stimu-
lated scattering. This instability is induced by the return
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current of cold electrons which move in order to compen-
sate for the charge separation produced by hot, heat flux
carrying electrons. Although originally discovered in the
limit of collisionless electrons, it has recently been found
in the collisional case as well [7]. Using a systematic
kinetic approach we confirm here the existence of the hy-
drodynamical heat flux instability and show that from
the kinetic point of view both these instabilities have a
common origin and merge smoothly in the intermediate
region of wavelengths. We will also study the effect of
ion-ion collisions on the instability.

We have obtained ion acoustic wave dispersion char-
acteristics in a wide parameter range. The electron part
contains contributions &om both electron-electron and
electron-ion collisions. Electron-ion collisions are de-
scribed using the procedure of summation of angular har-
monics of the electron distribution function in the same
way as in Refs. [2,8]. This provides a smooth transi-
tion into the collisionless regime. In the limit of short
wavelengths electron-electron collisions are described by
a technique similar to the asymptotic expansion that has
recently been proposed by Maximov and Silin [9—11].
In the other limit of long-wavelengths the ion acoustic
wave dispersion is found by using perturbation theory
about the hydrodynamic solution. The ion contribution
is described by the generalized Grad moment expansion,
which gives the correct response for an arbitrary ratio of
the ion acoustic frequency to the ion-ion collision rate [7].
It is shown that heat flux driven ion acoustic instability
can be excited in a wide spectral range and the threshold
of the collisional instability is even lower than the known
collisionless threshold.

Analytical expressions for the electron contribution to
ion acoustic wave damping in Maxwellian plasmas have
been derived. A short account of these results has al-
ready been published in Ref. [12] where the asymptotic
expressions that are valid in the limit of short wave-
lengths have been found. Similar expressions for the ion
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acoustic damping have also been reported in Ref. [13].
Intermediate asymptotics exists in between the purely
collisional and collisionless limits and originate from the
electron-electron contr"ibution to the electron distribution
function in the region of small electron velocities. The
contribution from electron-electron collisions to the ion
acoustic wave damping resolves the long contradictory
discussion on the subject starting from the paper of Kul-
srud and Shen [14] and continuing until now [8,15,16].
Our results clearly show that the Lorentz plasma approx-
imation [8,15] (omitting the electron-electron collisions in
the limit of Z ~ oo) fails to work for any practical ioniza-
tion ion state. In high-Z plasmas even small amounts of
electron-electron collisions have a significant efFect on the
ion acoustic damping and especially on the electron heat
conductivity. This result has been obtained recently by
Epperlein [16) by numerical Fokker-Planck simulations.
We now provide an analytical explanation of these find-
ings and also explain the problem dependency of the elec-
tron heat conductivity coeKcient [17]. We emphasize the
importance of correctly accounting for the electron den-
sity and temperature perturbations.

Our paper is organized in the following way. In Sec. II
we derive the linearized kinetic description of the elec-
tron response for ion acoustic waves in plasmas with
an externally applied temperature gradient. Section III
deals with the solution to the equation for the symmetric
part of the electron distribution function which covers the
wide range of collisionality from the collisionless into the
electron-electron collision dominated region. In Sec. IV
we analyze the expressions for the ion acoustic damping
and electron heat conductivity in Maxwellian plasmas
and make a comparison with Fokker-Planck numerical
calculations. By virtue of two asymptotic analytical so-
lutions we construct simple expressions that describe ion
acoustic damping and electron heat conductivity in the
entire range of wave numbers. In Sec. V we derive expres-
sions for the growth rate of the return current instability
and discuss the efI'ects of the electron and ion collisions
on its performance. It is shown that the ion contribution
to the ion acoustic wave damping separates the short-
and long-wavelength parts of the return current instabil-
ity. It increases the threshold of short-wave excitation,
but has almost no efFect on the long-wavelength insta-
bility. Section VI summarizes our results and discusses
their possible applications.

II. KINETIC DESCRIPTION OF THE
ELECTRON RESPONSE TO ION

ACOUSTIC VFAVES

A. The initial state of the plasma with an externally
supported heat flux

In our studies of ion acoustic wave dispersion and
damping we consider as a reference state a plasma with

a temperature gradient supported by some unspecified
external source. The spatial scale of the temperature
inhomogeneity along the z axis, L T, is assumed to be
sufIiciently large so that the classical collisional descrip-
tion can be applied to describe this reference state. The
ions will be treated as a cold liquid throughout the paper
with the exception of the last part of Sec. IV and in Sec.
V where the ion contribution to the ion acoustic damp-
ing will be accounted. for in terms of the Grad 21-moment
approximation as derived in our previous paper [7).

With these assumptions in mind our governing equa-
tions constitute a kinetic equation for the electron distri-
bution function f, (v, z, t), which will be close to a local
Maxwellian I'o(v, z) = (no/vT, )(27r) ~ exp( —v /2vT, ,)
in the ion reference system, with a spatially inhomoge-
neous density no(z) and temperature T,o(z) = m, v72, .
The ions are described by the continuity and Euler equa-
tions. We are interested in temperature inhomogeneity
scales much larger than a Debye length, hence we can
substitute the Poisson equation by the charge neutrality
condition n, = Zn, . The electron kinetic equation reads

where —e and m, stand for the electron charge and mass
and P(z, t) is the electric potential. The electron-ion col-
lision term

C„[f (v)] = —v„.(v) (1 —p )
1 0 2gf,

gp (2)

is written neglecting electron-ion energy exchange, where
p = v, /v is the cosine of the angle between the electron
velocity and the z axis, v„.(v) = 4mZnoe A, /m, v is the
velocity-dependent collision rate, and A, is the Coulomb
logarithm.

The expression for the electron-electron collision term
C is more complicated because it is nonlinear with re-
spect to f, and contains integral terms [18]. In highly
ionized plasmas, Z && 1, C, is Z times smaller than
the electron-ion collision term but is still important be-
cause it is responsible for energy redistribution between
the electrons. For this reason we will only account for
electron-electron collisions in the equation for the sym-
metric part of the electron distribution function because
here the electron-ion collision term makes a negligible
contribution. It is known that this kind of approxima-
tion is only valid for very large Z, but following Epperlein
[16] we will later redefine the electron mean free path in
such a way that our expressions will be good for small Z
as well. With all these assumptions the electron-electron
collision term can be written as [16,18]

fg(u)~ du + —
i

v
»f2 &

3 Dv
fg(m)m dm+ v f, (~)~dw [

. (3)
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The ion density n; and ion velocity u, = u;, are gov-
erned by the continuity and Euler equations

1
&~(v) =

3 L~v&, I 2v&, j (7)

On' 0'+ —(n;v, ,) =0,
Bt t9z

Bu; e BP + icy
Ot m,. Oz n;m, .

(4)

Equations (6) and (7) provide the full definition of the
reference state whose stability will be investigated in the
following sections.

@~(v) = v l' e dip d

v„(v) i,T,p dz dz ) '

which comes &om the electron-ion collision term. The
contribution to the isotropic part of distribution function
from the electron-electron collision term can be neglected
here because it is second order in the expansion param-
eter A„/Lz. The ion Euler equation (4) and condition
of the absence of electric current f dvv @~Ep ——0 pro-
vides us with relations between spatial gradients of the
hydrodynamical quantities:

npT p ——const,
dip 3 dT, p

dz 2 dz (6)

If now we specify the definition of temperature scale
length as 1/Iz = din T,p/dz then we have the follow-
ing expression for the anisotropic part of the electron
distribution function:

with the &iction force R,, = m, f dvv, v„(v)f, (v) Em. -
phasizing the effects of electron collisionality we will as-
sume that ions are cold and collisionless. In Secs. IV and
V we will account for ion dissipation of the ion acoustic
wave by using the results of the generalized Grad moment
expansion derived in our previous paper [7].

