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Transport and self-organization in dissipative drift-wave turbulence
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The contribution of coherent structures to steady-state transport in dissipative drift-wave tur-
bulence is investigated. Using the two-Beld Hasegawa-Wakatani model as a paradigm for studying
self-organization in magnetized plasmas, we show in an unambiguous manner that coherent vortex
structures play a dominant role in cross-Beld transport.

PACS number(s): 52.35.Ra, 47.27.—i, 02.50.Wp

I. INTRODUCTION

One of the most fascinating aspects of fully developed
turbulence, as it is observed in two-dimensional (2D) flu-
ids or plasmas, is the emergence of coherent vortex struc-
tures [1,2]. Such structures are believed to play a con-
siderable role on the macroscopic properties of the sys-
tem, in particular the steady-state transport of particles
and energy. The basic understanding of their dynamics
is not yet well understood, due in part to the difhculty
in identifying them from the experimental or computa-
tional signals. The identification of the coherent struc-
tures from spatiotemporal turbulence measurements has
been a challenging problem so far due to the lack of ad-
equate analysis techniques [3]. While it is generally easy
to detect coherent structures by eye, it is much more dif-
Gcult to identify and extract them in an objective way.
As a consequence, most of our knowledge remains based
on flow visualization [2] or averaging techniques [5] and
little quantitative evidence has been obtained so far for
a link between transport and self-organization. Recently,
using a multivariate technique called the biorthogonal de-
composition (BOD), we were able to characterize some
properties of coherent structures observed in experimen-
tal data issued from edge tokamak measurements [4].

In the present paper, we address the issue of the influ-
ence of coherent structures on the (particle) transport,
in the context of generic dissipative drift wave turbu-
lence using the two-Geld density and electrostatic poten-
tial fluctuations, Hasegawa-Wakatani (HW) model [6].
This model is well known to exhibit both an adiabatic
regime, when the electrons have a Boltzmann distribu-
tion, and a hydrodynamic regime, where electrons and
ions act essentially as a passive scalar. This model pro-

vides a paradigm for studying cross-Geld transport in the
presence of coherent vortex structures and bears a close
resemblance to the turbulence observed in the ionosphere
[7] and in tokamak edge plasmas [8]. This model, which
neglects temperature fluctuations, magnetic shear and
toroidal geometry, does not pretend to describe tokamak
turbulence [9]. It contains, however, the basic elements
we want to investigate in connection to the transport: a
large spectrum of turbulent fluctuations and the forma-
tion of coherent structures. This model is well suited for
testing nonstandard analysis techniques of spatiotempo-
ral signals.

Using two complementary analysis techniques, the
BOD and the conditional averaging, we show that (i)
the impact of coherent structures on cross-Geld trans-
port can be quantified and (ii) the transport properties
in the dissipative drift wave turbulence strongly deviate
from the usual quasilinear regime due to the influence of
large-scale and long-lived vortex structures. This paper
is organized as follows. In Sec. II the simulation data
of density, potential, and. radial flux of the HW system
are presented. In Sec. III the flux is analyzed with a
proper orthogonal decomposition method and with the
conditional averaging. Section IV is devoted to the con-
clusion.

II. SIMULATION DATA

The two-Geld HW model provides a set of nonlinear
coupled equations for electron density n and electrostatic
potential P fluctuations in an inhomogeneous magnetized
plasma
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Time is given in units L /c, (L is the gradient density
scale length and c, the acoustic speed), space is in hy-
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FIG. 1. Contour plots of the (a) density,
(b) potential, and (c) Aux 8uctuations levels,
at a given time. Dotted lines refer to negative
amplitudes.
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brid gyroradii p„c is the adiabaticity parameter, v is the
viscosity, D is the diffusion coeKcient, x and y stand for
the radial and poloidal coordinates, respectively, and [, ]
denotes Poisson brackets. The fundamental parameter in
these equations is c, which takes into account the paral-
lel current and controls the response of the electrons. In
the limit t- ~ 0 the density equation is decoupled from
the potential one and the system is in an hydrodynamic
regime: the potential equation (2.2) reduces to the usual
Euler equation of two-dimensional Bows: in the c ~ oo
limit, the density follows the potential and then the sys-
tem is in the adiabatic regime: the two equations reduce
to the Hasegawa-Mima model.

These equations were solved using a pseudospectral
method (discussed in [10]) on a 128 x 128 periodic grid
of dimensions 64p„which extends both poloidally and
radially. Typical parameters used are c = 0.7, v = 0.01,
and D = 0.01. For this value of c, the system is in an in-
termediate regime, ensuring a growth of unstable modes
and allowing the existence of a net transport, without
being completely hydrodynamical. For the purposes of
this work the spatial resolution of the simulation is suf-
ficient because we are essentially interested in the long
and intermediate scales.