As a reference state we consider a stationary plasma
(B/Bt = 0) without hydrodynamical motion (u; = 0)
and with a weakly inhomogeneous temperature Iz
100%; such that nonlocal transport effects are negligible.
Here A„. = 3/vr/2vz, /v„. (vz, ) is the electron mean free
path. The electron distribution function consists of a
Maxwellian part Fp plus a small anisotropic correction
that is proportional to A„/Lz f, (v). = Fp(1 + pg~).
Substituting into Eq. (1) gives us an expression for @&,

B. Linearized electron kinetic equation

We consider the propagation of a small-amplitude
ion acoustic wave with frequency ~ and wave number
k )) 1/Lz in the above-described plasma. As is al-
ready known from previous papers [6,7], the most un-
stable waves propagate in the direction of the tempera-
ture gradient. Because of this we restrict ourselves to the
one-dimensional case and assume that the disturbances
of the electric potential bg, electron distribution func-
tion bf„ ion density bn;, and velocity u, have an expo-
nential spatiotemporal dependence Cx exp( —iwt + ikz).
The disturbance of the electron distribution function
is expanded in a series of Legendre polynomials P&(p)
which are eigenfunctions of the electron-ion collision op-
erator, bf, (v, p) = Pi pbfi(v)Pj(p). We are interested
in low-&equency phenomena ~ kc, &( kvz-, where
c, = (ZT p/m, ) ~ and so the time derivative term in
Eq. (1) is small and we keep it only to the lowest order
in the equation for the symmetric part of the distribution
function bfp Formally. the stationary approximation for
angular harmonics with l & 1 assumes that w (( v„.
but in fact it is also valid in the opposite limit as far as
the wave phase velocity is small, u/k (( vz, . We also
neglect the stationary potential Pp (6) in the equations
for bfi, which has a much smaller effect than that of the
anisotropic part (7) of the reference distribution function
itself. Finally, we have to recall that the collisional op-
erators are defined in the ion reference frame. Therefore
the ion velocity u; will show up explicitly in the equa-
tions for bfp and bf2 The ful'l s.et of equations for the
angular harmonics can be written as follows:

(l =0)

(l = 2),

i e f B 2) i BE()
i(a)b fp + —kvbf—i + — kbP

~

—+ —
~
gp'Fp ——kvu' = C [bfp],3 3m, (Bv v) 3 Bv

2 6 OFp
ikvbfp ~ ikvbf2+i kb—P = v;bfi (l = 1—),5 m Bv
2 3 . 2 e ( B 11 2. BFp»vb fi + zkvb f—s + i —kb4

I

———
I

@w+p———»v&' = »esbf2—
3 7 377k~ (Bv v j 3 Bv

l l+1 . 1
2l —1 2l + 3

ikvbfi i + ikvbfi+i ——— l (l + 1)v„bfi —(l ) 2),.
2

(9)

(10)

where C„[bfp] = C„[Iip, bfp] + C„[bfp, Ep] is the lin-
earized isotropic part of electron-electron collisional op-
erator.

The common strategy for solving of this infinite set

of coupled equations consists of the assumption that the
higher-order angular harmonics are small and a reason-
able approximation will be achieved if only two of them
are kept (cf., for example, Refs. [9,11]). This is indeed
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v) = —l (l+ 1)v„.+ ikv-=1 l + 1 bf~+y

2 2l+3 b (
(12)

then the formal solution of Eq. (11) reads

l kv
b f( ———i bf)—

2l —1 vi
(13)

the case for the collisional region but this approximation
fails for collisionless electrons. In the case of collisionless
electrons the main contribution to the Landau damp-
ing comes from electrons propagating almost across the
wave vector and this corresponds to high-l harmonics.
The procedure for the summation of all angular harmon-
ics has been described in Refs. [2,8,19]. The main idea
consists of solving Eq. (11). If we put the second term
on the left-hand side of this equation into its right-hand
side and introduce the modified collision frequency,

If we substitute this solution (13) back into Eq. (12),
then a recurrent formula for v~ appears,

k2v2
vt, = —l (l —1)v„+

2 4l —1 vi
(14)

which completes the formal solution of Eq. (11). In
fact, it is enough to calculate vq ——v„.Hq(kv/v„), be-
cause all necessary functions can be expressed through
it explicitly. The function Hj can be written as a con-
tinued fraction, but in Ref. [8] the simple approximation
Hq(x) = [1+ (vrx/6) ] ~ was proposed, which has the
proper asymptotics and deviates &om exact solution by
less than 10%%up when x 1.

Substitution of Eq. (13) for l = 3 into Eq. (10) pro-
vides us with an expression for the second harmonic b f2
Substituting this into Eq. (9) provides the first harmonic
equation

kv r' . eh/ 5 vq —v„u, v vg —v„ebP 0 Q~FO

Vl g Tep ) Vl VT e Vl me Ov V

which in turn allows us to obtain an equation for the symmetric part of the electron distribution function

fk'v' . 5 I' ebP ) . ebP v', . e v2 0 Q~Fo'i—i~
! ! ufo — Fo !

= i~ Fo —
2 iku;Hi 'Fo —i k~4

I
@@F-O+ —

I
+ & [ufo]. (16)q3vz ) q Tp ) Tp 3v~ mv 3Hy Ov v )

Prom the last two equations it is evident that the sym-
metric part of the distribution function can be written
as

4 oo

JN—
np

dvv QpFo,

(20)
eb [1+~.(.)]F.
Te0

(17) 4m v4
JR =

2
dV 41FO)

3nOVTe

and Eq. (16) can be written for @p, because C„[bfp] is a
linear operator and the Maxwellian distribution function
is a collisional invariant.

This equation is not closed because it contains the ion
velocity that depends on the electric potential and on
moments of the electron distribution function according
to Eqs. (4). Making use of definitions (15) and (17) we
can evaluate the friction force in terms of gp and write
relations between the ion quantities and electric potential
as follows:

1+ JR
k2t"2 1 + JN

(21)

where J~, according to Eq. (17), is related
to the electron density perturbation bn, /n,
(4vr/np) J dvv2b fp ——(1+ J~)ebg/T p. Equations (18)
together with the quasineutrality condition, Zbn, = bn,
give us the ion acoustic dispersion equation in terms of
moments of the electron distribution function

bn;' =ku, ,
ni

2ebp
(uu; = kc, (1+ JR),

Tep
(18) Substitution of Eqs. (18) and (21) into (16) gives us a

closed equation for @p,
where JR is the integral distribution function related to
the friction. It is convenient to introduce the new func-
tion

g, = @o —i "
(Hg —1)(1+Jgg)

kvFO dv v

and then deGne the following integrals

!

t k2V2

3vy

v' 1+ J~b—i~
! QOFp ——i(u! 1—

I Fo
3VT Hy )
( v db Q~FO—zkvT, 1+

3Hy dv) v

+C,.[QOFO]. (22)

This equation accounts accurately for the effects of
electron-electron and electron-ion collisions together with
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collisionless electron Landau damping. It coincides with
the corresponding equation for the symmetric part of
the electron distribution function in Ref. [8] when the
electron-electron collision term is discarded. It also coin-
cides with the corresponding equation in Ref. [11],if one
neglects the contribution from higher angular harmonics
by putting H~ ——1. We shall see later that both efFects
are important. One of them provides the proper expres-
sion for the collisional damping and the other provides
the proper transition into the collisionless limit. In the
intermediate region their contributions are comparable.

Before discussing the solution to Eq. (22) we will com-
pare its terms. First of all we recall that according to
Eq. (21) w kc, . Now considering the contribution
from thermal electrons v vT and comparing the two
terms in the brackets on the left-hand side of Eq. (22)
we see that the erst of them dominates in the region

with the left-hand side if

k'A.', & 1/Z. (24)

III. ISOTROPIC PART OF THE ELECTRON
DISTRIBUTION FUNCTION

Here we again consider the contribution from thermal
electrons, v VT, . For all realistic ionizations the last
inequality is much more restrictive than (23). However,
the electron-electron collision term should be kept even
in the short-wavelength region (24) because it ensures
the convergence of the distribution function in the do-
main of small velocities, v « vT, and for this reason can
make a significant contribution to the electron density
and temperature perturbations that will diverge other-
wise [11,12].

kA„. & c,/vT„ (23)

where we have assumed that vi = vT, /A„. Since here we
restrict ourselves to the analysis of the short-wavelength
region (23), then only the first term in parentheses on
the left-hand side of Eq. (22) needs to be kept. The first
two terms on the right-hand side of this equation are
comparable, if A„/Lz c, /. vT, . As we will see later this
ordering corresponds to the threshold of the ion acoustic
instability. Finally, the electron-electron collision term
is of the order of v„/Z and will be small in comparison

A. Laguerre expansion

In the physically interesting region where the condition
kA„. & c,/vz, (23) is satisfied, comparison of the leading
term on the left-hand side of Eq. (22) with the first term
on the right-hand side shows that ~gp~ w/kvT. (( 1.
Therefore, Jiv (20) is also much less than one and we can
omit it in the right-hand side of Eq. (22). After that Eq.
(22) can be written as

t' k'v' . ) . v'
Hi —iw

~
gp ——ice 1 —

2 Hi(3v„. v ) 3vT
—ikvT,

~

1 —
2 + —

~
+ P~ C„[gpE()].

( v' v dig~
3Hi VT 3Hi dv ) v

(25)

Here we also give the explicit form of the collision operator

2 d (vT2. dip)C..(o('ohio( = o.;(v)v —Eo(o)G —
I ~ ~ ),dv ( v dv ) (26)

where the functional G[h(v)] reads

(3 u)' ) zp' 3
G[h] = dutch(iv) p (

—,
)

— exp J—
0

'
2 T.) 3~2v~. ( 2vT. ) 3~2vT.

OO iv' l
divh(zu) exp i—

& 2vT. )
(27)

and p(3/2, x) = J' dz~zexp( x) is the —generalized incomplete p function [20].
Equation (25) is solved by first changing to energy units, z = v /2vT„and then expanding gp(x) in generalized

Laguerre polynomials [20]

vPp(x) =i ) c„L~'~ ~(x).
VTe

(28)

This expression once substituted into Eq. (25) gives

D(*)):.L.""'(*)= ~(*) + G.. ): -L."'(*)~.(*),
VTe 0n n



BYCHENKOV, MYATT, ROZMUS, AND TIKHONCHUK 52

where

( )
8 kA„. s/2 c.

9~sr Hg vz
(30)

is responsible for the particle diffusion, 0»
Hq[(4/3) g2/7rkA„. x ], and the source term S consists
of the two parts S(x) = Sz (x) + S~(x)

ture gradient.
Determination of the unknown expansion coefI»cients

c constitutes the solution to the problem. An approx-
imate solution can then be obtained by truncating the
infinite sum into a Gnite one, n N. Taking the inner

product of Eq. (29) with the I (x) gives rise to the{»/2)

following linear system of equations

2 x
Sz. ——1 ———

3H»'
(31)

) &mncn = ~m. (32)

4 v~, A„.

3~sr c, Lz
2 /, 13

x 4 —h+ ~x' — x+6~
3Hi g 2 )

Elements A = D + C contain the contribution
from the diffusion term in the left-hand side of Eq. (29)

dx~~e L( /2—)(x)L( / )(x)D(x) (33)

The second part, S~(x), is proportional to the tempera- and from the electron-electron collision term

3
ZkA„.

dxe L, (x)L„~ (x)p(3/2, x)—
ZkA„. m —1

Cxe
—»L(s/2)

( )
L(5/2)

( )
s/2 + ( )

The right-hand side of Eq. (32), dynamic expressions occurs. The classical hydrodynamic
expressions are derived from Eq. (22) in Sec. III B.

describes the contribution from the source term. Some
of the details of the derivation of the matrix elements
of the collision operator C are given in Appendix A.
The matrix elements were calculated and A inverted
by using the Mathematica program [21]. Examples of
the numerical solution in the limits of small and large
wavelengths are shown in Figs. 1, 2, and 3 for Z/A = 2.
They compare very well with the asymptotic solutions
described in Secs. IIIB and IIIC in the limits of short
and long wavelengths.

For values of the collisionality parameter kA,. & 1 an
accurate solution can be obtained quickly using % & 10
polynomials. When kA„. & 1, however, 30—50 polyno-
mials are required. For larger values of kA„- this be-
comes much worse and some alternative method must be
sought. This is the motivation for the special analysis
of the weakly collisional region in Sec. III C. We would
also would like to obtain approximate analytical expres-
sions for the ion acoustic wave damping and the electron
heat conductivity in such a way that they will smoothly
describe the transition between collisional and collision-
less limits. Because the Laguerre expansion method de-
scribed here is restricted by the condition kA„) c,/vz,
and does not allow us to reach the strongly collisional
region we should find an estimate of the characteristic
wave number where the deviation from classical hydro-

B. Strengly collisional limit

The well-developed method of solution to the kinetic
equation in the collisionally dominant region is based on
the Chapman-Enskog method [22] and constitutes of a
polynomial expansion of the function @e in powers of
the electron energy. An expansion in the first two I a-
guerre polynomials recovers the classical hydrodynamic
expressions &om Eq. (22). The properties of particle and
energy conservation for collisions, I C„v dv = 0 and

I C„v dv = 0 described also by Eq. (A5) supplies us
with two constraints on the electron distribution function
which allow us to determine the unknown coefFicients in
the expansion. The condition of particle conservation
reads

chh H~ '@pe = 0.

The energy conservation principle can be written in terms
of the integral

Chx H~ @pe

which will be needed later in the calculation of electron



52 KINETIC THEORY OF ION ACOUSTIC WAVES IN A PLASMA. . . 6765

heat conductivity. Multiplying Eq. (25) by v and per-
forming the integration over all velocities one finds

5 3
I
1+ —Jiv — JT—I,kvTA„( 2 2 )'

4' 4JT' =
2 dvs @OEp.

3ApVT p

Here we have introduced the integral JT, which accounts
for the temperature perturbation hT, ='e(JT —Jiv)b'P,
and bT is defined as hT, = (4zrm, /3no) j dvv (v
3v~~, )h fo

The hydrodynamic solution of Eq. (22) corresponding
to the classical heat transport [22,23] can be constructed
from Eqs. (36) and (38), if we assume a two-term ap-

proximation, @o = (iu/kvT, ) [coLo + cil i (z)], of(1) (1/2) (1/2)

the electron distribution and neglect the eKect of high an-

gular harmonics by setting Hi ——1. Substitution of @o
(1)

into the constraints (36) and (38) results in the following
expressions:

5 . kvT 32 kvT
Cp = —C1) Cj =Z where r = — kA„.

2 ' 4~(1+ zr)
'

3% (d

Note that @o~
l does not have the proper behavior for large(1)

velocities, v &) vT and this is why the hydrodynamical
approximation is valid only for very long-wavelengths.
All necessary integrals can be written in terms of the
parameter r,

inary part of the function D(x) and the temperature
gradient. Note that due to the conservation relations
(A5) electron-electron collisions do not contribute to Co;
and t ii in the limit kA, (( 1 and therefore at least the
three-term expansion is needed. In that case electron-
electron collisions contribute only to the matrix element
A22 --C22 ——(3/4)gzr/2/ZkA„ in Eq. (32). Therefore,
the additional contribution to zt o is proportional to ZkA„.
and in terms of coeKcients c„we find

C2

15zr 1 ( 22401+
256 kA.; q gzr~2
3zr 1 ( 32001+
128 kA„. ( gzr~2

'~ZkA .
3 ei.

(42)

(1+ 207Zk'A.',.),256 kA.,
(43)

The second terms in the parentheses in the expressions
for cp and c1 are the first corrections to the hydrody-
namical solution Eq. (39). Large numerical coefficients
appear in front of the expansion parameter. For example,
the numerical coeKcient in &ont of Zk A; in c1 is ap-
proximately 80. Hence deviation from hydrodynamics al-
ready occurs for very small wave numbers, kAei (( Z
However, the three polynomial expansion is not suFicient
for the correct calculations of the coefFicients ci even in
the long-wavelength limit. About 7 terms in the Laguerre
expansion (28) should be kept in order to obtain accurate
results for kAei & Z / . Then we find

5 1JN- 81+ir'
3 1

JR =
8 1+ir'

(40)
128 kA„ (1 + 264Zk A„), ci ——4.42ZkA„.

Jg ——16

On substitution of these expressions into (18) we have
the well-known dispersion relation for hydrodynamic ion
acoustic waves

(d 2=1+
k2c2 3 + 8ir (41)

One can also see that the solution (39) corresponds
to classical electron heat conductivity
(128/3zr) novT, A„.