In the following, we consider an excerpt of 250 time
periods obtained in the saturated state regime and with a
spatial grid that has been decimated by 2. Figure 1 shows
2D snapshots of the density and potential Buctuations
and their associated Hux defined by

their liftime is about 10—20 turnover times. A visual in-
spection of the flux spatial distribution suggests a local
enhancement in the vicinity of the coherent structures.

A mild level of intermittency is attested by slightly
non-Gaussian probability distribution functions of the
density and the potential (Fig. 2). On the other hand,
the flux histogram [Fig. 2(c)] is consistent with a strong
correlation between the density and the potential fluc-
tuations, giving exponentially decaying tails (such as a

distribution, since the flux is quadratic in the Buctu-
ations).

We also compared the observed total flux with the
quasilinear one, computed using the linear dispersion re-
lation associated with Eqs. (2.1) and (2.2). We found
that the Hux observed in the saturated turbulent state
is five times smaller than in the quasilinear case. This
departure from the quasilinear Bux may be explained by
the presence of coherent structures. Similar investiga-
tions [2] have also indicated that transport may be asso-
ciated with self-organization. In the following we make
a more quantitative analysis of the inHuence of coherent
structures on the transport.

III. ANALYSIS OF THE FLUX

The standard and simplest way to investigate the scales
that are involved in the flux consists in analyzing the
cross coherence

(2.3)

where BP/Oy is the electric drift velocity in the radial
direction. Large-scale structures are apparent, which
evolve for several periods before they dissipate. The char-
acteristic scale of these objects is of the order of 10p, and

Pk„=

k, t

nk k t k k t
k, t

k. ,t„

10
DENSITY (a)

10
POTENTIAL (b)

10

10 10 10

Q 10
C4

a 1O
'

C4

4a IO'

10 10

lQ .t . ~ 1Q"
—4 —2 0 2 4 —4 —2 0 2 4

normalized amplitude normalized amplitude

FLUX (c)

—2 0 2 4
normalized amplitude

FIG. 2. Probability distribution functions
associated with the (a) density, (b) poten-
tial fluctuations, and (c) flux. The quantities
represented are centered at their mean values
and normalized to their standard deviations.
The inverted parabola corresponds to a ref-
erence Gaussian distribution with the same
mean and standard deviation.
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FIG. 3. Cross phase and cross coherence between the den-
sity and the potential vs the poloidal wave number. The
dashed line represents the phase shift computed from the con-
ditionally averaged density and potential fields.

and the phase shift between n and P, de6ned by arg(p& ).
The flux is maximum when the phase shift is m/2 and the
density and potential are well correlated. On the other
hand, if the phases of n and P are random, the cross
coherence vanishes and the flux also vanishes.

A strong coupling between these two quantities is at-
tested by the large cross coherence; see Fig. 3. A corre-
lation of density and potential is maintained across the
whole spectrum. On the other hand, the phase shift be-
tween n and P is close to 7r/2 for low (poloidal) wave
numbers, but it is much smaller than the linear phase
shift at higher wave numbers. In the nonlinear state the
system sets a phase relation between the fluctuating fields
that is almost inverted with respect to the linear estima-
tion, where large k modes dominate. As a consequence of
this relatively small contribution of the large wave num-
bers, the observed flux is weaker than the quasilinear es-
timation (obtained from the summation over the whole
spectrum). This effect cannot be attributed to the adia-
baticity parameter value or to the inverse cascade, which
tends to concentrate the energy at large scales (the quasi-
linear computation uses the same value of c and the same
distribution of the potential, with its rapidly decaying
power spectrum at high k).

The k„-power spectrum of the flux follows the phase
shift pattern, then showing a maximum at intermediate
wavelengths, approximatively at 10p, . Although the co-
herent structure size is of the same order (see below),
this is not a proof of a relation between self-organization
and transport. Indeed, Fourier analysis is not suitable to
a scale-length analysis and, moreover, this value of the
wavelength coincides with the maximum growth rate of
linear modes. In this sense an opposite conclusion may be

250

n(x, , t, ) = ) A v (t, )u (x.),
m=1

(3.2)

where for simplicity the two spatial coordinates are
merged into one. This decomposition is unique [18] and
the spatial and temporal components are respectively

obtained: the absence of a strong link between large-scale
organized structures and transport [11]. The interpreta-
tion of the cross spectrum, however, remains ambiguous
as it cannot separate the effects of broadband turbulence
and that of small structures convected by large ones. As
will be shown now, the use of more appropriated analysis
techniques can be more informative.