In order to describe the transition &om the hydrody-
namical limit into shorter wavelengths we have to account
for more terms in the polynomial expansion of $0. This
transition occurs at kA, & Z / when the electron-
electron collision term in Eq. (22) becomes comparable
with the left-hand side. For any realistic ionization this
transition occurs when kA„. is larger than c,/try, and
therefore the parameter r )) 1 and ~@0~ && 1. These
are the conditions of validity for Eq. (25), and so we
can use the system (32) in order to find out where the
deviation &om hydrodynamics occurs. We assume that
the parameter Zk A; && 1, neglecting the small imag-

The coefBcient 264 in this expression for ci coincides with
the analytical solution to the electron distribution func-
tion obtained in the limit kA„« Z ~ in Refs. [24] and
[12] without the Laguerre polynomial expansion.

The electron velocity dependence of the distribution
function @o is shown in Fig. 1 for Z = 64 and kA„. = 0.01.
The exact (% = 7) solution to Eq. (32) is compared with
the two and three polynomial approximations. The de-
viation &om the hydrodynamic solution in the region of
large velocities, v & (4 —5)vT„ is obvious. It is responsi-
ble for the above-mentioned problem with the coeFicients
ci. However, more important is the deviation by about
20% in the region of thermal electrons even for the expan-
sion parameter Zk A, 10 . This once more demon-
strates the fact that the hydrodynamic approximation
fails even for very small values of the collisionality pa-
rameter, Z(kA„. )2 and a more accurate solution to Eq.
(25) is needed in the intermediate to collisionless region
as was outlined in the-previous section.

Figure 2 demonstrates the results of the numerical
solution to Eq. (32) displayed in terms of the first
anisotropic part of the electron distribution function h fi
(A6) for different values of the collisionality parame-
ter kA; and Z = 64. For the convenience of com-
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40
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40.

FIG. 1. The electron distribution function,
$0 = i(u/kvT )C'(v/vT, ), in the region of small wave num-
bers which has been found from the analytical solution,
Eq. (42) (dashed curve), two-term hydrodynamical approxi-
mation, Eq. (39) (gray curve), and the result of the numerical
solution (solid curve) to Eq. (32) for Z = 64 and kA„= 0.01
(N = 7). No temperature gradient.

parison to the classical limit we have normalized fq by
the characteristic temperature gradient i kA„bT /T—,o =
czkA„(u/kvT, )ebP/T, o All fun. ctions hfdf displayed in
Fig. 2 possess a zero net current Jo dvv Sf' ——0 ac-
cording to Eq. (36). In the limit of small kA„. = 10
our anisotropic distribution function corresponds exactly
to the classical solution (7) where the positive part of
fast electrons carries the heat flux and the negative part
represents the return current of slow electrons. Tran-
sition into smaller wavelengths affects b f~ dramatically
by increasing the number of slow electrons in b fq and
therefore shifting all distributions towards small veloci-
ties. This is a consequence of the fact that the electron-
electron collision term in Eq. (25) is proportional to v

and therefore has a larger eKect on the slow electrons.
In the limit of short wavelengths our solution agrees well
with the weakly collisional asymptotics that is described
in Sec. IIIC.

C. Weakly collisional limit

The I aguerre polynomial expansion (28) converges
very slowly for kA„)& 1 and hence another approach
for finding the electron distribution function in the short-
wavelength region is required. As we have already dis-
cussed, the collisional term is small under condition (24)
and therefore with the above assumptions an approxi-
mate solution can be found directly Rom Eq. (25). In
the case of Maxwellian plasmas without temperature gra-
dients we have go = vjoT where

2

k vT v (vgjr
(44)

(v/v~. ) Z(kA„)' & 1. (45)

In this region of small velocities the kinetic equation (25)
can be written as follows:

This solution is well behaved for large velocities, but it
diverges as v in the region of small velocities. To re-
solve this divergence we either have to account for the
frequency-dependent term on the left-hand side of Eq.
(22) or for electron-electron collisions. The effect of
the frequency dependence has already been discussed in
Refs. [8,15], but we will see later that it is the electron-
electron collisions that dominate in any practical case.
The electron-electron collision contribution has recently
been treated analytically by Maximov and Silin in Refs.
[9—11] and in our paper [12]. We follow Ref. [12] in the
derivation of the asymptotic solution. According to the
collisional term given by Eqs. (26) and (27) in the region
v && vT2, the last term in the right-hand side of Eq. (27)
is much larger than the other terms and with an accuracy
of about v /v&2, we can write | = (v /3~2vT, )d@o/dv.
If we now substitute the collisionless solution @o oc v

into the reduced collisional term and compare it with the
left-hand side of Eq. (25), we will find that it dominates
when

k2v2 1

-0.02-

-0.04-

-0.06-

-0.08-

v/VTe

~9g~/2~
"

ZI, 2A ex)
(47)

%le have to find the regular solution to this equation
which has the appropriate asymptotic behavior (x v

out of the region (45). We introduce the normalized vari-
ables tv = v/v, and Y = go/Q„where

FIG. 2. The first asymmetric part of electron distribu-
tion function

hfdf

for Z = 64, and kA„= 0.001 (N = 7),
kA„= 0.01 (N = 7), kA„= 0.1 (N = 12), kA„= 1
(N = 25), and kA; = 10 (N = 50). Gray line is the an-
alytical solution of Eqs. (44) and (49) for kA; = 10. The
function b fq is normalized by A, /LT = ikA„bT, /T 0. —

vP, =i ~9
(d (

kvTe

2/'r

r
Z'/'(kA. ,)

'/'

represent the characteristic magnitudes of the velocity
and the distribution function in the electron-electron
collision-dominated region. The normalized equation
I eads
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d Y 2dYu'Y =1+ (48)

In principle its solution can be written in terms of mod-
ified Bessel functions of the 1/7th order [9—11], but in
fact it is more convenient to solve it numerically because
all we need &om (48) are the values of the function and
its derivative at the origin and integrals (20) and (38).
The numerical solution to this equation is shown in Fig.
3 together with the solution to the full equation (25) for
the case of Z = 64 and kA„. = 10. The solution has
the following asymptotics: Y(iv) = Y(0) —iv /6, where
Y(0) = c~ = 0.432, for iv (( 1, and Y(iv) 1/ut for
m)) 1.

For the asymptotic evaluation of the integrals it is suf-
fI.cient to use a simple analytical approximation for this
function,

Y(iv) ~
1 + cytU

(49)

@(v)
50

40

30

20

which is also shown in Fig. 3 for the symmetric part of
the electron distribution function and in Fig. 2 for the
asymmetric one. The accuracy of this approximation is
better than 20%%up and is acceptable, because the correc-
tions to Eq. (48) contribute to the solution of Y(ur) in the
next order of the expansion parameters ei ——(v, /vz, )—1/7
(0.09Zk A„) 2i and eq = (9gz/2 kA„P~ which

in practice are not that small because eq contains a
small &action power. These two parameters equalize for
kA; 0.5Z /' which, as we see later, approximately
corresponds to the wave number where collisional effects
start to provide a signifj. cant contribution in comparison
with electron Landau damping. Therefore, the correc-
tion to the electron distribution function related to Y(iv)
is in fact interesting for smaller wave numbers and in
this region e2 & eq. For kA; = 5 and Z = 10 the
parameter eq ——0.4 and this value, in fact, character-
izes the accuracy of the analytical asymptotic analysis in
the weakly collisional region. As we will see later this
asymptotic solution allows us to obtain the qualitative

scaling laws in the region of small wavelengths kA„. )) 1,
but a more accurate numerical solution to Eq. (25) is
needed for quantitative agreement between this theory
and Fokker-Planck simulations in the weakly collisional
region, kA,. 1.

IV. ELECTRON TRANSPORT COEFFICIENTS

A. Electron heat conductivity

ebP
npT, pvT kA„- Jg

ep

cuebP f 5 3—= —noT. o — 11+ —J~ —-Jp [.kTo ( 2 2 )

Z

bq
3

(50)

Note that in the limit kA„. » c,/vT, (23) the integrals
J~ and J~ are much less than 1 and therefore using Eq.
(18) one can find that bq, = —noT, ou, . Recall that the
electron distribution function has been de6ned in the ion
reference kame and by charge neutrality the hydrody-
namic velocities of electrons and ions are equal. There-
fore, the difFusive electron heat Aux bq, almost cancels the
convective electron energy fIux, npT pu;, resulting in an
approximately zero net energy transport in the collision-
less isothermal ion acoustic wave. However, in dealing
with the electron heat conductivity we have to account
for the dift'usive part of the energy transport only.