The first approach we consider is based on conditional
averaging, which is a well-established technique for visu-
alizing eddies in turbulence [12,13]. The heuristic idea
is to add up ensembles of the data in such a way that
random fluctuations average out but not organized struc-
tures. Figure 4(a) displays the time average of subsets
of the density data whose amplitude level fit the con-
straint n = 2o + 5% at the center of the frame (cr be-
ing the standard deviation of n). A macroscopic pattern
emerges, which can be considered as an average density
eddy. Similar structures are obtained for the flux and the
potential.

To study the relation between these eddies, we now
perform a conditional analysis of the potential P and the
flux I', using the condition imposed on the density: each
time a subset of n is found to satisfy the condition, the
same subset is taken for averaging from P and I' [14].
We thus extract the average structures of the potential
and the flux. constrained to the sample obtained for the
density in Fig. 4(a). The results, plotted in Figs. 4(b)
and 4(c), reveal a structure in the potential whose phase
shift to the density eddy is even smaller than the total
phase shift shown in Fig. 3. Besides, Fig. 4(c) shows
that the largest flux is also localized in the neighborhood
of the coherent structure. We remark that this small
shift between density and potential typical patterns is an
indication of transport depletion by coherent structures
relative to the quasilinear regime.

To assess this point, we computed the phase shift be-
tween the conditionally averaged density and potential;
the result is represented in Fig. 3 and confirms that it is
much smaller than the bare phase shift. This may suggest
that indeed the transport is not simply a consequence of
the vortex drift but is rather related to the complex struc-
ture of the fields and in particular to the smaller scales.
At this stage, however, we are not able to quantify the
contribution of the different scales to the transport. For
this, a different technique is needed because the condi-
tional averaging method omits the role of fluctuations to
transport and smears out the scale richness of the fields.

The second approach we consider is based on the
biorthogonal decomposition technique [15—17], which is
also known as the proper orthogonal decomposition. This
technique consists of decomposing the data into a finite
set of orthonormal spatial and temporal components.
The density fluctuation data, for example, are decom-
posed as
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FIG. 4. Contour plots of the conditionally
averaged (a) density, (b) potential, and (c)
Aux using the condition imposed on the den-
sity (843 samples are averaged).
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eigensolutions of the time- and space-averaged. data cor-
relation matrices. The weights A are either positive or
zero and are conventionally sorted in decreasing order.
The BOD has the interesting property to project large
eddies on heavily weighted components whereas random
fluctuations appear in modes that carry small weights.
It thus separates fluctuation scales on the basis of their
degree of correlation in space and in time.

The BOD of the fluctuation data leads to the weight
distributions depicted in Fig. 5(a). The steepness of these
distributions is an indication of redundancy and means
that the salient features of the dynamics are captured
by just a few terms out of the 250. These distributions
also show that the spatiotemporal behavior of the den-
sity is richer than that of the potential: more weights
contribute significantly to the density field. The quali-
tative differences between density and potential are en-
hanced by diminishing the adiabaticity parameter c: in
the hydrodynamic limit the density behaves much like a
passive scalar, with an added source term proportional
to the poloidal component of the potential gradient [the
/By term in (2.1)].

A spectral analysis of these terms [see Fig. 5(b)] shows
that the characteristic poloidal (A„= 1/(k„)) and tempo-
ral (7 = 1/(w)) scales decrease with rn for large rn values
[19]. For small m values corresponding to the most signif-
icant modes in terms of energy content, we find definite
length and time scales A„- 10 and 7 20, respectively.
This is consistent with the conditional analysis and with
the direct visualization of the field evolution. This result,
together with the steepness of the weight distribution, is
a clear signature of the existence of coherent structures
[4]. Note that the characteristic poloidal length and the
characteristic time associated with the intermediate and
large m modes follow the diffusive scaling A„= ~ /, as
expected for a random (Gaussian) field. This diffusion

law does not hold for low m modes associated with the
coherent structures.

Another important point, revealed by the spectral
analysis of the BOD modes, is that these modes are not
monochromatic but contain a large spectrum of scales,
A„and w being only the dominant ones. This means, by
definition of the BOD, that large scale lengths are cor-
related with smaller ones. The coherent structure is not
limited to the largest scales in the flow, but rather asso-
ciated with its localized, long-lived component (at least
in a statistical sense, as it is described by conditional
analysis) .

One interesting quantity to study is the poloidally av-
eraged particle flux, given by I' = —(n B$/By); this
quantity measures the transport across the magnetic field
and is used, for instance, in edge tokamak transport stud-
ies. Although the BOD has essentially been used to re-
duce the dynamics of complex systems [20—22] to lower-
dimensional spaces, it is equally appropriate for deter-
mining the contribution of the different scales to trans-
port. To this end, we calculate the partial fluxes, de-
fined as the fluxes carried by the normalized biorthogonal
components of the density I'„=—(n BP/By), where
n = v u . The dependence of these partial fluxes on
A~ is shown in Fig. 6 and reveals a strong correlation be-
tween the two quantities. This result confirms the role of
self-organization on transport, which can now be quan-
tified. Figure 6, for example, reveals that the impact of
coherent structures is not due as much to some intrinsic
property as to the fact that they have a larger spatio-
temporal correlation.