The perturbation of electron temperature is related to
the symmetric part of the distribution function bT,
e(JT —Jiv) bP. Defining the electron. heat conductivity r
related to ion acoustic waves as bq, /( —ikbT, ) we arrive
at the expression

K = 1
(51)

3
Jg

~p'UTe ~ei.
JT JN

It is convenient also to express K in terms of the La-
guerre expansion (28). Then using Eqs. (20) and (38) we

see that the heat conductivity normalized by its classical
limit Ko ——(128/3m)novT*, A„. of Braginskii and Spitzer
and Harm [22,23] depends only on the coefficient ci,

The perturbation of the electron distribution function
de6ned above allows us to investigate plasma transport
properties. We discuss here the electron heat conductiv-
ity which has been the subject of many recent studies
[8,13,16,17]. The diff'usive electron heat 8ux associated
with the ion acoustic wave bq = 1 dv(m, /2)v v, b f, is
related to the erst harmonic of the electron distribution
and therefore can be written in terms of the integral Jg
which was defined in Eqs. (37) and (38)

0.2 0.4 0.6 0.8
v/vTe

FIG. 3. The electron distribution function,
vjo = i(u/kvT, )4(v/vT ), in the region of small velocities,
v & vz, which has been found from the numerical solution
to Eq. (48) (dashed line), the analytical approximation (gray
line), which has been represented by Eq. (49), and the re-
sult of the numerical integration (solid line) to Eq. (32) for
Z = 64 and kA, = 10 (N = 50). No temperature gradient.

Kp

37r

128kA„.cg

Prom expressions (51) and (52) one can see that the re-
duction of the electron heat conductivity originates from
the wavelength dependence of the temperature and. den-
sity perturbations of the ion acoustic wave. Indeed, as we
can see from Eq. (50), in the conditions of kA„» c,/vT,
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the ion acoustic wave is almost isothermal and, therefore,
the electron heat Aux does not depend on collisionality.
This is why the numerator in Eq. (51) does not depend
on the electron mean free path, A„-. In contrary, the
magnitude of temperature perturbations depends signif-
icantly on the collisionality. Indeed, in the collisional re-
gion the ion acoustic wave is almost adiabatic and there-
fore the relative temperature disturbance is of the same
order as the density and velocity disturbances, but the
collisionless ion acoustic wave supports almost no tem-
perature perturbations at all. This transition from the
adiabatic to the isothermal limit manifests itself by the
reduction of the electron heat conductivity. This is ap-
parent in the calculation of the denominator in Eq. (51)
in different regimes of particle collisionality.

In the limit of long-wavelengths we may use the analyt-
ical solution to the electron distribution function derived
in Sec. III B. From Eqs. (43) and (52) one can see that
the correction to the Braginskii heat conductivity is pro-
portional to 264Zk A„[12,24]:

1
1 + 264Zk2A2, . (53)

This expression certainly defines the characteristic wave
numbers where the efFect of Aux inhibition occurs, kA„.
0.06Z /, but it cannot be extended too far into the
practically interesting region of smaller wave numbers.

We also can derive the expression for the electron
heat conductivity in the weakly collisional case. Sub-
stitution of goy from (67) without the electron-electron
collision correction into the integrals J~ and J~ shows
a divergence at the lower limit of integration. The
strongest divergence is exhibited by J~, which is the
integral related to the density perturbation. There-
fore the electron-electron correction is particularly im-
portant for this integral. To evaluate the contribution
from v & v„we represent @op as the sum of a low-

velocity part $0& ——g, Y'(v/v, ) and a high-velocity part(L)

——goy —g, Y(v/v„). The part of J~ = J~ + J~
related to the low-velocity component can be easily eval-
uated because this integral converges at v )) v,

dmm Y(m)

Zl (kP. )
—/ (54)

where c„= 1.9. The other part of J~ contains in-
tegrals that are already convergent at small velocities.
They describe the eKects of electron Landau damping and
electron-ion collisions. In the collisional region kA, ( 1
this integral is of the order of (kA„.), which is much
smaller than J~ in the region kA; )) Z ~ (24)
and therefore can be neglected. The contribution of
J~ in the short-wavelength region kA„- ) 1 can be(H)

evaluated from the asymptotic expression for function
Hq(() —vr(/6 for $ &) 1. Finally we have the expression

J~ ——igvr/2(w/kvz, ), which corresponds to electron(H)

Landau damping.

(~) (~)J~ —J~ ——z
keg ~

—+ c„Z'~'(kX.,)-'~'
~

.

(55)

The above described procedure of separating contribu-
tions from slow and thermal electrons overestimates the
eIIFect of electron-electron collisions because the real ex-
pansion parameter v, /v~ is not small enough in practice.
This has already been noticed in Sec. III C. One can ob-
tain a better approximation by numerically calculating
the integrals J~ and J~ with the approximate distribu-
tion function go(v) = cyv @Op/(c@v + vs) [12], which
is an interpolation between Eqs. (44) and (49). This re-
sults in c„1.2 for Z )) 1 and kA; )) 1. For large wave
numbers we have the following analytical expression for
the electron thermal conductivity:

Kp

9/2~ 1

128 kA„. + 3c„Z2~7(kA„)4~7 (56)

In the limit of extremely large wave numbers this expres-
sion gives the exact collisionless limit r oc 1/k, which
corresponds to the result of Ref. [3] and therefore ac-
counts for the e8'ect of the Landau damping. Note that
the difference in the numerical coefficient &om [3] is due
to a diBerent definition for the moments of the electron
distribution function. Deviation from the collisionless
limit happens already at large kA,. 20Z / . Start-
ing from this value of k, the electron heat conductivity
coeKcient exhibits a much weaker dependence on wave
number, e oc (kA„.) 4~ . This is due to the increase of the
relative magnitude of the electron temperature perturba-
tions. At the lower limit of applicability of Eq. (56) the
heat conductivity is still 30 times less than that in the
hydrodynamical limit. Comparison of the analytical ex-
pression (56) with the results of numerical Fokker-Planck
simulations [16] is shown in Fig. 4. Better quantitative
agreement in the short-wavelength region can be achieved
if we take the parameter c„=0.7.

Equations (53) and (56) have been derived with the
assumption of Z )) 1 because the electron-electron col-
lisions were neglected in all equations for the higher an-
gular harmonics of the electron distribution function.
It is possible to extend these equations into intermedi-
ate and small Z by following the prescription of Epper-
lein [16]. He proposed using the modified electron-ion
mean free path A,*, = A„.Q(Z)/Q(oo), where Q(Z)/Q(oo) =
(Z+0.24)/(Z+4. 2) is the ratio of charge-dependent coef-
ffcients in Braginskii's [22] electron thermal conductivity.

The thermal part of disturbance of the distribution
function (44) in the short-wavelength limit kA; ) 1 gives
the contribution JP = i(2/3)(~/kvz, ) ga/2 which is of
the same order as J~ . There is also a logarithmic con-(H)

tribution of the order (kA„.) 1n(vz, /v, ), which comes
from the region of small velocities v v, but is small in
comparison with J~(i) (54). We can neglect the con-
tribution from J~ to the denominator in the collisional
region kA„. ( 1 for the same reasons. Therefore, in
Maxwellian plasmas the denominator of Eq. (51) reads
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TABLE I. Comparison between the results of numerical
solution to Eq. (25) (upper number in each cell) with the
Fokker-Planck simulations in Ref. [16] (lower number) for
the electron heat conductivity and ion acoustic damping in
a Maxwellian plasma.
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FIG. 4. The comparison of the interpolation analytical ex-
pression (57) for the electron heat conductivity coefBcient in
Maxwellian plasma (full lines) with the results of asymptotic
expansions in the short- and long-wavelength limits, Eqs. (56)
and (53) (gray lines). The numerical Fokker-Planck simula-
tions from Ref. [16] and the numerical solutions to Eq. (32)
are shown by dots for Z=l (a), 8 (b), and 64 (c).