In the view of these results, the mechanism of trans-
port appears to be related to the advection of small (or
intermediate-scale) fluctuations by the largest vortices.
We see, in Fig. 6, that the flux grows with the scale
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BOD weights decrease as A„) and their velocity disper-
sion follows a ballistic law v oc v. Therefore, at small
scales we obtain I' oc A„r —A„(the small scale slope
in Fig. 6). We obtain in this way two different behav-
iors of the flux at small and large spatiotemporal scales,
showing different power laws.

Let us note that this result is fundamentally differ-
ent from what is expected from a simple mixing length
ansatz, which will not provide the contribution of dif-
ferent scale lengths to the flux as it gives only a global
value. Even if the mixing length, based on a random
walk process, predicts a diffusion coefIicient scaling ask, this says nothing about the spatiotemporal dynam-
ical behavior of the system. We found that this scaling
is only relevant for intermediate scale lengths, fluctuat-
ing around larger vortices (themselves not contributing
to the transport). Moreover, the BOD Aux I' is com-
pletely different from the Fourier component I'I, of the
flux, which enters in the mixing length theory. Indeed,
the spatiotemporal BOD component takes into account
a large spectrum of Fourier modes having the same cor-
relation weight.

In summary, the picture that emerges here is that each
coherent vortex is truly made out of a broad range of
different spatial and temporal scales, in which the large
ones predominate. These structures control the transport
by the advection of intermediate-scale fluctuations.

as a power law with two different slopes depending on
the scale. Although the existence of a knee in the data
of Fig. 6 is clear, the values of the slopes are subject
to uncertainties due to the few number of points used
in the computation. We point out that this increase is
not due to the fact that low-order modes are more heav-
ily weighted, as the biorthogonal modes of the density
have been normalized to their weight. Futhermore, no
dependence of I' on A„ is observed when n, .„is replaced
by Fourier modes having the same "scale length, " thus
indicating that low-order modes truly contribute to the
transport.

This behavior may be explained by the fact that the
normalized BOD mode density (the n used in the com-
putation of I' ) of the Huctuations in the neighborhood of
the large vortex is proportional to n oc A„(the charac-
teristic length of the vortex). The geometrical interpreta-
tion of the proportionality n oc A„ for the intermediate
scale lengths is that the fluctuations contributing to the
transport are mainly located at the periphery of large
vortices. Therefore, their normalized BOD mode den-
sity (n ) is not directly related to the area occupied by
these fluctuations but to the length of the vortex which
with they are correleted. Besides, these random fluctu-
ations diffuse at a rate proportional to v oc ~ ~, giving
I' oc A„r ~ A„(the large scale slope in Fig. 6). On
the other hand, the smallest fluctuations, not at all cor-
related with the large vortices, contribute negligibly to
the transport; the flux as a function of A„decrease fast
on these scales. For these scales the normalized density is
proportional to the area of the Auctuations n oc A„(the

IV. CONCLUSION

In this paper we analyzed numerical simulations of the
Hasegawa-Wakatani model to study the influence of self-
organization on transport properties of the system. It
has been clearly established that coherent vortex struc-
tures govern cross-field transport in dissipative drift-wave
turbulence. In particular, the particle flux strongly in-
creases with the size and the lifetime of the fluctuation
events that carry it. From a comparison of different ap-
proaches (correlation and Fourier techniques, conditional
analysis, and biorthogonal decomposition), a unified pic-
ture emerges, in which steady-state transport is related
to the advection of intermediate-scale fluctuations at the
steep gradients of the large structures. Coherent struc-
tures themselves are built from a large superposition of
spatiotemporal scales and these scales satisfy a diffusion-
like power law. We also found that radial flux obeys
a power law in the characteristic scales. Two regimes
of transport as a function of the characteristic spatio-
temporal scales were identified and found to be related
to two difFerent power laws at small and large scales.

It must be pointed out that the existence of such vor-
tices does not necessarily imply a significant deviation
from Gaussianity, as the fluctuation probability distribu-
tion functions are found to be almost Gaussian.

Finally, we note that the conditional averaging and the
BOD techniques were found to be appropriate in study-
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ing the spatiotemporal properties of a turbulent self-
organized system. These techniques are not restricted
to any particular model and a recent application of the
latter to experimental data suggests that coherent struc-
tures also play a significant role in the transport of toka-
mak edge plasmas [4].
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