9/2' (, 3c„(1+264Zk A,*, )kA.*, +
Ko 128 ( 128c„/3/2m + 264(Zk2A* ) /

Figure 4 demonstrates the comparison between Fokker-
Planck simulations and the analytical and numerical so-
lutions to Eq. (25). The numerical solution to Eq. (25)
coincides with the Fokker-Planck simulations to within
an accuracy of a few percent, so it is hard to see any dif-
ference between the two sets of points in Fig. 4. A more
accurate comparison between the Fokker-Planck simu-

The asymptotic expressions (53) and (56) give insight
into the construction of a numerical approximation for v.

in the entire region of wavelengths. Namely, the coeffi-
cient c„ in the short-wavelength asymptotics, Eq. (56),
has to be substituted for a k-dependent function in such
a way that it will smoothly describe the transition into
the long-wavelength limit (53). Reasonably good agree-
ment with the results of the numerical solution of the
full kinetic equation (25) and with Fokker-Planck simu-
lations [16] for Maxwellian plasmas can be achieved with
the expression

lations and the solution to Eq. (25) is demonstrated
in Table I. The asymptotic analytical expressions (56)
and (53) agree well with the numerics, but demonstrate
a significant deviation in the intermediate region. The
proposed interpolation, Eq. (57), with only one fitting
coe%cient c„= 0.7 gives the correct behavior for the
electron heat conductivity in the entire region of wave-
lengths from the fully collisionless limit kA*,. )) 20Z /

to the purely collisional region kA,*; « 0.1Z / and for
different values of the ion charge ranging from Z = 1 to
Z = 64. Notice the difference in numerical coefIicients in
Eq. (57) from our previous paper [12]. We found that the
present set of coefIicients produces the better agreement
with numerical data. The strongest deviation of about
20%%uo occurs for kA,*; + 0.1 and Z 1, which can still be
considered as tolerable in many applications. This devia-
tion could also be cured if the coefIicient c„ is allowed to
be considered as a function of Z. It was also noticed in
Ref. [16] that the heat conductivity in the intermediate
region of electron collisionality has a negative imaginary
part that increases for higher Z. This effect can also be
described in our theory if we account for the small imag-
inary term in Eq. (22) or Eq. (30). We will return to
this problem in Sec. IV C.

B. Ion acoustic wave damping

We first calculate the damping for the practically inter-
esting wavelengths kA„) c,/vT, (23) where the function
tPo (44) and (67) is much smaller than 1 and is imag-
inary. The dispersion equation (21) can be solved as
Re~ = kc„and the imaginary part of the ion acoustic
frequency p = —Imw is determined by the integrals J~
and J~,

(58)

In terms of the Laguerre expansion coefficients we have
the following expression for damping:
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3~m kLz o Hi ( 2 )
In the limit of short wavelengths for the case of
Maxwellian plasmas without temperature gradients sub-
stitution of goy from (67) without the electron-electron
collisional term into the integrals (58) reveals a diver-
gence at the lower limit of integration. The integral J~
exhibits the strongest divergence and we have already
estimated in Eq. (54) due to the contribution from the
small electron velocity region v & v, . The integral J~ has
only a logarithmic divergence at small velocities, which
results in a term of the order (kA„.) i. Following the
same procedure as described above in Sec. IUA for the
electron heat conductivity, we arrive at the following ex-
pression for ion acoustic damping in Maxwellian plasmas
in the weakly collisional regime:

The first term in parentheses corresponds to classical col-
lisional damping in the limit of kA„. ) c,/v~, (23). The
second accounts for the efFects of electron-electron colli-
sions due to a finite Z. We see from Eq. (61) that the
deviation from hydrodynamical damping occurs for rel-
atively small wave numbers kA„- ~ 0.06Z / . We can
construct an approximate formula for ion acoustic wave
damping which extends into the whole region of collision-
alities if we combine Eqs. (60) and (61) in the following
expression that has only one adjustable parameter:

e,
UTe

c 1 + 264Zk A*~
x 1+ ei

k&*„. 128c~/3y 2~+ 264(Zk~A'P)s/7)

(62)

Here we have again introduced the modified electron
mean free path as has been described in Sec. IVA in

kc,
1+c„Z'~'(kX., )

-'~'
&Te

(60)
0.08-

(1+ 264Zk A, ).
a56 ~. kA. ,

(61)

with c„=1.2. The effect of electron-electron collisions is
similar to the case of electron heat conductivity, but be-
cause the coeKcient in &ont of c„ is three times smaller
it becomes important for smaller ion acoustic wave num-

bers kA~, & c„Z / . The fact that electron-electron col-7/'3

lisions can contribute significantly to ion acoustic damp-
ing in the limit kA„& 1 has been recently recognized by
Epperlein [16]who has found the dependence of p(k) on k

by numerically solving the full Fokker-Planck equation.
The analytical asymptotic expression has also been re-
cently derived in Ref. [13] and independently in Ref. [12].
Expression (60) fits very well with the numerical results
for different Z in the short-wavelength region kA„. )) 1,
but overestimates the electron-electron contribution as is
demonstrated in Fig. 5. This discrepancy is due to the
fact that the asymptotic expansion parameter (v, /v7, )
is not small enough for the practical range of parameters.
Much better quantitative agreement with Fokker-Planck
simulations in the region kA, ) 1 can be obtained by
using the numerical solution to the kinetic equation for
@o (cf. Fig. 5 and Table I). Then the damping is ex-
pressed in terms of the Laguerre expansion coeKcients
by Eq. (59). The numerical solution can be modeled by
using Eq. (60) with the numerical coefficient c~ —0.5.

Now turning to the long-wavelength limit, kA, ( 1
we see that there is no difFerence between the integrals
JR and Jz (20). Therefore, in this region the classical
relation between ion acoustic wave damping and electron
heat conductivity holds, p = noc, /2e. Using this relation
together with Eq. (53) we obtain the following expression
for ion acoustic wave damping in the long-wavelength
limit

0.06-

0.04-

0.02-
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FIG. 5. The comparison of the analytical expression (62)
for the ion acoustic wave damping in Maxwellian plasma (full
lines) with the results of asymptotic expansions in the short-
and long-wavelength limits, Eqs. (60) and (61) (gray lines).
The numerical Fokker-Planck simulations from Ref. [16j and
the numerical solutions to Eq. (25) are shown by dots for
Z=l (a), 8 (b), and 64 (c).
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order to account for the eÃects of finite Z. The fitting
parameter is taken to be c& ——0.5.

Comparison between this formula, numerical solution
to Eq. (25), and Fokker-Planck simulations is shown in
Fig. 5 and Table I. They demonstrate a good agreement
for all parameters. In the figure there are no visible diKer-
ences between the theory and simulations. The strongest
deviation from numerical data is about 20% and it occurs
for kA,*; & 1 and Z & 1, i.e. , in the intermediate regime
of collisionality and for low Z materials. This deviation
could be also Gxed if the coefficient c~ is considered as a
function of Z.

This expression does not depend on Z and corresponds
well to the results of papers [8,16] in the short-wavelength
limit kA, & 1. Note that the electron heat conductivity
is a complex quantity in that case and its phase is signif-
icant in the region of wave numbers where the nonlocal
term in Eq. (65) dominates. The phase of r decreases
in collisionless, kA„. ) (vz, /c, ) ~, and strongly colli-
sional, kA„( c,/v~„ limits. The solution to Eq. (22)
reproduces well the heat conductivity phase shift found
in Ref. [16]. For example, the numerical solution to Eq.
(22) gives arg~ = —35.2' for kA„= 10 and Z —+ oo,
whereas simulations give argv = —31.9 . Similar agree-
ment holds also for other parameters, if kA, & 0.1.

C. The limit of Lorentzian plasma

In spite of the fact that accounting for electron-electron
collisions provides a fairly good description of ion acous-
tic damping and electron heat conductivity for practi-
cally interesting plasma parameters, it is instructive to
consider the case of very high Z as well. It allows us
to establish the relation between our theory and previ-
ous papers [8,15] where the electron-electron collisions
have been neglected. Equations (46) and (48) show that
the main function of electron-electron collisions in the
short-wavelength region is to remove the divergence of
the electron distribution function in the region of small
velocities, which is important for the calculations of den-
sity and temperature disturbances. The small imaginary
term proportional to iw in the left-hand side of Eqs. (22)
and (25) produces the same effect. It can be more im-
portant than electron-electron collision integral, if Z is
large enough

7/5

Z& ~"
~

(kA.,)-".4" )
(63)

Because the right-hand side of this inequality contains
the mass ratio, it can be satisfied only for very large
Z () 100). In that case we can neglect the electron-
electron collision integral in Eq. (22) and write the ex-
plicit solution for @0. Similarly to the collisional case,
the only important contribution &om the frequency-
dependent term in the left-hand side of Eq. (22) comes
into the electron density perturbation J~ (20) from the
region of small velocities v vz, (ur/k vz, A„.) . Cor-
respondingly, the contribution into J~ from this region
will scale as

( 1 l' ' fez. l' '
N (X

kv~. (kA.;) ( c. )
(64)

In order to find the numerical coefficient in the front of
this k dependence we performed the numerical integra-
tion of J~ and Jz (20) using the expression for @0 from
Eq. (22) without electron-electron collisions. Then, we
And the following expression for the electron heat con-
ductivity in Lorentzian plasmas:

D. The ion contribution to the ion acoustic damping

In the above analysis we have only considered the elec-
tron contribution to ion acoustic damping, with the as-
sumption of cold ions. The efFect of ion dissipation in
the weakly collisional region has been described in Ref.
[7]. The approximate Grad 21-moment solution to the
ion kinetic equation results in the following expression
for the ion contribution to the damping

v, (1.49v,2 + 0.80k c, )
kv~, 'k4c, +405v. k c + 2.33v.

7(kA, )2

1+7(kA;)' (66)

V. RETURN CURRENT INSTABILITY

where v; = 4~vrZ e n;A, /3/m. ,T, is the ion-ion
collision frequency, A; is the ion Coulomb logarithm,
vz, is the ion thermal velocity, A; = vz;/v; is the
ion mean &ee path, and L, = /7r/8(ZT, /T;) ~ (3 +
ZT, /T;) ~~2 exp[ —(3 + ZT, /T;)/2] is the ion Landau
damping contribution. Note that the second term on
the right-hand side does not result from the 21-moment
method and is added phenomenologically to account for
ion Landau damping.

The relative ion contribution depends on the ratio
A„./A, = Z T,/T;~2. Usually this parameter is large
and hence the ion contribution is important in the limit
of short wavelengths. One can see from Eq. (66) that the
ion contribution to the ion acoustic wave damping has a
maximum at kA„(ZT, /T, ) ~ and then decreases as
k in the ion collisional region. In Fig. 6 we show the
wavelength dependence of the total ion acoustic damp-
ing for diff'erent electron to ion temperature ratios. The
gray line demonstrates the electron contribution; it cor-
responds to cold ions, T, /T; -+ oo. The ion contribution
increases in the region kA; ) 1 as the ion temperature
increases, but there is no significant ion contribution in
the long-wavelength region, kA„( 1, where electrons
dominate.

9/2~ 1
128 kA, + 4.2(vz /c )2&s(kA, )2&5

' (65) Now we turn our attention to the case of plasmas with
temperature gradients and discuss the gradient contri-
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0.12 qth = ((Z)noT ovT A;/LT th, 9 0.5noT pc (70)
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0.01 0.1 100. 1000.

FIG. 6. The wavelength dependence of the ion (66) and
electron (62) parts of the ion acoustic damping (full lines) and
only the electron part of ion acoustic damping (light line) for
the plasma with Z = 8 and di8'erent electron-to-ion temper-
ature ratios T, /T, = 1 (1), 2 (2), and 4 (3).

bution to the perturbation of the electron distribution
function. Because the equation for 6f, is linear, the tem-
perature gradient produces an additive contribution. In
the short-wavelength limit kA; )) 1 we may neglect the
electron-electron collision term in Eq. (22) and find the
following expression for the gradient-dependent part of
the distribution function

i„v~2, r'kv) ~ d1
go& = i "—3,'Hi

~ ~

—1+ vT, —— 4v. (67)
dv v

This can be used for the straightforward calculation of
ion acoustic wave damping, because all integrals in Eq.
(58) are convergent. Hence, electron-electron collisions
do not have a considerable effect on this part of the dis-
tribution function under the conditions (24). The calcu-
lation of the gradient-dependent parts of integrals J~ and
J~ gives us the following expression for the ion acoustic
wave increment

Qv'

kc,
Ix

e *(4 —x)(3IIi + 2 —2x).

(68)

Here the term that is proportional to Hi on the
right-hand side of Eq. (68) dominates. In that
case p~ asymptotically approaches its collisionless value
—(3v'2vr/8) (A„/LT )kc. .

The negative value of p~ means that the temperature
gradient decreases the total ion acoustic damping rate
(58) and can ultimately change its sign. This case cor-
responds to the instability of ion acoustic waves. In the
limit of large wave numbers where all collisional effects
are insignificant one can compare p~ with the Landau
damping term in Eq. (60) and arrive to the following
instability criterion:

256kA.;-1+.207Zk A„(1 —5.3P)

ci —— 1 + 264Zk A„(1 —5.3P)128 I A„-
c2 ——4.42ZkA„. (1 —4.7P).

Cp =

(71)

Substitution of the coefficient ci into Eq. (59) gives us
the following expression for ion acoustic wave damping
in the long-wavelength limit [cf. Eq. (61)]:

[1 + 264Zk A„(1 —5.3P)]. (72)kc, 256 vT, A:A,

The first term in square brackets corresponds to the clas-
sical collisional damping. The second one accounts for
the Gnite-Z effect due to electron-electron collisions. The
coefEcient in &ont of P is larger than 1 and, therefore, the
temperature gradient may destabilize ion acoustic waves
even for small P below the threshold of short-wavelength
ion acoustic instability.

Figures 7(a) and 8(a) demonstrate the efFect of temper-
ature gradient on the ion acoustic wave damping found
from the numerical solution to Eq. (25) for two difFerent
values of Z and P = l. One can see that in the long-
wavelength region, kA; & 1, there is already a region
of negative p that corresponds to unstable ion acous-
tic waves. For given P the growth rate increases with
Z and shifts towards longer wavelengths. The gradient-
dependent part of the ion acoustic damping can be ap-
proximated with the following expression:

Note that this expression for qth is 5.4 times larger than
that derived in the original paper of Forslund [6] and
recently used in Ref. [7]. The cause of this discrepancy
is in the difference of reference distribution functions. It
was shown in Refs. [25,26] that the polynomial expansion
used in Refs. [6,7] does not satisfy the collisional electron
kinetic equation (1) for the reference state.

The kinetic approach allows us to investigate the re-
turn current instability in the region where collisions be-
come important. With decreasing wave number the in-
stability threshold is slightly increased by a larger ion
acoustic damping (60) caused by electron-electron colli-
sions. p~ stays approximately the same as these colli-
sions have an insignificant effect upon it. Therefore for
kA; 1 the instability threshold is approximately Z /

times larger than (69). In the long-wavelength region the
threshold decreases again. This part corresponds to the
hydrodynamical instability derived recently in Ref. [7].
An approximate analytical solution to the kinetic equa-
tion (25) in the long-wavelength region can be derived
similarly to that in Sec. IIIB using the I aguerre poly-
nomiaI expansion or exact integral solution similarly to
[24].

3 vTe ei

2c, LT
(69) pv'

kc,
A., t' c~

vrkA. ;)
1

80ZI A.;In terms of the electron heat Qux this corresponds to the
well-known threshold value of qth [25,26] (73)
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lower than the known short-wavelength threshold (69).
Note that this long-wavelength part of the ion acoustic
instability agrees with the results of our previous paper
[7] where a phenomenological expression for the nonlocal
electron heat conductivity was used.

It can be seen from these figures that the instability
onset is accompanied by a negative electron heat con-
ductivity. This fact follows also from analytical consid-
eration. In the short-wavelength region, kA„. )) 1, we
have an additional contribution to the denominator of
Eq. (51) related to the temperature gradient

b)

It has the opposite sign to the Maxwellian contribution
(55) and can therefore change the sign of K

0.001 O.C 1

e

10.

Kp
(74)128 kA„(1 —SP/7r) + 3c„Z ~ (kA .) ~7

FIG. 7. The wave-number dependence of the ion acoustic
wave damping (a) and the normalized electron heat conduc-
tivity coefficient (b) in a plasma with the temperature gra-
dient, P = 1 and Z = 8. Dots correspond to the numerical
solution to Eq. (32), solid curves are the analytical approxi-
mations (73) and (75).

Comparing this expression with the instability threshold
(69) one can see that r as a function of P for given kA„. ))
1 goes to infinity and then changes sign even before the
instability threshold has been reached. Combining the
long-wavelength asymptotics (71) with Eq. (74) we find
the following interpolation for ir, (k) in a plasma with a
temperature gradient

which coincides well with the numerical solution to Eq.
(32). The coefficient c~ slightly changes with Z from
c~ ——1.9 for Z = 8 to t"~ ——2.2 for Z = 64. It can be seen
&om Eq. (73) that the threshold for the long-wavelength
instability corresponds to P —0.4. This is 2.5 times

Kp

9&2~
kA„. + 3c„(1+ 264Zk2A~„)

128 128c„/3+27r + 264Zs~ (kA„)

8
+

q kA„+ 2.7/kA„SOZkzA„. )
y/kcs

0.2,

0.1.
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0.001 10. V„.
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-0.5-
0.001 0 0 10.

FIG. 8. The wave-number dependence of the ion acoustic
wave damping (a) and the normalized electron heat conduc-
tivity coefficient (b) in a plasma with the temperature gradi-
ent, P = 1 and Z = 64. Dots correspond to the numerical
solution to Eq. (32), solid curves are the analytical approxi-
mations (73) and (75).

This formula together with (73) is shown in Figs. 7(b)
and 8(b). They agree reasonably well with exact solution
to Eq. (32).

Obviously, a negative heat conductivity illustrates
the inapplicability of thermodynamical definitions to a
nonequilibrium plasma, but it also gives us another phys-
ical explanation for the heat Hux driven instability that
has been already proposed in Ref. [7]. First of all we
note that the temperature gradient does not contribute to
the electron heat Hux associated with ion acoustic wave,
which remains unchanged (cf. Sec. EV A) and is indepen-
dent of wavelength. The sign change in the denominator
of Eq. (51) manifests itself in the change of the temper-
ature perturbation phase with respect to the heat Hux
perturbation. Therefore, heat Hux can enhance the tem-
perature perturbations in contrast to the usual situation
in equilibrium plasmas where the heat Hux dissipates the
temperature disturbances. This enhancement ultimately
results in the instability, if the external heat Hux is large
enough.

Figure 9 demonstrates the excitation of the ion acous-
tic wave instability for diferent temperature gradients
when the ion part of the ion acoustic damping is also
taken into account according to Eq. (66). The growth
rate p 0.07k', can be easily achieved for kA; = 0.2
and a temperature gradient IT 45A„(P = 2). For a
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FIG. 9. The wavelength dependence of the total ion acous-
tic damping (full lines) and only the electron part of ion acous-
tic damping (light lines) for the plasma with Z = 8, electron
to ion temperature ratio T, /T, = 1 (1), 2 (2), and 4 (3), and
difFerent electron temperature gradient P = 0.5 (a), 2 (b), 5

(c).

laser-produced plasma with an electron density no 10
cm and temperature 1 keV the instability growth time
1/~p~ 100 ps. This long-wavelength instability corre-
sponds to the excitation of relatively large-scale pertur-
bations, 1/k 5 pm, and therefore their development
should be considered in the context of the global hydro-
dynamic evolution of the plasma. The scale of these per-
turbations is already comparable with the temperature
scale length and a more accurate analysis of the instabil-
ity is needed for any particular plasma conditions. The
short-wavelength ion acoustic instability is less depen-
dent on plasma geometry because kLz )) 1. It has a
larger threshold but it also has a larger growth rate. The
short-wavelength ion acoustic waves may be responsible
for the nonthermal scattering of electromagnetic waves
and anomalous transport coefBcients in the time scale of
& 10 ps as has been discussed elsewhere [26,27].

damping and electron heat conductivity from well-known
classical collisional expressions appears as early as at
A;A„. 0.06Z /, and electron-electron collisions domi-
nate in a wide parameter range up to kA„. (2 —20)Z2~s.
Our analysis shows that electron-electron collisions have
a strong eKect on the electron distribution and there-
fore their neglect in Refs. [8,15] cannot be justified. The
k dependence of ion acoustic wave damping and elec-
tron heat conductivity agrees well with the results of
kinetic Fokker-Planck simulations [16] of ion acoustic
waves. Note that the scaling of the electron heat con-
ductivity, r oc k /, associated with ion acoustic waves
in the weakly collisional region, kA„1 diAers signif-
icantly from the case of inverse bremsstrahlung absorp-
tion [4,9,10] where the law Ic oc k i ~7 has been found.
In both cases the e8'ect of electron heat conductivity in-
hibition originates from the change in the electron dis-
tribution function in the region of small electron veloci-
ties, v & v~„and therefore manifests itself through the
anomalous k dependence of density and temperature per-
turbations. The direct efFect of electron-electron colli-
sions on the electron heat Aux is much weaker. This
fact has been explicitly demonstrated here where we have
discussed the e8'ect of the temperature gradient on the
electron heat conductivity.

The return current instability has the lowest thresh-
old in the long-wavelength region, kA„( 1, where it is
found to be more than two times lower than that pre-
viously known for short-wavelength ion acoustic waves.
This long-wavelength instability may be manifested in
strongly inhomogeneous plasma Bows like jets. For typi-
cal laser plasma parameters these structures may develop
in the nanosecond time scale. The instability of the elec-
tron heat Hux may also acct the electron heat transport
and overall plasma hydrodynamics due to the additional
scattering of electrons from the ion acoustic waves. How-
ever, we defer these problems for future publications.
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APPENDIX A: DERIVATION OF THE MATRIX
ELEMENTS OF THE COLLISION OPERATOR

VI. CONCLUSIONS

In this paper we have discussed analytically the eBects
of electron-electron collisions on ion acoustic wave damp-
ing and provided a fully kinetic treatment of the heat fiux
driven instability for arbitrary electron collisionality. We
can summarize our results in the following way.

%e have found that the deviation of the ion acoustic

3
ZkA;

OO

dxL (x) [e G (x)], (Al)

where

Straightforward integration of Eq. (29) with the

(x) gives the following expression for the contri-
bution from the electron-electron collision term
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G-(z) = dyi, L.'"'(y)
i ~i —,y i

--y'"-" --z" dyi
) E2 ) 3 3 . k~y' " )

&n«g»t&ng Eq (A1) by p~rts, using G(0) = 0, and then integrating each term in Eq. (A2) by parts leads to

(A2)

OO

dy
i

L( 1/ 2 ) (y ) i

ys / 2 e v z3/ 2
igy

i

L(&/z) (y) i
e w

d

)
(A3)

The above expression can now be simplifj. ed by mak-
ing use of some of the properties of the generalized La-
guerre polynomials. The derivatives of the Laguerre
polynomials can be rewritten by noting the relation

(d/dz)L( / )( )z= —L( /i)(x). The last term on the
right-hand side of Eq. (A3) can be simplified by chang-
ing the order of the integration over x and y so that it
looks like the second term but with m —n. The dou-
ble integral can then be converted into a one-dimensional
integral since we have the following relation due to the
Rodrigues' formula for the generalized Laguerre polyno-
mials,

1
dyL( / )(y)y / e " = L z(x)x / e (A4).

0

This gives the final result for C shown in Eq. (34).
From Eq. (34) it can be seen that the collision operator

is symmetric, C = C . Furthermore we have the
following invariants of the collision operator:

C 0=CO —0; Cg„——C„g ——0.

kA„.z ebP

1 eo
bfi(z) = i—

3

where according to (19)

(A6)

( )
. ) (]/z)

( )
. (41 3~7r Hi 1

. A„. Hi —1 /' l3
i " 6 —— x+x

LT kA„.z ( 2 )
(A7)

These can be easily seen from Eqs. (Al) and (A2) since
the derivatives vanish.

All the useful quantities can now be written in terms of
the expansion coeKcients c = A 6 . For example, the
first asymmetric part of the distribution function h fi(z)
(15) is given by
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